Progress of the IS559 experiment

The γ-ray strength function and nuclear level density of 67Ni
Outline

• Motivation
• The IS559 experiments
• Preliminary results
• Summary
Nucleosynthesis – neutron capture process

- r- and s-process responsible for production of almost all elements heavier than iron\(^1\)
- r-process known to happen in kilonovas following neutron star mergers\(^2\)
- Abundance calc. needs accurate nuclear input
 - Neutron capture rates
 - Decay rates, masses, etc.

\(^2\) D. Kasen \textit{et al.}, Nature \textbf{551}, 80-84 (2017)

Figure credit: F. Timmes, http://cococubed.asu.edu/images/nuclide_chart/table_nuclei04.pdf
Nucleosynthesis – i-process

• First suggested in 1977 by Cowan & Rose\(^1\)
• Intermediate neutron flux
 \(\sim 10^{13} - 10^{16} \text{ cm}^{-3}\)
• Observed in post-AGB star
 Sakurai’s object (V4334 Sagittarii)\(^2\)
• Elemental abundance of HD94028: Cannot be explained with s- and/or r-
 process alone\(^3\)
 – Weak i-process

The weak i-process

• Possibly initiated by ingesting of H into a convective He zone
• Terminates quickly
• The $^{66}\text{Ni}(n,\gamma)$ identified as a major bottleneck
 – Experimental measurements needed!

Figure 10. Isotopic abundances from the two additional ppa runs in which only the multiplication factor $f(^{66}\text{Ni})$ was switched between its maximum (top panel) and minimum (bottom panel) values constrained by the Hauser-Feshbach model computations.

Hauser-Feshbach model

\(\gamma \)-ray strength function

Nuclear level density

Optical model potential

Hauser-Feshbach calculations

\((n,\gamma)\) capture cross section
Hauser-Feshbach model

Oslo Method

- γ-ray strength function
- Nuclear level density
- Optical model potential

Hauser-Feshbach calculations

(n,γ) capture cross section
\(\gamma \)-ray Strength Function

- Measure of the electromagnetic interaction of a nucleus
- Dominated by the E1 giant resonance (GDR)
- Low energy enhancement “upbend” (LEE)
- Scissors resonance
- Pygmy dipole resonance (PDR)
Effect of LEE on neutron capture

- Origin of LEE still not well understood
- The LEE can have a huge impact on \((n,\gamma)\) cross section
- Experimental data is needed to refine theoretical models

Figure credit: A. C. Larsen and S. Goriely, Phys. Rev. C 82, 014318 (2010)
The Oslo Method

- Simultaneous measurement of the γ-ray strength function and nuclear level density
- Starting point: E_γ vs E_x matrices
 - Reactions with light ions
 - TAS of beta-decay
 - Inverse kinematics
Experiment

- 66Ni beam @ 4.5 MeV/u
- ≈ 11 pA for ~ 140 hours
- 669 ug/cm2 C$_2$D$_4$ target
- Six Miniball clusters
- Six large volume (3.5x8") LaBr$_3$:Ce detectors
- C-REX particle array
- > 240k coincidences after BG subtraction
- First Oslo Method in inverse kinematics with radioactive beam!
Results

Bottom quadrant, ring 4

- Proton
- Deuteron
- Triton

Excitation energy [keV]

Δ E detector energy [keV]

E detector energy [keV]

γ-ray energy [keV]
Oslo Method Analysis - Unfolding

Raw

Unfolded
Oslo Method Analysis – First generation

Unfolded

First gen.
Oslo Method Analysis – extraction of gSF & NLD

\[\Gamma(E_x, E_\gamma) \propto \mathcal{T}(E_\gamma) \rho(E_x - E_\gamma) \]

\[\Gamma_{\text{theo.}}(E_x, E_\gamma) = \frac{\mathcal{T}(E_\gamma) \rho(E_x - E_\gamma)}{\sum_{E_\gamma = E_\gamma^{\text{min}}} \mathcal{T}(E_\gamma) \rho(E_x - E_\gamma)} \]

\[f(E_\gamma) = \frac{1}{2\pi E_\gamma^3} \mathcal{T}(E_\gamma) \]

\[\rho(E_x) = A \tilde{\rho}(E_x) e^{\alpha E_x} \]

\[\mathcal{T}(E_\gamma) = B \tilde{\mathcal{T}}(E_\gamma) e^{\alpha E_\gamma} \]
The Oslo Method – normalization of NLD

- Known discrete levels
 - ENSDF
 - XNSDF
- NLD at S_n
 - Systematics
- Fixes slope parameter α and absolute value A
The Oslo Method – normalization of γSF

- Slope α fixed by NLD
- Absolute value found by

$$\langle \Gamma_0 \rangle = \frac{B}{2\pi \rho(S_n, J_t^\pi)} \int_0^{S_n} dE_\gamma \mathcal{T}(E_\gamma) \rho(S_n - E_\gamma) \times \sum_{I = -1}^{1} g(S_n - E_\gamma, J_t + I)$$

Refereences

Hauser-Feshbach calculations

Preliminary!
Summary

• Preliminary results for the γSF and NLD for 67Ni
• We observe a strong low energy enhancement in the γSF
• Will help our understating the weak i-process
• Oslo Method with inverse kinematics: An important tool for constraining (n,γ) cross sections of unstable nuclei
Acknowledgement

S. Siem1, M. Wiedeking2, K. J. Abrahams3, K. Arnswald4, F. L. Bello Garrote1, T. Berry5, D. L. Bleuel6, J. Cederkäll4,7, T. L. Christoffersen1, D. M. Cox8, L. Crespo Campo1, H. De Witte9, L. P. Gaffney7, A. Görgen1, C. Henrich10, A. Illana Sison9, P. Jones2, B. V. Kheswa2,11, T. Kröll11, S. N. T. Majola2,12, K. L. Malatji2,12, T. Nogwanya2, J. Ojala8, J. Pekarinen8, G. Rainovski13, P. Reiter14, D. Rosiak14, M. von Schmid10, M. Seidlitz14, B. Siebeck14, J. Snäll4, K. Sowazi2, G. M. Tveten1, N. Warr14, F. Zeiser1

1Department of Physics, University of Oslo, N-0316 Oslo, Norway
2iThemba LABS, P.O. Box 722, 7129 Somerset West, South Africa
3Department of Physics, University of Western Cape, P/B X17 Bellville 7535, South Africa
4Physics Department, University of Lund, Box-118, SE-22100, Lund, Sweden
5Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
6Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California, 94550-9234, USA
7ISOLDE, EP Department, CERN, CH-1211 Geneva, Switzerland.
8Department of Physics, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä, Finland
9Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
10Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
11Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
12Department of Physics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
13Faculty of Physics, St. Kliment Ohridski University of Sofia, BG-1164 Sofia, Bulgaria
14IKP, University of Cologne, D-50937 Cologne, Germany

06.12.2019
Acknowledgement

UiO: University of Oslo

Department of Physics
University of Oslo

NRF 20
National Research Foundation 1999-2019
Laboratory for Accelerator Based Sciences

iThemba LABS

With funding from
The Research Council of Norway