

LHC studies: simulations and data

L. Coyle², T. Pieloni², B. Salvachua^{*}, M. Schenk², J. Wenninger^{*}

*CERN & ²EPFL, Switzerland

Acknowledgements

R. de Maria, M. Giovannozzi, A. Mereghetti, R. Steerenberg, M. Titze, F. van der Veken, I. Zacharov

Overview

- Introduction: brief summary of Loïc's work
 - Project overview
 - Main results and outlook
- Loïc's upcoming PhD project
- LHC surrogate model from simulations
 - Idea
 - Discussed topics
- Other LHC machine learning use-cases

2

Introduction: brief summary of Loïc's work *Project overview*

Title: LHC beam intensity lifetime optimization

Objective: first time use of machine learning techniques to

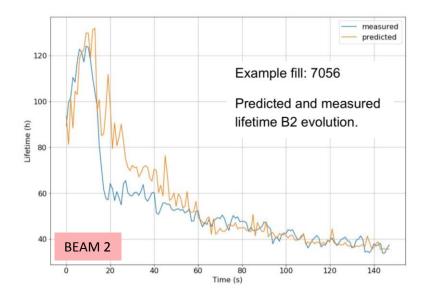
- characterise unexplained beam losses along LHC cycle
- determine which parameters have strongest impact on losses
- help optimise and suggest operational configurations

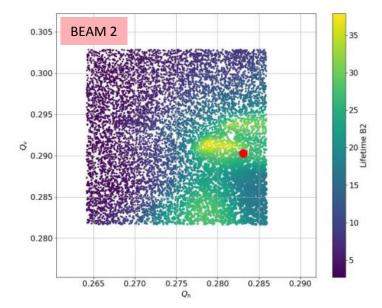
Strategy: create model of LHC beam lifetime

- Online optimisation not feasible in LHC at this stage
- Simulations are compute-intensive
- Missing simulation code that combines incoherent and coherent effects

3

Some challenges

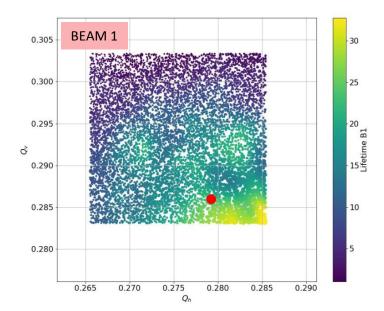

- Setting up infrastructure
- Beam lifetime depends on many parameters
- Large amounts of uncleaned data

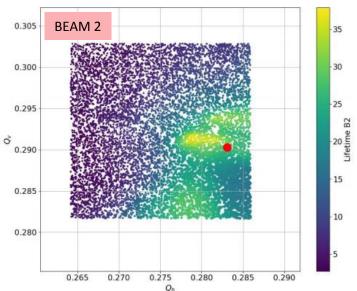

Introduction: brief summary of Loïc's work

Main results and outlook

Preliminary results

- Evaluated various machine learning models best performance with Gradient Boosted Decision Trees
- Promising study
 - Model predicts optimum working point (red) in agreement with MD data
 - Trends in beam lifetime vs. time predicted correctly


L. Coyle et al.


Introduction: brief summary of Loïc's work

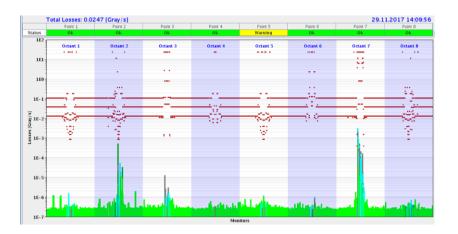
Main results and outlook

Preliminary results

- Evaluated various machine learning models best performance with Gradient Boosted Decision Trees
- Promising study
 - Model predicts optimum working point (red) in agreement with MD data
 - Trends in beam lifetime vs. time predicted correctly
- Beams 1 and 2 behave differently
- Clean, high-quality data is important
 - Fake correlations between the two beams
 - Differences between available measurement devices
 - Acquired clean data set during dedicated MD
- Collective effects can be relevant: impedance, electron-cloud, etc.

L. Coyle et al.

Introduction: brief summary of Loïc's work *Main results and outlook*


Outlook

- Multi-objective optimisation: beam lifetime and emittance for example
- Improve diagnostics and preprocessing of data (e.g. tune, chromaticity readings)
- Extract more information at bunch-level rather than at beam-level
- Define an online use to support operators with operational choices
- Back up with numerical simulations:
 - => potentially need to combine single-particle tracking with collective effects codes: recent proof-of-principle PySixtrackLib + PyHEADTAIL

Loïc's upcoming PhD project

With F. Blanc (EPFL), J. Wenninger (CERN)

- LHC loss maps (LM) are measured continuously during operation (1 Hz)
- They provide information on
 - Quality of beam cleaning by collimators
 - Plane of the losses
 - Population of abort gap
 - Luminosity at Interaction Points (IPs)

- Large number of monitors (~3500), high data rates, and complex loss patterns
 analysis so far with 'classical' techniques, requires sub-selection of monitors ...
- PhD objective: use machine learning techniques for on- and offline diagnostics of the LHC beams and collimation system
 - Online diagnostics of injection losses, stability of injection configuration, uncaptured beam losses during energy ramp, LM 'sanity checks' along entire LHC cycle
 - Surrogate models of the LMs and beam lifetimes to predict LMs and detect anomalies
 - Develop online, 'first line' collimation LM validation
 - Surrogate model of the LHC losses based on particle simulations

LHC surrogate model

Overview

Objectives

- Build online surrogate model for LHC machine configurations based on Sixtrack^(*) simulations
- Include dependencies on main machine and beam parameters
- Model that grows in complexity over time (more parameters, larger range)

Motivation

- Working point optimisation in terms of beam lifetime / losses
- Loss map model for prediction / validation
- Simulation data for comparison with machine observables (= Loïc's work)
- Preparation in view of LHC Run 3

Strategy

- **1. Produce high-fidelity dataset:** continuously and automatically submit and manage Sixtrack parameter scans on BOINC⁽²⁾ if capacity available
- 2. Supervised machine learning: train surrogate model on that data

8

^{(*) &}lt;u>Sixtrack</u> is a single particle 6D symplectic tracking code optimised for long term tracking (D) <u>BOINC</u> is an open-source software platform for computing using volunteered resources

LHC surrogate model

Discussed questions

What should model be able to predict: LHC observables

- Beam lifetime: translated from dynamic aperture studies using scaling laws Ongoing work by M. Giovannozzi, M. Titze, F. Van der Veken
- Loss distribution (= maps) around machine
 - Use existing mechanical aperture model
 - Potentially: FLUKA simulations to compare to LHC beam loss monitors
- Other

Job and study management mechanisms?

- **Results stored in one database:** keeps track of studied configurations Ongoing work by A. Mereghetti, X. Lu
- Duplicate studies not launched, instead results returned directly from DB
- From existing results decide next parameter scan to improve surrogate model efficiently

Timeline / actions

- BOINC machinery should be ready by ~August 2019
- Use existing Sixtrack studies to gain experience in modeling requirements, e.g. parameter resolution, what parameters are relevant, etc., starting with beam lifetime first

=> Involvement of SDSC:

We will provide scripts and full data set (details will follow next week)

Other LHC machine learning use-cases

CERN Beams department held <u>Machine Learning and Data Analytics Forum</u> to collect potential use-cases, share knowledge, establish collaborations, etc.

Selection: beam instrumentation and diagnostics

- Collective instabilities: "ObsBox" data (= head-tail monitor)
 - Instrument produces huge amounts of data
 - Trigger based on machine learning to reduce false positives
 - Analyse and classify instabilities automatically rather than manually
 - First preliminary study done by Loïc shows promising results
- Identify tunes in noisy spectra
- Detect outliers for various instruments: beam loss monitors, beam position monitors (<u>see work done by E. Fol</u>), wire-scanners, ...

Some of these applications will go hand in hand with, or even be required for the beam lifetime optimisation project

10 21.06.2019