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Introduction
SPS slow-extraction scheme

Super Proton Synchrotron (SPS) delivers protons
to Fixed Target experiments (FT)

• FT request constant particle flux for several
seconds (= spill)

• Solution: multi-turn resonant extraction scheme

1. Excite third-order resonance

2. Extract beamlets by means of electrostatic septum (ZS)

• Challenge: inherently a lossy process
Optimisation problem: align ZS anode wires to reduce particle losses
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Introduction
SPS ZS

SPS ZS composed of 5 tanks

• System with 12 degrees of freedom (dof)

• 10 dof: adjustable positions for anode wires up-
and downstream for every tank

• 2 dof: girder positions up- and downstream

• Loss monitoring: > 20 beam loss monitors (BLMs)

• Entangled dynamics: modeling and optimisation
of system not straightforward
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Introduction
SPS ZS alignment procedures

• Until 2018:

• Manual anode-by-anode optimisation

• Time-consuming (≈ 8 h) and tedious

• Test in Nov. 2018:

• Automatic alignment: proof-of-principle
with modified Powell optimiser

• Does first line search along every direction,
then simultaneous parameter adjustment

• Big impact: time for full adjustment reduced
to 40’ with same improvement on total loss

BLMs near ZS
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Motivation
Reinforcement learning

Can we do even better?

• Powell optimiser has no memory:
ZS alignment from scratch every time

• Reinforcement learning (RL)

 Agent interacts with environment and
learns dynamics of the system

 State not restricted to action space

 Agent strategy / knowledge typically
represented by neural network (Deep RL)

=> once trained, agent finds optimum in a few steps

agent
Environment

(e.g. accelerator)

action

state (observation)
reward

Reinforcement learning



• RL defines state-of-the-art performance in robotics, playing games
(e.g. Atari, AlphaGo), … and artificial intelligence problems in general

• Applied to particle accelerator domain
• Proof-of-principle at CERN Low Energy Ion Ring (LEIR)

• 1 control parameter: optimise injected intensity by tuning dipole magnet strength

• Solved as discrete control problem

• Model-free RL agent successfully learned the dynamics of the system

• Implemented and studied many continuous control algorithms using OpenAI gym
environment templates (S. Hirlaender, V. Kain)

• Experience shows: sample efficiency is of major importance for our problems

Motivation
Reinforcement learning

S. Hirlaender, V. Kain, M. Schenk

https://gym.openai.com/


Motivation
Reinforcement learning

Can we do even better?

• Powell optimiser has no memory:
ZS alignment from scratch every time

• Reinforcement learning (RL)

 Agent interacts with environment and
learns dynamics of the system

 State not restricted to action space

 Agent strategy / knowledge typically
represented by neural network (Deep RL)

=> once trained, agent finds optimum in a few steps

Reinforcement learning (RL)

• Sample efficiency is key as machine time is expensive

• Idea: pre-train RL agent offline for ‘warm start’ in the accelerator

Offline training requires a model F(x) of the system

• Tracking simulation, data-
driven model, …

• Fast, cheap evaluation needed:
Pre-training may require few
thousand iterations
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Data-driven model
Overview

Start with simple model
• 9 features: All anode positions (except ZS1 UP), no girder positions

• 5 observables: BLMs ZS1, ZS2, .., ZS5

• Neural network: feed-forward, dense, 1 hidden layer, 7 / 15 nodes, leaky ReLU activation

• Adam optimizer

• Missing features: girders, orbit, cathode voltage, ...

Training and test sets from existing data
I. Training on data from Powell scan (01.11.18, 467 samples)

=> Predict manual scan 27.03.19 (test set)
=> Fake scans for all anode positions

II. Training on data from Powell scan and manual scan (27.03.19, 1308 samples)

=> Predict manual scan 30.03.19 (test set)
=> Perform anode scans as above
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Overfitting

Data-driven model
Case I: Training data and evolution (7-node neural network)



Zoomed view of total loss

Data-driven model
Case I: Test set predictions (total loss)

• Good quantitative agreement, given simplicity 
of model and low number of samples

• Training and test set separated by 7 months

• Offset in ‘baseline’ & some peaks only 
qualitative agreement
• Missing feature (girder, orbit)?
• See individual loss on BLM ZS5 (backup)

• Another source of discrepancy is range in
anode positions

• Training set: ≈ ± 0.5 - 1 mm
• Test set: up to ≈ ± 2 mm



Case I: Trained on Powell data (7-node NN)
Case II: Trained on Powell and manual scan data (15-node NN)

Data-driven model
Validation: orthogonal anode scans

Good news: both models predict similar loss response

• Loss response is convex – as expected

• Small impact on total loss from ZS4 and ZS5 – as observed in the machine

• ‘Piecewise linear’ functions due to simplicity of network

• Case II: A second ZS NN model with 15 nodes trained on Powell and manual scan 
data performs even better on a test set (backup)

Scan individual anode positions and predict total loss



Data-driven model
Validation: Powell optimisation on SPS machine and trained model
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Data-driven model
Validation: Powell optimisation on SPS machine and trained model
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Measurement and model show similar evolution
• Model behaves well
• Powell algorithm probes feature space better, not just along 

orthogonal directions
• Similar test with COBYLA (Constrained Optimisation BY Linear 

Approximation) algorithm: converges even faster than Powell 
(see backup)



• Even with little training data: ZS model performs well and passes 
validation tests

• It is yet incomplete and hence improved further: adding more features / 
observables

• Trained ZS model is now embedded in OpenAI gym environment and used 
for RL benchmarks

• Excellent testbed for multidimensional RL optimisation problems to study 
various algorithms for continuous control

• Sample efficiency is a key player (for accelerator domain)

• Data-driven or surrogate models can be game changers

Final remarks



Backup



• Gather knowledge and expertise in machine learning, reinforcement learning, 
and advanced numerical optimisers

• Bayesian optimisation

• Reinforcement learning with NAF, Gaussian processes, and other algorithms

• Explore for best sample efficiency, robustness, etc.

• Use self-made OpenAI gym environments (target steering model, ZS model)

• Electron cooling in LEIR

• Build surrogate model based on simulation code

• Analysis of Schottky spectra: convolutional neural networks, autoencoders?

• Provide operational tool

• SPS slow extraction

• Model for hysteresis of main magnets in SPS

• Reinforcement learning for spill optimisation?

• Optimisation of transition crossing in the SPS

• LINAC4 and AWAKE: beam matching 

Other ongoing and upcoming projects



Peak not predicted
• Moving ZS1 UP
• Not trained for that

Moving in range [-2, 2] mm
• Not trained for that (extrapolation)
• But: ZS5 no big impact on total loss,

hence prediction still OK

Data-driven model
Case I: Test set predictions (total loss)

• Good quantitative agreement, given simplicity 
of model and low number of samples

• Training and test set separated by 7 months

• Offset in ‘baseline’ & some peaks only 
qualitative agreement
• Missing feature (girder, orbit)?
• See individual loss on BLM ZS5 (backup)

• Another source of discrepancy is range in
anode positions

• Training set: ≈ ± 0.5 - 1 mm
• Test set: up to ≈ ± 2 mm



Offsets on BLM ZS5
Possibly due to changed settings
on features that are not included
in the model (orbit, girder, 
cathode voltage, etc.)

Overfitting artefacts?

Data-driven model
Case I: Test set predictions (individual BLMs)



• Orthogonal scans 
reasonable: convex 
shapes

• No strong impact on 
total loss from ZS4 and 
ZS5, as observed in the 
machine

• Piecewise linear 
functions due to 
simplicity of network

Data-driven model
Case I: Tests with ‘fake’ anode scans



Data-driven model
Overview

Start with simple model
• 9 features: All anode positions (except ZS1 UP), no girder positions

• 5 observables: BLMs ZS1, ZS2, .., ZS5

• Neural network: feed-forward, dense, 1 hidden layer, 7 – 15 nodes, leaky ReLU activation

• Adam optimizer

• Missing features: girders, orbit, cathode voltage, ...

Training and test sets from existing data

II. Training on data from Powell scan and manual scan (27.03.19, 1308 samples)

=> Predict manual scan 30.03.19 (test set)
=> Perform ‘fake’ anode scans as above
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Data-driven model
Case II: Training data (15-node neural network)



Other scans / 
settings

(miniscans)

Data-driven model
Case II: Test set predictions (on ‘independent’ data set)



Other scans / 
settings

(miniscans)

Data-driven model
Case II: Test set predictions (on ‘independent’ data set)

Less surprising that performance of the model is good
• It ‘has seen the test set’ already (sets not independent …)
• Even when overfitting would likely still perform well on test set
• Difficult to find solid, independent test from available data in that case



• COBYLA with constraints on anode positions to ± 2 mm:
Optimisation on NN model to check if it produces sensible output

• Not clear yet how NN model behaves outside ‘trained range’ …

• COBYLA or Powell algorithms probe feature space better, not just along 
orthogonal directions

• Reward = total loss x 1014

• Optimum expected at
8 x 10-14 Gy/charge
(from data and NN model)

• Even faster convergence 
than Powell – looks 
promising

Data-driven model
Validation: COBYLA performance on trained model (7-node NN)


