

SPS ongoing studies: towards reinforcement learning for electrostatic septum alignment

M. Schenk, M. Fraser, B. Goddard, S. Hirlaender, V. Kain, T. Pieloni

*CERN & EPFL, Switzerland
also at University of Malta

Overview

- Introduction
 - SPS slow-extraction scheme
 - Electrostatic septum: an optimisation problem

2

- Motivation: reinforcement learning
- Data-driven model
 - Overview
 - Results: training and validation
- Final remarks

Introduction

SPS slow-extraction scheme

Super Proton Synchrotron (SPS) delivers protons to Fixed Target experiments (FT)

- FT request **constant particle flux** for several seconds (= spill)
- **Solution:** multi-turn resonant extraction scheme
 - 1. Excite third-order resonance
 - 2. Extract beamlets by means of electrostatic septum (ZS)

SPS-PAGE1 Current user: MD4

Circulating Beam

field-free region

Ε

M. Fraser (TE-ABT)

Septum Wires

V = -220 kV

Electrode

Extracted Beam

Introduction SPS ZS

SPS ZS composed of 5 tanks

- System with 12 degrees of freedom (dof)
 - 10 dof: adjustable positions for anode wires upand downstream for every tank
 - 2 dof: girder positions up- and downstream
- Loss monitoring: > 20 beam loss monitors (BLMs)
- Entangled dynamics: modeling and optimisation of system not straightforward

M. Fraser (TE-ABT)

Introduction

SPS ZS alignment procedures

5

Until 2018:

- Manual anode-by-anode optimisation
- Time-consuming (≈ 8 h) and tedious

Test in Nov. 2018:

- Automatic alignment: proof-of-principle with modified Powell optimiser
- Does first line search along every direction, then simultaneous parameter adjustment
- **Big impact:** time for full adjustment reduced to 40' with same improvement on total loss

S. Hirlaender, V. Kain (BE-OP) & TE-ABT

Motivation

Reinforcement learning

Can we do even better?

- Powell optimiser has no memory:
 ZS alignment from scratch every time
- Reinforcement learning (RL)
 - Agent interacts with environment and learns dynamics of the system
 - State not restricted to action space
 - Agent strategy / knowledge typically represented by neural network (Deep RL)

Reinforcement learning

=> once trained, agent finds optimum in a few steps

Motivation

Reinforcement learning

- RL defines state-of-the-art performance in robotics, playing games (e.g. Atari, AlphaGo), ... and artificial intelligence problems in general
- Applied to particle accelerator domain
 - Proof-of-principle at CERN Low Energy Ion Ring (LEIR)
 - 1 control parameter: optimise injected intensity by tuning dipole magnet strength
 - Solved as discrete control problem
 - Model-free RL agent successfully learned the dynamics of the system

- Implemented and studied many continuous control algorithms using OpenAl gym environment templates (S. Hirlaender, V. Kain)
- Experience shows: sample efficiency is of major importance for our problems

Motivation

Reinforcement learning

Can we do even better?

- Powell optimiser has *no memory*: ZS alignment from scratch every time
- Reinforcement learning (RL)
 - Agent interacts with environment and learns dynamics of the system
 - State *not* restricted to action space
 - Agent strategy / knowledge typically represented by neural network (Deep RL)

=> once trained, agent finds optimum in a few steps

Reinforcement learning (RL)

- Sample efficiency is key as *machine time is expensive*
- Idea: pre-train RL agent offline for 'warm start' in the accelerator

Offline training requires a model F(x) of the system

- Tracking simulation, datadriven model, ...
- Fast, cheap evaluation needed: Pre-training may require few thousand iterations

Reinforcement learning

Overview

Start with simple model

- 9 features: All anode positions (except ZS1 UP), no girder positions
- **5 observables:** BLMs ZS1, ZS2, .., ZS5
- Neural network: feed-forward, dense, 1 hidden layer, 7 / 15 nodes, leaky ReLU activation
- Adam optimizer
- Missing features: girders, orbit, cathode voltage, ...

Training and test sets from existing data

- I. Training on data from Powell scan (01.11.18, 467 samples)
 - => Predict manual scan 27.03.19 (test set)
 - => Fake scans for all anode positions
- II. Training on data from Powell scan and manual scan (27.03.19, 1308 samples)
 - => Predict manual scan 30.03.19 (test set)
 - => Perform anode scans as above

Case I: Training data and evolution (7-node neural network)

Training data (indiv. BLMs) 2018-11-01

Case I: Test set predictions (total loss)

- Good quantitative agreement, given simplicity of model and low number of samples
- Training and test set separated by 7 months
- Offset in 'baseline' & some peaks only qualitative agreement
 - Missing feature (girder, orbit)?
 - See individual loss on BLM ZS5 (backup)
- Another source of discrepancy is range in anode positions
 - Training set: ≈ ± 0.5 1 mm
 - Test set: up to ≈ ± 2 mm

Zoomed view of total loss

Validation: orthogonal anode scans

Scan individual anode positions and predict total loss

Case I: Trained on Powell data (7-node NN)

Case II: Trained on Powell and manual scan data (15-node NN)

- Loss response is convex as expected
- Small impact on total loss from ZS4 and ZS5 as observed in the machine
- 'Piecewise linear' functions due to simplicity of network
- Case II: A second ZS NN model with 15 nodes trained on Powell and manual scan data performs even better on a test set (backup)

Good news: both models predict similar loss response

Validation: Powell optimisation on SPS machine and trained model

Validation: Powell optimisation on SPS machine and trained model

Final remarks

- Even with little training data: ZS model performs well and passes validation tests
- It is yet incomplete and hence improved further: adding more features / observables
- Trained ZS model is now embedded in OpenAI gym environment and used for RL benchmarks
- Excellent testbed for multidimensional RL optimisation problems to study various algorithms for continuous control
- Sample efficiency is a key player (for accelerator domain)
- Data-driven or surrogate models can be game changers

Backup

Other ongoing and upcoming projects

- Gather knowledge and expertise in machine learning, reinforcement learning, and advanced numerical optimisers
 - Bayesian optimisation
 - Reinforcement learning with NAF, Gaussian processes, and other algorithms
 - Explore for best sample efficiency, robustness, etc.
 - Use self-made OpenAI gym environments (target steering model, ZS model)
- Electron cooling in LEIR
 - Build surrogate model based on simulation code
 - Analysis of Schottky spectra: convolutional neural networks, autoencoders?
 - Provide operational tool
- SPS slow extraction
 - Model for hysteresis of main magnets in SPS
 - Reinforcement learning for spill optimisation?
- Optimisation of transition crossing in the SPS
- LINAC4 and AWAKE: beam matching

Case I: Test set predictions (total loss)

- Good quantitative agreement, given simplicity of model and low number of samples
- Training and test set separated by 7 months
- Offset in 'baseline' & some peaks only qualitative agreement
 - Missing feature (girder, orbit)?
 - See individual loss on BLM ZS5 (backup)
- Another source of discrepancy is range in anode positions
 - Training set: ≈ ± 0.5 1 mm
 - Test set: up to ≈ ± 2 mm

Moving in range [-2, 2] mm

- Not trained for that (extrapolation)
- But: ZS5 no big impact on total loss, hence prediction still OK

Peak not predicted

- Moving ZS1 UP
- Not trained for that

Case I: Test set predictions (individual BLMs)

Case I: Tests with 'fake' anode scans

- Orthogonal scans reasonable: convex shapes
- No strong impact on total loss from ZS4 and ZS5, as observed in the machine
- Piecewise linear functions due to simplicity of network

Overview

Start with simple model

- 9 features: All anode positions (except ZS1 UP), no girder positions
- 5 observables: BLMs ZS1, ZS2, .., ZS5
- Neural network: feed-forward, dense, 1 hidden layer, 7 15 nodes, leaky ReLU activation
- Adam optimizer
- Missing features: girders, orbit, cathode voltage, ...

Training and test sets from existing data

- I. Training on data from Powell scan (01.11.18, 467 samples)
 - => Predict manual scan 27.03.19 (test set)
 - => Perform 'fake' scans for all anode positions
- II. Training on data from Powell scan and manual scan (27.03.19, 1308 samples)
 - => Predict manual scan 30.03.19 (test set)
 - => Perform 'fake' anode scans as above

Case II: Training data (15-node neural network)

Case II: Test set predictions (on 'independent' data set)

Case II: Test set predictions (on 'independent' data set)

Less surprising that performance of the model is good

- It 'has seen the test set' already (sets not independent ...)
- Even when overfitting would likely still perform well on test set
- Difficult to find solid, independent test from available data in that case

und truth lel diction

Validation: COBYLA performance on trained model (7-node NN)

- COBYLA with constraints on anode positions to ± 2 mm:
 Optimisation on NN model to check if it produces sensible output
- Not clear yet how NN model behaves outside 'trained range' ...
- COBYLA or Powell algorithms probe feature space better, not just along orthogonal directions

