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Introduction
SPS slow-extraction scheme

SPS-PAGE1 Current user: MD4 0.00E+00 27-10-16 22:08:40

Super Proton Synchrotron (SPS) delivers protons cc 72 cate. 4ot

to Fixed Target experiments (FT) Slow
extraction

* FT request constant particle flux for several
seconds (= spill)

e Solution: multi-turn resonant extraction scheme : EaEn———S
p 39, > 95 a H2/H4
1. Excite third-order resonance ' o bl COMPASS
0 2. 0 NAG2
2. Extract beamlets by means of electrostatic septum (ZS) B W Comments G700 2016 104409

* Challenge: inherently a lossy process
Optimisation problem: align ZS anode wires to reduce particle losses
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Introduction
SPS 7S

SPS ZS composed of 5 tanks

e System with 12 degrees of freedom (dof)

* 10 dof: adjustable positions for anode wires up-
and downstream for every tank

» 2 dof: girder positions up- and downstream
* Loss monitoring: > 20 beam loss monitors (BLMs)

* Entangled dynamics: modeling and optimisation
of system not straightforward
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Introduction
SPS ZS alignment procedures

4 )
Controls (features) Output (observables)
2x girder positions: UP and DO, we usually fix UP 9 . > 20 BLMs
O —
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10x anode positions: UP and DO s I Illl -l_= - -
9 M. Fraser (TE-ABT) BLMs near ZS )
* Until 2018: —
L. . g 1/ [ ZS1 down
* Manual anode-by-anode optimisation - /\ AVVAA — 752 up
. : . 8 — B VAo SRR zs2 d
* Time-consuming (= 8 h) and tedious R ALK T
. ° y il P ZS3 down
e Testin Nov. 2018: g1 | . — 254 up
. . .. ‘ R ZS4 down
* Automatic alignment: proof-of-principle — Zs5up
14 ! e ZS5 down

with modified Powell optimiser
* Does first line search along every direction,
then simultaneous parameter adjustment

* Big impact: time for full adjustment reduced
to 40’ with same improvement on total loss

—— norm. losses

Norm. loss (%)
[EY
N
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Motivation
Reinforcement learning

Reinforcement learning

Can we do even better? - . N
* Powell optimiser has no memory: action
ZS alignment from scratch every time //_\7
* Reinforcement learning (RL) Environment
= Agent interacts with environment and agent (e.g. accelerator)

learns dynamics of the system
= State not restricted to action space w
= Agent strategy / knowledge typically state (observation)

represented by neural network (Deep RL) L reward
=> once trained, agent finds optimum in a few steps
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Motivation
Reinforcement learning

* RL defines state-of-the-art performance in robotics, playing games
(e.g. Atari, AlphaGo), ... and artificial intelligence problems in general

* Applied to particle accelerator domain
* Proof-of-principle at CERN Low Energy lon Ring (LEIR)
* 1 control parameter: optimise injected intensity by tuning dipole magnet strength
* Solved as discrete control problem
* Model-free RL agent successfully learned the dynamics of the system

Apply the learned: real life test on different After training
situations:recovered after a few moves ®
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* Implemented and studied many continuous control algorithms using OpenAl gym
environment templates (S. Hirlaender, V. Kain)

* Experience shows: sample efficiency is of major importance for our problems
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Motivation
Reinforcement learning

Reinforcement learning (RL)

-

Reinforcement learning

Y

action

-

Environment
(e.g: aceelera itor)

. /

model
state (observation)
reward

* Sample efficiency is key as machine time is expensive
* |dea: pre-train RL agent offline for ‘warm start’ in the accelerator

Offline training requires a model F(x) of the system

P

* Tracking simulation, data-
driven model|, ...

* Fast, cheap evaluation needed:
Pre-training may require few
thousand iterations

Features Observables
x girder positions: UP an , we usually fix Lo . > 20 BLMS
2x girder positions: UP and DO ||y;4up F(X) g go
- © ull
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o] || Lot || o - |:> % S
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BLMs
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Data-driven model
Overview

Observables

Features

2x girder positions: UP and DO, we usually fix UP

m
p—
x
—

=)
E>)
Beam loss
(Gy/charge)

31 82 83 Zs4

~00-00-00-00
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10x anode positions: UP and DO

Start with simple model
* 9 features: All anode positions (except ZS1 UP), no girder positions

5 observables: BLMs 7S1, 7S2, .., ZS5
Neural network: feed-forward, dense, 1 hidden layer, 7 / 15 nodes, leaky RelLU activation

 Adam optimizer
* Missing features: girders, orbit, cathode voltage, ...

Training and test sets from existing data
I. Training on data from Powell scan (01.11.18, 467 samples)
=> Predict manual scan 27.03.19 (test set)
=> Fake scans for all anode positions
Il. Training on data from Powell scan and manual scan (27.03.19, 1308 samples)
=> Predict manual scan 30.03.19 (test set)

=> Perform anode scans as above
9 21.06.2019



Data-driven model
Case I: Training data and evolution (7-node neural network)

Training data (indiv. BLMs)
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Data-driven model
Case I: Test set predictions (total loss)

Test data
2018-03-27
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e Offsetin ‘baseline’ & some peaks only
qualitative agreement
* Missing feature (girder, orbit)?
* Seeindividual loss on BLM ZS5 (backup)

Zoomed view of total loss

— * Good quantitative agreement, given simplicity

* Training and test set separated by 7 months

e =T N
=

A AN NN

o~
TE
2E
SE
0 g \ 0 x10~12
0 9
KE- g
-
2 £ o 1.25
x10-13 i (O
2.5
a Ground E 5 1.00
o520 truth — "5—_\ 0.75
£81s ____ Model SO+
=i R prediction o~
2510 [
—="
£C0s5 \9-_’50
e
0.0 2 N
79 e 7t » o o>
Al Al Al Al @ >
Q.afl 0-;51 03,’1 0"’1 Bq)fl 0.;).’1

Timestamp (UTC_TIME)

11

Timestamp (UTC_TIME)

21.06.2019



Data-driven model
Validation: orthogonal anode scans

Scan individual anode positions and predict total loss

Total loss
(Gy/charge)
. = = N
w o [%;] o

e
[=]

AR AR AN I
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Z51_DO (mm) Z252_DO (mm) 2ZS2_UP(mm) ZS3_DO (mm) 2ZS3_UP(mm) 254 DO (mm) ZS4_UP(mm) 2ZS55_DO (mm) ZS5_UP (mm)

Case |: Trained on Powell data (7-node NN)

Loss response is convex — as expected
Small impact on total loss from ZS4 and ZS5 — as observed in the machine

‘Piecewise linear’ functions due to simplicity of network

Case Il: A second ZS NN model with 15 nodes trained on Powell and manual scan
data performs even better on a test set (backup)

Good news: both models predict similar loss response
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Data-driven model
Validation: Powell optimisation on SPS machine and trained model

Measurement

Model

Position (cm)

Norm. Losses (%)
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Data-driven model
Validation: Powell optimisation on SPS machine and trained model

Measurement
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Position (cm)
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Final remarks

* Even with little training data: ZS model performs well and passes
validation tests

* Itisyetincomplete and hence improved further: adding more features /
observables

* Trained ZS model is now embedded in OpenAl gym environment and used
for RL benchmarks

* Excellent testbed for multidimensional RL optimisation problems to study
various algorithms for continuous control

* Sample efficiency is a key player (for accelerator domain)
* Data-driven or surrogate models can be game changers
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Other ongoing and upcoming projects

e Gather knowledge and expertise in machine learning, reinforcement learning,
and advanced numerical optimisers

* Bayesian optimisation

* Reinforcement learning with NAF, Gaussian processes, and other algorithms
* Explore for best sample efficiency, robustness, etc.

* Use self-made OpenAl gym environments (target steering model, ZS model)

Electron cooling in LEIR
* Build surrogate model based on simulation code
* Analysis of Schottky spectra: convolutional neural networks, autoencoders?
* Provide operational tool

SPS slow extraction
* Model for hysteresis of main magnets in SPS
* Reinforcement learning for spill optimisation?

Optimisation of transition crossing in the SPS

LINAC4 and AWAKE: beam matching
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Data-driven model
Case I: Test set predictions (total loss)

ZS5 anode Z54 anode ZS3 anode ZS2 anode ZS1 anode

Total norm. loss

Test data
2018-03-27

— * Good quantitative agreement, given simplicity
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* Training and test set separated by 7 months
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* Missing feature (girder, orbit)?
* Seeindividual loss on BLM ZS5 (backup)
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Data-driven model

Case I: Test set predictions (individual BLMs)

Offsets on BLM ZS5
Possibly due to changed settings

on features that are not included

in the model (orbit, girder,
cathode voltage, etc.)

Test data (indiv. BLMs)
2018-03-27
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Data-driven model
Case I: Tests with ‘fake’ anode scans
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Data-driven model
Overview

Observables

Features

2x girder positions: UP and DO, we usually fix UP

m
p—
x
—

=)
E>)
Beam loss
(Gy/charge)

31 82 83 Zs4

~00-00-00-00

Al T I

10x anode positions: UP and DO

Start with simple model
* 9 features: All anode positions (except ZS1 UP), no girder positions

5 observables: BLMs 7S1, 7S2, .., ZS5
Neural network: feed-forward, dense, 1 hidden layer, 7 — 15 nodes, leaky RelLU activation

 Adam optimizer
* Missing features: girders, orbit, cathode voltage, ...

Training and test sets from existing data
I. Training on data from Powell scan (01.11.18, 467 samples)
=> Predict manual scan 27.03.19 (test set)
=> Perform ‘fake’ scans for all anode positions
Il. Training on data from Powell scan and manual scan (27.03.19, 1308 samples)

=> Predict manual scan 30.03.19 (test set)

=> Perform ‘fake’ anode scans as above
21 21.06.2019



Data-driven model
Case ll: Training data (15-node neural network)

Training data (indiv. BLMs) Training data (indiv. BLMs)
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Data-driven model
Case lI: Test set predictions (on ‘independent’ data set)
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Data-driven model
Case lI: Test set predictions (on ‘independent’ data set)

Test data (indiv. BLMs)
Test data 2018-03-30

4 N\
Less surprising that performance of the model is good

* It ‘has seen the test set’ already (sets not independent ...)
* Even when overfitting would likely still perform well on test set

* Difficult to find solid, independent test from available data in that case
\_ J




Data-driven model
Validation: COBYLA performance on trained model (7-node NN)

COBYLA with constraints on anode positions to £ 2 mm:

Optimisation on NN model to check if it produces sensible output

orthogonal directions

COBYLA opt. on model
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25

Not clear yet how NN model behaves outside ‘trained range’ ...
COBYLA or Powell algorithms probe feature space better, not just along

* Reward = total loss x 1014

* Optimum expected at
8 x 1014 Gy/charge
(from data and NN model)

* Even faster convergence
than Powell — looks
promising
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