

IT orbit corrector preferable orientation

and TAXN aperture

Marta Sabaté-Gilarte, Francesco Cerutti

WP10 Energy deposition & R2E

78th HL-LHC TCC Meeting

CERN

4th July 2019

Outline

- IT orbit corrector preference orientation:
 - Exposure of the coils, including the return coils, for vertical and horizontal crossing.
- TAXN aperture:
 - Updates from HL-LHC optics v1.3 to v1.5 in the FLUKA layout.
 - Study the effect of reducing the TAXN twin aperture from 85 to 80 mm.
 - Impact on the matching section from D2 to Q4.

IT: Inner triplet

IT orbit corrector preference orientation

THE MODEL

- IR5 / IR1
- Triplet D1 region
- Horizontal/Vertical crossing of 250 μ rad
- Optics: HL-LHC v1.3

Nested orbit corrector prototype

At the magnet ends, first and last 10 cm of the mechanical length, the return coils lay in the opposite plane: in the vertical plane for horizontal orientation and vice versa.

M. Sabaté-Gilarte

Dose distribution around the inner coils

Dose distribution transverse section at the Q2A orbit corrector:

Peak power density in the triplet: vertical crossing

Peak power density in the triplet: horizontal crossing

4th July 2019

M. Sabaté-Gilarte

78th HL-LHC TCC

M. Sabaté-Gilarte

4th July 2019

M. Sabaté-Gilarte

Peak dose profile in the inner coil for triple+D1 without the points for the return coils

Peak dose profile in the inner coil for triple+D1 including the points for the return coils

TAXN aperture study

4th July 2019

Updates in the layout since v1.3 for HL-LHC_v1.5

- Focus on Horizontal Crossing: IP1 for v1.5.
- Revision of the vacuum layout from TAXS to Q7.
- Update on the triplet-D1 **IC** model.
- Inclusion of the thermal shield **end covers** in the triplet+D1 and D2 regions.
- Update of the **CP** magnetic and mechanical lengths.
- D1 beam screen:
 - Prolongation of the beam screen.
 - Modification of the inermet shielding and the horizontal aperture of the beam screen.
- Inclusion in the geometry of the **Cold Diode at the end of D1**.
- Increase **TAXN beam separation** from 148mm-158mm to 151mm-161mm.
- Implementation of the full model of the Crab Cavities Cryomodule.

v1.3 vs. v1.5: Total Power from TAXN to the Q4

Due to the increase of the beam separation in the TAXN by 3 mm, the total power delivered in the TAXN rises more than 100 W.

Power in W

	v1.3	v1.5
TAXN	819	929
D2	30.9	22.5
D2 H corr.	1.32	1.08
D2 V corr.	0.95	0.98
Q4 corr.	5.06	4.04
Q4	3.1	3.4
TCLX4-int	155.6	151.0
TCLX4-ext	88.5	104.9

Beam separation:

148mm-158mm (v1.3)

151mm-161mm (v1.5)

 $L_{int} = 5.10^{34} (cm^{-2} s^{-1})$ and $\sigma(p-p \text{ collision}) = 85 (mb)$

151st WP2 Meeting

M. Sabaté-Gilarte

Jun 18th, 2019

v1.3 vs. v1.5: Impact in D2

15% reduction (from 11.5 to 10 MGy)

v1.3 vs. v1.5: Effect on Q4

TAXN aperture considerations

- Twin apertures of the Y-chamber of the TAXN: 85mm as reference.
- Horizontal crossing of 250 μ rad (IP1 HL-LHC optic v1.5).
- Study the impact on the D2 and Q4 when reducing the TAXN aperture down to 80mm.
- The vacuum layout between TAXN and D2 depends on the TAXN twin aperture: ID=90mm in case of 85mm or ID=80mm in case of 80mm. Except in the collimators and the sector valve.

Which is the effect?

Total power

	85mm v1.5		80mm v1.5	
TAXN		929	997	
D2		22.5	20.5	
D2 H corr.		1.1	0.7	
D2 V corr.		1.0	0.7	
Q4 corr.		4.0	4.2	
Q4		3.4	3.7	
TCLX4-int		151.0	97.2	
TCLX4-ext		104.9	89.2	

 Around 70 W taken by the TAXN and removed from the TCLX4 jaws.

- 10% reduction on the D2.
- No effect on Q4 nor in the MCBYs correctors.

Aperture reduction (v1.5):

ID=90mm for 85mm

ID=80mm for 80mm

Power in W

 $L_{int} = 5.10^{34} (cm^{-2} s^{-1})$ and $\sigma(p-p collision) = 85 (mb)$

TAXN aperture considerations for HL-LHCv1.5 Dose to the D2

TAXN aperture considerations for HL-LHCv1.5 Dose to the Q4 assembly

Summary and Conclusions

Summary and Conclusions (I)

Effect of the orbit correctors orientation on their exposure:

- The orientation of the nested orbit correctors affects the maximum dose their coils are exposed to.
- The recommended configuration is with the inner layer giving a vertical field,
 i.e. horizontal correction.
- This way, in the vertical crossing insertion the highest dose is only present in the return coils.

Summary and Conclusions (II)

TAXN aperture reduction study for HL-LHCv1.5 from 85mm to 80mm:

- The reduction of the twin aperture moves 70 W from the TCLX4 jaws to the TAXN.
- The effect on the D2 is minor: a reduction of 10% in the max dose at the IP-side and a decrease of 10% in the total power (20 W at nominal for HL-LHC).
- No effect on Q4 and its MCBYs:
 - Evidence of the fact that all along the Q4 assembly the peak dose in the coils remains above 2 MGy. Therefore, the rotation of the Q4-cryostat could help only to a rather limited extent.
 - Internal shielding is needed to change the picture, if needed wrt the MCBY radiation resistance.

Extended dose evaluation for R2E/R2M considerations

New dedicated scoring implemented for energy deposition studies in specific equipment:

- Cryogenics equipment
 - IT/D2 cold mass thermometers in Q1, Q2, Q3
 - IT/D2 warm heaters: placed on the end cover
 - IT thermometers on the phase separator.
 - IT/D2 beam screen heaters and thermometer
 - The results are being communicated to the co

