Higgs Boson Physics

Ambresh Shivaji

IISER Mohali, Punjab, INDIA

Madgraph School 2019

IMSc Chennai, November 18-22, 2019

The only *fundamental* scalar particle known to us

Neutral under SU(3)_c

$$\widehat{P} = 0 \Leftarrow \boxed{\text{Higgs Boson}(H)} \Rightarrow J^{CP} = 0^+$$

$$\downarrow$$

$$m_H = 125.10 \pm 0.14 \text{ GeV}$$

$$\Gamma_H < 0.013 \text{ GeV} (95\% \text{ CL})$$

Its discovery at the LHC (*pp* collider, $\sqrt{s} = 7 + 8$ TeV) was announced in 2012 by the ATLAS and CMS collaborations.

Standard Model and Electroweak Symmetry Breaking

In the Standard Model (SM), the electroweak (EW) interactions are described by $SU(2)_L \times U(1)_Y$ gauge symmetry group.

Existance of massive gauge bosons of EW interactions \implies EW symmetry is broken.

The EWSB is realized with the help of a complex scalar SU(2)_L doublet $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$.

$$\mathcal{L}_{\text{Higgs}} = |D_{\mu}\Phi|^2 - \sum_{f} y_{f}\bar{L}_{f}\Phi R_{f} - V(\Phi)$$

$$V(\Phi) = -\mu^{2}(\Phi^{\dagger}\Phi) + \lambda(\Phi^{\dagger}\Phi)^{2}$$

$$\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \Rightarrow m_{W}, m_{Z}, m_{f} (v \sim 246 \text{ GeV})$$

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix} \Rightarrow \text{Higgs mass and Higgs couplings}$$

Couplings of the Higgs Boson

$$g_{Hf\bar{f}} = \frac{m_f}{v}, \; g_{HVV} = \frac{2m_V^2}{v}, \; g_{HHVV} = \frac{2m_V^2}{v^2}, \; g_{HHH} = \frac{3m_H^2}{v}, \; g_{HHHH} = \frac{3m_H^2}{v^2}$$

Couplings are proportional to the masses. Notice the mass dependence.

- Higgs couplings with gauge bosons (κ_V) and with heavy fermions (κ_F) are know with an accuracy of 10-20%.
- Higgs-self couplings are practically unconstrained. *More about them later...*

$_{\rm ggF}$	VBF	VH	$t\bar{t}H$
Fixed order:	Fixed order:	Fixed order:	Fixed order:
NNLO $QCD + NLO EW$	NNLO QCD	NLO QCD+EW	NLO QCD
(HIGLU, iHixs, FeHiPro, HNNLO)	(VBF@NNLO)	(V2HV and HAWK)	(Powheg)
Resummed:	Fixed order:	Fixed order:	(MG5_aMC@NLO)
NNLO + NNLL QCD	NLO QCD + NLO EW	NNLO QCD	
(HRes)	(HAWK)	(VH@NNLO)	

(HRes) Higgs p_T: NNLO+NNLL (HqT, HRes) Jet Veto: N3LO+NNLL

State-of-the-art calculations and MC tools

Dominant production channel, it's a loop-induced process. *Indirectly* sensitive to top-Yukawa coupling.

Gauge invariance $(\mathcal{M}^{\mu\nu}p_{\mu} = \mathcal{M}^{\mu\nu}q_{\nu} = 0)$ and on-shell conditions $\Rightarrow B_{11} = -B_{00}/p.q$, where $p.q = m_{H}^{2}/2$.

$$B_{00} = \mathcal{M}^{\mu\nu} \frac{1}{2} \left(g^{\mu\nu} - \frac{p^{\nu} q^{\mu}}{p.q} \right)$$
(2)

(1)

At LO, $B_{00} \equiv m_q^2 [(16m_q^2 - 8p.q)C_0 + 8]$, where,

$$C_0 = \int d^4\ell \frac{1}{(\ell^2 - m_q^2)((\ell + p)^2 - m_q^2)((\ell - q)^2 - m_q^2)}$$
(3)

The LO result depends on m_q and m_H .

In $m_q \rightarrow \infty$ limit, the amplitude becomes independent of the quark mass in the loop. Note that the amplitude does not vanish \Rightarrow violation of Decoupling theorem.

$$\mathcal{M}^{\mu\nu} \to \frac{\alpha_s}{3\pi\nu} (p.q \ g^{\mu\nu} - p^{\nu} q^{\mu}) \tag{4}$$

We get and effective *ggH* vertex.

This feature can be utilized to probe the existence of heavy up or down type quarks beyond SM.

The effective ggH vertex can be obtained from an effective Lagrangian (HEFT),

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4} (1 - \frac{\alpha_s}{3\pi} \frac{H}{\nu}) G^{\mu\nu} G_{\mu\nu}$$

$$\stackrel{p_1 \mu a}{\underset{p_2 \nu b}{\overset{p_1 \mu a}{\overset{p_1 \mu a}{\overset{p_2 \mu b}{\overset{p_1 \mu a}{\overset{p_2 \nu b}{\overset{p_2 \nu b}{\overset{p_2 \nu c}{\overset{p_2 \nu$$

Exercise: Derive the Feynman Rules.

The effective Lagrangian is useful in calculating higher order corrections to $gg \rightarrow H$. For example, at NLO

Single Higgs Production: ggF Exact vs HEFT

Scale dependence and $p_T(H)$ distribution

More on NLO in Huasheng Shao's Talk...

The most updated result for 13 TeV LHC, $m_H = 125$ GeV and $\mu_F = \mu_R = m_H/2$:

$$\sigma_{\rm ggH} = 48.58 \text{ pb}_{-6.72\%}^{+4.56\%}$$
 (Theory)

$48.58{ m pb} =$	$16.00\mathrm{pb}$	(+32.9%)	(LO, rEFT)
	$+20.84\mathrm{pb}$	(+42.9%)	(NLO, rEFT)
	$-2.05\mathrm{pb}$	(-4.2%)	((t, b, c), exact NLO)
	+ 9.56 pb	(+19.7%)	(NNLO, rEFT)
	$+ 0.34 \mathrm{pb}$	(+0.7%)	$(NNLO, 1/m_t)$
	+ 2.40 pb	(+4.9%)	(EW, QCD-EW)
	+ 1.49 pb	(+3.1%)	(N ³ LO, rEFT)

Characteristic features:

two hard jets in the forward and backward regions of the detector. no gluon radiation from central-rapidity region

These features allow to distinguish them from $gg \rightarrow H + 2j$ and $qq' \rightarrow VH \rightarrow H + 2j$

Sensitive to VVH couplings. Results known at NNLO (QCD) and NLO(EW).

Drell-Yan like production, sensitive to VVH couplings.

Channel through which $H \rightarrow b\bar{b}$ is detected in the boosted regime.

Results known at NNLO (QCD) (including NLO correction to loop-induced $gg \rightarrow ZH$) and NLO(EW).

Single Higgs Production: ttH

Directly sensitive to the top-Yukawa coupling. Has been observed recently.

NLO QCD corrections increase the cross section by 20%. NLO EW are also known.

\sqrt{s} (TeV)	Production cross section (in pb) for $m_H = 125 \text{ GeV}$					
	ggF	VBF	WH	ZH	$t\bar{t}H$	total
1.96	$0.95^{+17\%}_{-17\%}$	$0.065^{+8\%}_{-7\%}$	$0.13^{+8\%}_{-8\%}$	$0.079^{+8\%}_{-8\%}$	$0.004^{+10\%}_{-10\%}$	1.23
7	$16.9^{+5\%}_{-5\%}$	$1.24^{+2\%}_{-2\%}$	$0.58^{+3\%}_{-3\%}$	$0.34^{+4\%}_{-4\%}$	$0.09^{+8\%}_{-14\%}$	19.1
8	$21.4^{+5\%}_{-5\%}$	$1.60^{+2\%}_{-2\%}$	$0.70^{+3\%}_{-3\%}$	$0.42^{+5\%}_{-5\%}$	$0.13^{+8\%}_{-13\%}$	24.2
13	$48.6^{+5\%}_{-5\%}$	$3.78^{+2\%}_{-2\%}$	$1.37^{+2\%}_{-2\%}$	$0.88^{+5\%}_{-5\%}$	$0.50^{+9\%}_{-13\%}$	55.1
14	$54.7^{+5\%}_{-5\%}$	$4.28^{+2\%}_{-2\%}$	$1.51^{+2\%}_{-2\%}$	$0.99^{+5\%}_{-5\%}$	$0.60^{+9\%}_{-13\%}$	62.1

Signal strength for production,

 $\mu_i = \frac{\sigma^{\text{Exp.}}(i \to H)}{\sigma^{\text{SM}}(i \to H)}$

Assuming SM Higgs BRs,

PDG2017

Higgs Boson Decay

Computation of decay width is required to interpret the experimental data.

www.	Decay channel	Branching ratio	Rel. uncertainty
	$H \rightarrow \gamma \gamma$	2.27×10^{-3}	$^{+5.0\%}_{-4.9\%}$
μ ² 10 ⁻¹ π ² 99 22 - ⁵	$H \to Z Z$	2.62×10^{-2}	$^{+4.3\%}_{-4.1\%}$
	$H \to W^+ W^-$	2.14×10^{-1}	$^{+4.3\%}_{-4.2\%}$
	$H \to \tau^+ \tau^-$	6.27×10^{-2}	$^{+5.7\%}_{-5.7\%}$
10-3	$H \to b \bar{b}$	5.84×10^{-1}	$^{+3.2\%}_{-3.3\%}$
	$H \to Z \gamma$	1.53×10^{-3}	$^{+9.0\%}_{-8.9\%}$
10 ⁴ 10 ⁴ 100 120 140 160 180 200 M _H [GeV]	$H \rightarrow \mu^+ \mu^-$	2.18×10^{-4}	$^{+6.0\%}_{-5.9\%}$

Higgs Boson Decay to Fermions

 $H \to b\bar{b}$ is the dominant decay mode among all, followed by $H \to \tau^+ \tau^-$ and $H \to c\bar{c}$.

Known up to N4LO (QCD) and NLO (EW).

For $m_H = 125$ GeV, one of the two vector bosons is always off-shell. Invisible decay mode: $H \rightarrow ZZ^* \rightarrow 4\nu$. WW^* and ZZ^* interfere in $2\ell 2\nu$ final state.

 $H \rightarrow 4\ell (2e2\mu) (4e) (4\mu)$ is very clean, allows reconstruction of the Higgs mass.

Has been the discovery mode.

 $H \rightarrow ZZ^* \rightarrow 4\ell$ decay mode can be utilized to fix the spin and CP-properties of the Higgs boson.

Loop-induced decay to di-photon.

Destructive intereference between t-loop and W-loop contributions. No decoupling for large loop masses.

Another Higgs discovery mode.

 $H \rightarrow Z\gamma$ is also loop-induced decay but it's very rare.

Higgs Boson Decay

Signal strength for decay, 4

$$\mu_f = \frac{BR_{H \to f}^{\text{Exp.}}}{BR_{H \to f}^{\text{SM}}} \, \text{. Ass}$$

Assuming SM production

rates,

Decay channel	Branching ratio	Rel. uncertainty
$H \rightarrow \gamma \gamma$	2.27×10^{-3}	$^{+5.0\%}_{-4.9\%}$
$H \to Z Z$	2.62×10^{-2}	$^{+4.3\%}_{-4.1\%}$
$H \to W^+ W^-$	2.14×10^{-1}	$^{+4.3\%}_{-4.2\%}$
$H \to \tau^+ \tau^-$	6.27×10^{-2}	$^{+5.7\%}_{-5.7\%}$
$H \to b \bar{b}$	5.84×10^{-1}	$^{+3.2\%}_{-3.3\%}$
$H \to Z \gamma$	1.53×10^{-3}	$^{+9.0\%}_{-8.9\%}$
$H \rightarrow \mu^+ \mu^-$	2.18×10^{-4}	$^{+6.0\%}_{-5.9\%}$

Higgs Boson Mass

ATLAS and CMS collaborations rely on the two high mass resolution and sensitive channels, $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$.

Higgs Boson Width

$$\Gamma_H^{\text{SM}} = 4.07 \text{ MeV}_{-3.9\%}^{+4.0\%} \text{ for } m_H = 125 \text{ GeV}$$

Sensitivity to Higgs decay width via intereference effect. For example, the interference effect between the signal: $gg \rightarrow h \rightarrow \gamma\gamma$ and background: $gg \rightarrow \gamma\gamma$

Double Higgs Production

Can provide information on Higgs-self coupling parameter (λ)*.*

Double Higgs Production

Dominant production mode is via gluon fusion.

The two diagrams interefere destructively.

Double Higgs Production

\sqrt{s}	LO	B-i. NLO HEFT	NLO FT _{approx}	NLO
14 TeV	$19.85^{+27.6\%}_{-20.5\%}$	$38.32^{+18.1\%}_{-14.9\%}$	$34.26^{+14.7\%}_{-13.2\%}$	$32.91^{+13.6\%}_{-12.6\%}$
$100 { m TeV}$	$731.3^{+20.9\%}_{-15.9\%}$	$1511^{+16.0\%}_{-13.0\%}$	$1220^{+11.9\%}_{-10.7\%}$	$1149^{+10.8\%}_{-10.0\%}$

[1608.04798]

Summary

Being the only fundamental scalar, Higgs has every special place in the particle spectrum of the SM.

We now know its mass (~ 125 GeV) and its couplings with heavy fermions and gauge bosons are determined with an accuracy of 10-20%.

It has a very narrow width ($\sim 4 \text{ MeV}$).

The information on Higgs self-couplings is not available.

Higgs self-couplings

The mass and the self-couplings of the Higgs boson depend only on λ and $v = (\sqrt{2}G_{\mu})^{-1/2}$, $m_{H}^{2} = 2\lambda v^{2}; \ \lambda_{3}^{SM} = \lambda_{4}^{SM} = \lambda.$ $m_{H} = 125 \text{ GeV} \text{ and } v \sim 246 \text{ GeV}, \Rightarrow \lambda \simeq 0.13$.

Presence of new physics at higher energy scales can contribute to the Higgs potential and modify the Higgs self-couplings.

Independent measurements of λ_3 and λ_4 are crucial.

Direct determination of Higgs self-couplings

Information on λ_3 and λ_4 can be extracted by studying multi-Higgs production processes.

[Frederix et al. '14, 1408.6542]

Very challenging due to small cross sections: ~ 33 fb (*HH*), ~ 0.1 fb (*HHH*) Compare it with the single Higgs production (gg \rightarrow H) cross section: ~ 50 pb

Current and future experimental sensitivity ($\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM}$)

ATLAS (HL-LHC, 2*b*2γ): [ATL-PHYS-PUB-2017-001],

 $\kappa_{\lambda} < -0.8$ and $\kappa_{\lambda} > \sim 7.7$

Bounds are sensitive to κ_t value.

Indirect determination of λ_3 in single Higgs

Gorbahn, Haisch: 1607.03773; Degrassi, Giardino, Maltoni, Pagani: 1607.04251; Bizon, Gorbahn, Haisch, Zanderighi: 1610.05771; Di Vita, Grojean, Panico, Riembau, Vantalon: 1704.01953; Maltoni, Pagani, AS, Zhao: 1709.08649

Master formula: Anomalous trilinear coupling ($\kappa_3 = \lambda_3 / \lambda_3^{SM}$)

$$\Sigma_{\rm NLO}^{\rm BSM} = Z_{\rm H}^{\rm BSM} [\Sigma_{\rm LO}(1 + \kappa_3 C_1 + \delta Z_{\rm H}) + \Delta_{\rm NLO}^{\rm SM}]$$
$$Z_{\rm H}^{\rm BSM} = \frac{1}{1 - (\kappa_3^2 - 1)\delta Z_{\rm H}}, \delta Z_{\rm H} = -1.536 \times 10^{-3}$$

Current and future reach at the LHC

13 TeV:

$$-4.7 < \kappa_3 < 12.6$$

HL-LHC:

$$-2 \lesssim \kappa_3 \lesssim 8$$

CMS Projections: HL-LHC

tH + ttH: using the calculation of Maltoni, Pagani, AS, Zhao: 1709.08649

[CMS-PAS-FTR-18-020]

 $-3 \lesssim \kappa_\lambda \lesssim 13$

Question: *Can we extend this strategy to double Higgs production* ? Maltoni, Pagani, Zhao: 1802.07616; Bizon, Haisch, Rottoli: 1810.04665; Borowka, Duhr, Maltoni, Pagani, AS, Zhao: 1811.12366

Indirect determination of λ_4 in double Higgs

At LO, the $gg \rightarrow HH$ amplitude is sensitive to only λ_3 .

 λ_4 affects $gg \rightarrow HH$ amplitude at two-loop level via NLO EW corrections.

EFT framework is necessary in order to vary cubic and quartic couplings independently in a consistent way.

$$V^{\rm NP}(\Phi) \equiv \sum_{n=3}^{\infty} \frac{c_{2n}}{\Lambda^{2n-4}} \left(\Phi^{\dagger} \Phi - \frac{1}{2} v^2 \right)^n$$

This also ensures gauge invariance and UV finiteness in our calculation.

NP Paramterization

$$V(H) = \frac{1}{2}m_{H}^{2}H^{2} + \lambda_{3}vH^{3} + \frac{1}{4}\lambda_{4}H^{4} + \lambda_{5}\frac{H^{5}}{v} + O(H^{6}),$$

$$\kappa_{3} \equiv \frac{\lambda_{3}}{\lambda_{3}^{SM}} = 1 + \frac{c_{6}v^{2}}{\lambda\Lambda^{2}} \equiv 1 + \bar{c}_{6},$$

$$\kappa_{4} \equiv \frac{\lambda_{4}}{\lambda_{4}^{SM}} = 1 + \frac{6c_{6}v^{2}}{\lambda\Lambda^{2}} + \frac{4c_{8}v^{4}}{\lambda\Lambda^{4}} \equiv 1 + 6\bar{c}_{6} + \bar{c}_{8}.$$

We can trade κ_3 and κ_4 with parameters \overline{c}_6 and \overline{c}_8 .

$$\begin{split} \bar{c}_6 &\equiv \quad \frac{c_6 v^2}{\lambda \Lambda^2} = \kappa_3 - 1, \\ \bar{c}_8 &\equiv \quad \frac{4 c_8 v^4}{\lambda \Lambda^4} = \kappa_4 - 1 - 6(\kappa_3 - 1). \end{split}$$

The Phenomenological quantity of interest

Inclusive/differential cross section

$$\sigma_{\rm NLO}^{\rm pheno} = \sigma_{\rm LO} + \Delta \sigma_{\overline{c}_6} + \Delta \sigma_{\overline{c}_8} \ , \label{eq:scalar}$$

EFT insertion at one-loop :

$$\sigma_{\rm LO} = \sigma_0 + \sigma_1 \bar{c}_6 + \sigma_2 \bar{c}_6^2,$$

EFT insertions at two-loop :

$$\begin{split} \Delta \sigma_{\bar{c}_6} &= \bar{c}_6^2 \Big[\sigma_{30} \bar{c}_6 + \sigma_{40} \bar{c}_6^2 \Big] + \tilde{\sigma}_{20} \bar{c}_6^2 , \\ \Delta \sigma_{\bar{c}_8} &= \bar{c}_8 \Big[\sigma_{01} + \sigma_{11} \bar{c}_6 + \sigma_{21} \bar{c}_6^2 \Big] , \end{split}$$

Taking an agnostic view on possible values of κ_3 and κ_4 , we have ignored the SM EW corrections, and have kept highest powers of \bar{c}_6 in $\Delta \sigma_{\bar{c}_6}$.

The quantity $\Delta \sigma_{\bar{c}_8}$ is the most relevant part of our computation and it solely induces the sensitivity on \bar{c}_8 .

We assume that higher order QCD corrections factorize from two-loop EW effects.

Relevant two-loop topologies

Non-factorizable, factorizable and counterterms:

Effect on inclusive cross section

For α_s , $\mu_R = \mu_F = \frac{1}{2}m(HH)$ while $\mu_{\text{EFT}} = 2m_H$.

One-loop:

\sqrt{s} [TeV]	σ_0 [fb]	σ_1 [fb]	σ_2 [fb]
14	19.49	-15.59	5.414
	-	(-80.0%)	(27.8%)
100	790.8	-556.8	170.8
	-	(-70.5%)	(21.6%)

Two-loop:

\sqrt{s} [TeV]	$\tilde{\sigma}_{20}$ [fb]	σ_{30} [fb]	σ_{40} [fb]	σ_{01} [fb]	σ_{11} [fb]	σ_{21} [fb]
14	0.7112	-0.5427	0.0620	0.3514	-0.0464	-0.1433
	(3.6%)	(-2.8%)	(0.3%)	(1.8%)	(-0.2%)	(-0.7%)
100	24.55	-16.53	1.663	12.932	-0.88	-4.411
	(3.1%)	(-2.1%)	(0.2%)	(1.6%)	(-0.1%)	(-0.6%)

Cross sections grow considerably with energy. The contributions (numbers in brackets) from \bar{c}_6 and \bar{c}_8 slowly decrease wrt the SM LO prediction.

Effect on differential cross section

One-loop

The dashed lines show absolute values of -ve contributions.

Projections for 100 TeV pp collider

For $\kappa_3 = 1$, at 95% CL

 $-6 \leq \kappa_4 \leq 18$ [Direct from $HHH(4b2\gamma)$]

 $-4.2 \leq \kappa_4 \leq 6.7$ [Indirect from $HH(2b2\gamma)$]

At 100 TeV *pp* collider, the *HH* channel would be more sensitive to independent variation in self-couplings than *HHH* channel.