Introduction to Neutrino BSM MadGraph School 2019

Institute of Mathematical Sciences, Chennai

Richard Ruiz

Center for Cosmology, Particle Physics, and Phenomenology (CP3) Universite Catholique de Louvain

21 November 2019

net

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Good Morning!

Thank you for the invitation and thank you for being here

Most important rule: This is an informal lecture, so ask questions!

You are encouraged to interrupt and ask questions

Apologies, Disclaimers, Words of Warning

Lectures are "Summer School" style: fast and intense

- There is more material here than time permits (aiming for 3/4 of slides)
- Not everything will be covered (slides kept for completeness)
- Not an historical talk

Lectures include modern topics and research

• While known by the community, much material is not yet in textbooks

Central goal is to fill in gaps between coursework and research

• I never saw some of the following ever in any lecture

(informal survey of lecturers shows the same)

イロト イポト イヨト イヨト

• Again, questions are welcomed! :)

(and sorry for the typos!)

= nar

Lecture Plan

Lecture I (Thursday): Intro to Neutrino BSM

- Neutrino Oscillations
- Neutrino Masses and Possible Origins

Lecture II (Friday): Neutrino Physics at the LHC

- Building a Collider Analysis: Left-Right Symmetric Model Case Study
- Monte Carlo Tool Chain

Lunch break at 1:00ish

< 日 > < 同 > < 三 > < 三 > <

Big Picture (1 slide)

イロン イ理 とく ヨン イ ヨン

Ξ.

Unambiguous expt evidence that neutrino have nonzero masses

- This is contrary to the Standard Model (SM) of particle physics
- Under general arguments, implies new particles exist (more later)

Investigating $m_{\nu} \neq 0$ is a very active research topic

• InSpires: find hep-ph (hep-ex) and ti neutrino and date > 2014 $\sim 2.6k$ (1.1k) hits Collider and oscillation facilities provide complementary probes of ν physics

ヘロト ヘヨト ヘヨト

ν Oscillations

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

In neutrino fixed-target expts, ν_{μ} beams from collimated π^{\pm} are studied at near and far detectors (think SLAC DIS expts)

Deficit/disappearance of expected ν_{μ} (+apperance of ν_e/ν_{τ}) now interpreted as $\nu_{\ell_1} \rightarrow \nu_{mass} \rightarrow \nu_{\ell_2}$ neutrino flavor transitions/oscillations

[E.g. NO ν A ν_{μ} disapp., 1701.05891]

Question: How does one describe the data?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Massive ν Hypothesis

イロン イ理 とく ヨン イ ヨン

Ξ.

Consider left-handed (LH), $SU(2)_L$ lepton doublets (gauge eigenbasis):

$$L_{aL} = \left(\begin{array}{c} \nu_a \\ l_a \end{array} \right)_L, \quad a = 1, 2, 3.$$

The SM W^{\pm} boson coupling to **leptons** in the **flavor eigenbasis** is

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{s}} W^+_{\mu} \sum_{l=1}^3 \left[\overline{\nu_{lL}} \gamma^{\mu} P_L l^- \right] + \text{H.c.}$$

Consider left-handed (LH), $SU(2)_L$ lepton doublets (gauge eigenbasis):

$$L_{aL} = \left(\begin{array}{c} \nu_a \\ l_a \end{array}\right)_L, \quad a = 1, 2, 3.$$

The SM W^{\pm} boson coupling to **leptons** in the **flavor eigenbasis** is

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{s}} W^+_{\mu} \sum_{l=1}^3 \left[\overline{\nu_{lL}} \gamma^{\mu} P_L l^- \right] + \text{H.c.}$$

Supposing $m_{\nu} \neq 0$, we can rotate ν_{l} and l into the **mass eigenbasis**:

$$u_l = \sum_{m=1}^{3} \Omega_{lm} \nu_m \quad \text{and} \quad l = \sum_{\ell=3}^{\tau} \Omega_{l\ell} \ell$$

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Consider left-handed (LH), $SU(2)_L$ lepton doublets (gauge eigenbasis):

$$L_{aL} = \left(\begin{array}{c} \nu_a \\ l_a \end{array}\right)_L, \quad a = 1, 2, 3.$$

The SM W^{\pm} boson coupling to **leptons** in the **flavor eigenbasis** is

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{s}} W^+_{\mu} \sum_{l=1}^3 \left[\overline{\nu_{lL}} \gamma^{\mu} P_L l^- \right] + \text{H.c.}$$

Supposing $m_{\nu} \neq 0$, we can rotate ν_{I} and I into the **mass eigenbasis**:

$$u_l = \sum_{m=1}^{3} \Omega_{lm} \nu_m \quad \text{and} \quad l = \sum_{\ell=3}^{\tau} \Omega_{l\ell} \ell$$

This allows us to describe SM W^{\pm} boson coupling to *massive neutrinos*:

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{s}} W^+_{\mu} \sum_{\ell=e}^{\tau} \sum_{m=1}^{3} \overline{\nu_m} \underbrace{U^*_{m\ell}}_{U^*_{m\ell} \equiv \sum_{l} \Omega^*_{ml} \Omega_{l\ell}} \gamma^{\mu} P_L \ell^- + \text{H.c.}$$

Like the CKM, SM Feynman rules are modified by PMNS mixing factor:

$$\Gamma^{\mu} = \frac{-ig}{\sqrt{2}} \gamma^{\mu} P_{L} \to \tilde{\Gamma}^{\mu} = \frac{-ig}{\sqrt{2}} U^{*}_{m\ell} \gamma^{\mu} P_{L}$$

2-State Neutrino Mixing

Generically, mixing between **flavor eigenstates** and **mass eigenstates** is given by unitary transformation/rotation

$$\underbrace{\begin{pmatrix}\nu_{e}\\\nu_{e}\end{pmatrix}}_{\text{flavor basis}} = \underbrace{\begin{pmatrix}U_{e1} & U_{e2}\\U_{\mu1} & U_{\mu2}\end{pmatrix}}_{\text{mixing}} \underbrace{\begin{pmatrix}\nu_{1}\\\nu_{2}\end{pmatrix}}_{\text{mass basis}} = \begin{pmatrix}\cos\theta & \sin\theta\\-\sin\theta & \cos\theta\end{pmatrix} \begin{pmatrix}\nu_{1}\\\nu_{2}\end{pmatrix}$$

イロト イポト イヨト イヨト

э

2-State Neutrino Mixing

Generically, mixing between **flavor eigenstates** and **mass eigenstates** is given by unitary transformation/rotation

$$\underbrace{\begin{pmatrix}\nu_{e}\\\nu_{e}\end{pmatrix}}_{\text{flavor basis}} = \underbrace{\begin{pmatrix}U_{e1} & U_{e2}\\U_{\mu1} & U_{\mu2}\end{pmatrix}}_{\text{mixing}} \underbrace{\begin{pmatrix}\nu_{1}\\\nu_{2}\end{pmatrix}}_{\text{mass basis}} = \begin{pmatrix}\cos\theta & \sin\theta\\-\sin\theta & \cos\theta\end{pmatrix} \begin{pmatrix}\nu_{1}\\\nu_{2}\end{pmatrix}$$

For a **two-state system**, the state vector for ν_{ℓ} ($\ell = e, \mu$) is simply

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

2-State Neutrino Mixing

Generically, mixing between **flavor eigenstates** and **mass eigenstates** is given by unitary transformation/rotation

$$\underbrace{\begin{pmatrix} \nu_e \\ \nu_e \end{pmatrix}}_{\text{flavor basis}} = \underbrace{\begin{pmatrix} U_{e1} & U_{e2} \\ U_{\mu 1} & U_{\mu 2} \end{pmatrix}}_{\text{mixing}} \underbrace{\begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}}_{\text{mass basis}} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

For a **two-state system**, the state vector for ν_{ℓ} ($\ell = e, \mu$) is simply

If we treat the spacetime propagation of ν_m (m = 1, 2) as a plane wave, then the evolution from $x^\mu = x^\mu_a$ to $x^\mu = x^\mu_b$ is

$$|\nu_{\ell}(x_b, x_a)\rangle = U_{\ell}(x_b, x_a)|\nu_{\ell}\rangle = U_{\ell 1}U_1(x_b, x_a)|\nu_1\rangle + U_{\ell 2}U_2(x_b, x_a)|\nu_2\rangle$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Evolution through space and time

Assuming $\hat{p}_{\nu} = \Delta \hat{x}$, the plane wave evolution over $L = |\vec{x}_b - \vec{x}_a|$ is

 $U_m(x_b, x_a) = e^{-ip_m \cdot (x_b - x_a)} = e^{-i(E_m \Delta t_m - \vec{p}_m \cdot (\vec{x}_b - \vec{x}_a))} \approx e^{-i(E_m \Delta t_m - |\vec{p}_m|L_m)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Evolution through space and time

Assuming $\hat{p}_{\nu} = \Delta \hat{x}$, the plane wave evolution over $L = |\vec{x}_b - \vec{x}_a]|$ is

 $U_m(x_b, x_a) = e^{-ip_m \cdot (x_b - x_a)} = e^{-i(E_m \Delta t_m - \vec{p}_m \cdot (\vec{x}_b - \vec{x}_a))} \approx e^{-i(E_m \Delta t_m - |\vec{p}_m|L_m)}$

Now, working in the ultra relativistic limit, where $E_m + |\vec{p}_m| \approx 2E_m$,

$$\left(E_m \Delta t_m - |\vec{p}_m|L\right) \approx \left(E_m - |\vec{p}_m|\right) L = \left(\frac{E_m^2 - |\vec{p}_m|^2}{E_m + |\vec{p}_m|}\right) L \approx \left(\frac{m_m^2}{2E_m}\right) L$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Evolution through space and time

Assuming $\hat{p}_{\nu} = \Delta \hat{x}$, the plane wave evolution over $L = |\vec{x}_b - \vec{x}_a]|$ is

 $U_m(x_b, x_a) = e^{-ip_m \cdot (x_b - x_a)} = e^{-i(E_m \Delta t_m - \vec{p}_m \cdot (\vec{x}_b - \vec{x}_a))} \approx e^{-i(E_m \Delta t_m - |\vec{p}_m|L_m)}$

Now, working in the ultra relativistic limit, where $E_m + |\vec{p}_m| \approx 2E_m$,

$$\left(E_m \Delta t_m - |\vec{p}_m|L\right) \approx \left(E_m - |\vec{p}_m|\right) L = \left(\frac{E_m^2 - |\vec{p}_m|^2}{E_m + |\vec{p}_m|}\right) L \approx \left(\frac{m_m^2}{2E_m}\right) L$$

Since $m_2, m_1 \ll E_1, E_2$, the E_m can be approximated as the same:

$$|\nu_{e}(E,L)\rangle = U_{e1}e^{-im_{1}^{2}L/2E}|\nu_{1}\rangle + U_{e2}e^{-im_{2}^{2}L/2E}|\nu_{2}\rangle$$
$$|\nu_{\mu}(E,L)\rangle = U_{\mu 1}e^{-im_{1}^{2}L/2E}|\nu_{1}\rangle + U_{\mu 2}e^{-im_{2}^{2}L/2E}|\nu_{2}\rangle$$

We are now ready to compute oscillation transtions!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Neutrino Oscillation Transitions

. . /

To reproduce the ν_{μ} deficit, consider the $\nu_{\mu} \rightarrow \nu_{\mu}$ transition amplitude:

$$\mathcal{M}(\nu_{\mu} \to \nu_{\mu}) \equiv \langle \nu_{\mu} | \nu_{\mu}(E,L) \rangle$$
$$= \underbrace{\left[\langle \nu_{1} | U_{\mu 1}^{*} + \langle \nu_{2} | U_{\mu 2}^{*} \right]}_{= \langle \nu_{\mu} |} \times \underbrace{\left[U_{\mu 1} e^{-im_{1}^{2}L/2E} | \nu_{1} \rangle + U_{\mu 2} e^{-im_{2}^{2}L/2E} | \nu_{2} \rangle \right]}_{= |\nu_{\mu}(E,L) \rangle}$$

 \mathbf{N}

Neutrino Oscillation Transitions

To reproduce the ν_{μ} deficit, consider the $\nu_{\mu} \rightarrow \nu_{\mu}$ transition amplitude:

$$\mathcal{M}(\nu_{\mu} \to \nu_{\mu}) \equiv \langle \nu_{\mu} | \nu_{\mu}(E, L) \rangle$$
$$= \underbrace{\left[\langle \nu_{1} | U_{\mu 1}^{*} + \langle \nu_{2} | U_{\mu 2}^{*} \right]}_{= \langle \nu_{\mu} |} \times \underbrace{\left[U_{\mu 1} e^{-im_{1}^{2}L/2E} | \nu_{1} \rangle + U_{\mu 2} e^{-im_{2}^{2}L/2E} | \nu_{2} \rangle \right]}_{= |\nu_{\mu}(E,L) \rangle}$$

Since $|\nu_m\rangle$ are mass **eigenstates**, $\langle \nu_{m'}|\nu_m\rangle = \delta_{m'm}$. This implies $\mathcal{M}(\nu_\mu \to \nu_\mu) = e^{-im_1^2 L/2E} |U_{\mu 1}|^2 \langle \nu_1|\nu_1\rangle + e^{-im_2^2 L/2E} |U_{\mu 2}|^2 \langle \nu_2|\nu_2\rangle$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Neutrino Oscillation Transitions

To reproduce the ν_{μ} deficit, consider the $\nu_{\mu} \rightarrow \nu_{\mu}$ transition amplitude:

$$\mathcal{M}(\nu_{\mu} \to \nu_{\mu}) \equiv \langle \nu_{\mu} | \nu_{\mu}(E, L) \rangle$$
$$= \underbrace{\left[\langle \nu_{1} | U_{\mu 1}^{*} + \langle \nu_{2} | U_{\mu 2}^{*} \right]}_{= \langle \nu_{\mu} |} \times \underbrace{\left[U_{\mu 1} e^{-im_{1}^{2}L/2E} | \nu_{1} \rangle + U_{\mu 2} e^{-im_{2}^{2}L/2E} | \nu_{2} \rangle \right]}_{= |\nu_{\mu}(E,L) \rangle}$$

Since $|\nu_m\rangle$ are mass **eigenstates**, $\langle \nu_{m'}|\nu_m\rangle = \delta_{m'm}$. This implies

$$\mathcal{M}(\nu_{\mu} \to \nu_{\mu}) = e^{-im_{1}^{2}L/2E} |U_{\mu 1}|^{2} \langle \nu_{1} | \nu_{1} \rangle + e^{-im_{2}^{2}L/2E} |U_{\mu 2}|^{2} \langle \nu_{2} | \nu_{2} \rangle$$

The $\nu_{\mu} \rightarrow \nu_{\mu}$ transition probability is

$$\Pr(\nu_{\mu} \to \nu_{\mu}) = |\mathcal{M}(\nu_{\mu} \to \nu_{\mu})|^2 = |U_{\mu 1}|^4 + |U_{\mu 2}|^4$$

$$+e^{-i\Delta m_{21}^2L/2E}|U_{\mu1}|^2|U_{\mu2}|^2+e^{+i\Delta m_{21}^2L/2E}|U_{\mu1}|^2|U_{\mu2}|^2$$

where we defined $\Delta m_{21}^2 \equiv (m_2^2 - m_1^2)$

Some Quick Algebra

Recalling that $U_{e1} = U_{\mu 2} = \cos \theta$ and $U_{e2} = -U_{\mu 1} = \sin \theta$,

$$\Pr(\nu_{\mu} \to \nu_{\mu}) = \sin^{4} \theta + \cos^{4} \theta + 2\sin^{2} \theta \cos^{2} \theta \cos\left[\frac{\Delta m_{21}^{2}L}{2E}\right]$$
$$= 1 - \sin^{2}(2\theta) \sin^{2}\left[\frac{\Delta m_{21}^{2}L}{4E}\right] \stackrel{\theta \ll 1}{\approx} = 1 - 4\theta^{2}\left[\frac{\Delta m_{21}^{2}L}{4E}\right]^{2}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つくぐ

Some Quick Algebra

Recalling that $U_{e1} = U_{\mu 2} = \cos \theta$ and $U_{e2} = -U_{\mu 1} = \sin \theta$,

$$\Pr(\nu_{\mu} \to \nu_{\mu}) = \sin^{4} \theta + \cos^{4} \theta + 2\sin^{2} \theta \cos^{2} \theta \cos\left[\frac{\Delta m_{21}^{2}L}{2E}\right]$$
$$= 1 - \sin^{2}(2\theta) \sin^{2}\left[\frac{\Delta m_{21}^{2}L}{4E}\right] \stackrel{\theta \ll 1}{\approx} = 1 - 4\theta^{2}\left[\frac{\Delta m_{21}^{2}L}{4E}\right]^{2}$$

Lots to unpack:

By conservation of probability $1 = \Pr(\nu_{\mu} \rightarrow \nu_{\mu}) + \Pr(\nu_{\mu} \rightarrow \nu_{e})$, so the $\nu_{\mu} \rightarrow \nu_{e}$ appearance probability is

$$\mathsf{Pr}(\nu_{\mu}
ightarrow \nu_{e}) = 1 - \mathsf{Pr}(\nu_{\mu}
ightarrow \nu_{\mu}) = \sin^{2}(2\theta) \sin^{2}\left[rac{\Delta m_{21}^{2}L}{4E}
ight]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Understanding Neutrino Oscillation Plots

R. Ruiz - CP3, Universite Catholique de Louvain

The success and the maturity of the ν oscillation paradigm provides us with a new probe of new physics:

- Are there additional neutrinos N? Would manifest as non-unitarity of $3 \times 3 \ U_{\ell m}$
- How much CP violation is in the lepton sector?
- What drives the CKM matrix "diagonal" but the PMNS matrix "non-diagonal"?
- Are neutrinos Majorana?

The success and the maturity of the ν oscillation paradigm provides us with a new probe of new physics:

- Are there additional neutrinos N? Would manifest as non-unitarity of $3 \times 3 \ U_{\ell m}$
- How much CP violation is in the lepton sector?
- What drives the CKM matrix "diagonal" but the PMNS matrix "non-diagonal"?
- Are neutrinos Majorana?
- What is the origin of $m_{
 u}$?

・ロト ・ 同ト ・ ヨト ・ ヨト

The Massive ν Problem

イロン イ理 とく ヨン イ ヨン

Okay, so neutrinos have masses $\lesssim \mathcal{O}(0.1)$ eV

Is this a problem?

イロト イポト イヨト イヨト

Neutrinos Masses and New Physics

To generate Dirac masses for ν like other SM fermions, we need N_R

$$\mathcal{L}_{\nu \text{ Yuk.}} = -y_{\nu} \overline{L} \tilde{\Phi} N_{R} + H.c. = -y_{\nu} \left(\overline{\nu_{L}} \quad \overline{\ell_{L}} \right) \begin{pmatrix} \langle \Phi \rangle + h \\ 0 \end{pmatrix} N_{R} + H.c.$$
$$= \underbrace{-y_{\nu} \langle \Phi \rangle}_{=m_{D}} \overline{\nu_{L}} N_{R} + H.c. + \dots$$

However, N_R^i do not exist in the SM, implying $m_D = 0$

Significance of Neutrino Oscillations:

• Neutrino masses $\implies \mathcal{L}_{\text{Universe}} \neq \mathcal{L}_{\text{SM}} (+\mathcal{L}_{\text{gravity}})$ • Instead, $\mathcal{L}_{\text{Universe}} \approx \mathcal{L}_{\text{SM}} + \underbrace{\mathcal{L}_{\nu \text{ masses}}}_{BSM \text{ physics!}} \bigotimes$

Neutrino masses \implies existence of physics beyond the SM!

Neutrinos Masses and New Particles?

Nonzero neutrino masses implies new degrees of freedom exist [Ma'98]:

 $m_{\nu} \neq 0$ + renormalizability + gauge inv. \implies new particles!

New particles might be charged under new or old gauge symm., E.g., N_R may have U(1)_{B-L} charge and ∆_L is an SU(2)_L triplet
Particles must couple to h or L, often inducing LNV/cLFV!

Pathways to Nautrally Small m_{ν}

(日)

Spinor/gauge algebra + renormalizability restrict ways to build m_{ν} [Ma'98]

- "Type 0": Add SM-singlet N_R with $y_
 u \sim 10^{-12}$ and forbid Majorana mass
 - Possible, but tiny y_{ν} is theoretically unsatisfying

Spinor/gauge algebra + renormalizability restrict ways to build m_{ν} [Ma'98]

"Type 0": Add SM-singlet N_R with $y_{\nu} \sim 10^{-12}$ and forbid Majorana mass • Possible, but tiny y_{ν} is theoretically unsatisfying

Type I: Add N_R and keep the Majorana mass term • $\mathcal{L} \ni -y_{\nu} \overline{L} \tilde{\Phi} N_R - \frac{m_R}{2} \overline{N_R}^c N_R \implies m_{\nu} \propto m_D^2/m_R, \quad m_D = y_{\nu} \langle \Phi \rangle$

◆ロト ◆帰 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

Spinor/gauge algebra + renormalizability restrict ways to build m_{ν} [Ma'98]

"Type 0": Add SM-singlet N_R with $y_{\nu} \sim 10^{-12}$ and forbid Majorana mass • Possible, but tiny y_{ν} is theoretically unsatisfying

Type I: Add N_R and keep the Majorana mass term • $\mathcal{L} \ni -y_{\nu} \overline{L} \tilde{\Phi} N_R - \frac{m_R}{2} \overline{N_R}^c N_R \implies m_{\nu} \propto m_D^2/m_R, \quad m_D = y_{\nu} \langle \Phi \rangle$

Type II: Add scalar $SU(2)_L$ triplet $(\Delta^{0,\pm,\pm\pm})$ - No N_R required • $\mathcal{L} \ni y_\Delta \overline{L}(i\sigma_2) \Delta L^c \implies m_\nu \propto y_\Delta \langle \Delta \rangle \overline{\nu^c} \nu, \quad \langle \Delta \rangle < \text{few GeV}$

Spinor/gauge algebra + renormalizability restrict ways to build m_{ν} [Ma'98]

"Type 0": Add SM-singlet N_R with $y_{\nu} \sim 10^{-12}$ and forbid Majorana mass • Possible, but tiny y_{ν} is theoretically unsatisfying

Type I: Add N_R and keep the Majorana mass term • $\mathcal{L} \ni -y_{\nu} \overline{L} \tilde{\Phi} N_R - \frac{m_R}{2} \overline{N_R}^c N_R \implies m_{\nu} \propto m_D^2/m_R, \quad m_D = y_{\nu} \langle \Phi \rangle$

Type II: Add scalar $SU(2)_L$ triplet $(\Delta^{0,\pm,\pm\pm})$ - No N_R required • $\mathcal{L} \ni y_\Delta \overline{L}(i\sigma_2) \Delta L^c \implies m_\nu \propto y_\Delta \langle \Delta \rangle \overline{\nu^c} \nu, \quad \langle \Delta \rangle < \text{few GeV}$

Type III: Add fermion $SU(2)_L$ triplet $(T^{0,\pm})$ • $\mathcal{L} \ni y_T \overline{L} T^a \sigma^a (i\sigma^2) \Phi + \frac{m_T}{2} \overline{T^{0c}} T^0 \implies m_\nu \propto m_D^2/m_T$

Spinor/gauge algebra + renormalizability restrict ways to build m_{ν} [Ma'98]

"Type 0": Add SM-singlet N_R with $y_{\nu} \sim 10^{-12}$ and forbid Majorana mass • Possible, but tiny y_{ν} is theoretically unsatisfying

Type I: Add N_R and keep the Majorana mass term • $\mathcal{L} \ni -y_{\nu} \overline{L} \tilde{\Phi} N_R - \frac{m_R}{2} \overline{N_R}^c N_R \implies m_{\nu} \propto m_D^2/m_R, \quad m_D = y_{\nu} \langle \Phi \rangle$

Type II: Add scalar $SU(2)_L$ triplet $(\Delta^{0,\pm,\pm\pm})$ - No N_R required • $\mathcal{L} \ni y_\Delta \overline{L}(i\sigma_2) \Delta L^c \implies m_\nu \propto y_\Delta \langle \Delta \rangle \overline{\nu^c} \nu, \quad \langle \Delta \rangle < \text{few GeV}$

Type III: Add fermion $SU(2)_L$ triplet $(T^{0,\pm})$ • $\mathcal{L} \ni y_T \overline{L} T^a \sigma^a (i\sigma^2) \Phi + \frac{m_T}{2} \overline{T^{0c}} T^0 \implies m_\nu \propto m_D^2/m_T$

Less Minimal Models: Hybrid, Inverse, Radiative, ..., all with rich pheno R. Ruiz - CP3, Universite Catholique de Louvain v Physics at the LHC- 2019 MadGraph School - Chennai 22 / 41

Type I Seesaw

イロト イポト イヨト イヨト

э

Canonical Type I Seesaw Mechanism

... extends the Standard Model (**SM**) field content with N_R , and supposes the existence of Dirac and RH Majorana masses:

$$\mathcal{L}_{\mathrm{Type \ I}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{N \ \text{Kin.}} - \underbrace{y_{\nu} \overline{L} \tilde{\Phi} N_{R} + H.c.}_{\mathrm{Dirac \ mass}} - \underbrace{\mu_{R} \overline{N_{R}^{c}} N_{R}}_{\mathrm{Majorana \ mass}}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Canonical Type I Seesaw Mechanism

... extends the Standard Model (**SM**) field content with N_R , and supposes the existence of Dirac and RH Majorana masses:

$$\mathcal{L}_{\mathrm{Type \ I}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{N \ \text{Kin.}} - \underbrace{y_{\nu} \overline{L} \tilde{\Phi} N_{R} + H.c.}_{\mathrm{Dirac \ mass}} - \underbrace{\mu_{R} \overline{N_{R}^{c}} N_{R}}_{\mathrm{Majorana \ mass}}$$

Combining the mass terms makes manifest neutrino mass-mixing

$$\mathcal{L}_{D+M} = -\frac{1}{2}\overline{\tilde{N}}\tilde{M}\tilde{N} = \begin{pmatrix} \overline{\nu_L} & \overline{N_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & \mu_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

Canonical Type I Seesaw Mechanism

... extends the Standard Model (**SM**) field content with N_R , and supposes the existence of Dirac and RH Majorana masses:

$$\mathcal{L}_{\mathrm{Type \ I}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{N \ \text{Kin.}} - \underbrace{y_{\nu} \overline{L} \tilde{\Phi} N_{R} + H.c.}_{\mathrm{Dirac \ mass}} - \underbrace{\mu_{R} \overline{N_{R}^{c}} N_{R}}_{\mathrm{Majorana \ mass}}$$

Combining the mass terms makes manifest neutrino mass-mixing

$$\mathcal{L}_{D+M} = -\frac{1}{2}\overline{\tilde{N}}\tilde{M}\tilde{N} = \begin{pmatrix} \overline{\nu_L} & \overline{N_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & \mu_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

This gives the following mass eigenvalues when $\mu_R \gg m_D$:

$$m_1 pprox - m_D |V|^2 = -m_D \frac{m_D}{\mu_R}, \quad m_2 pprox \mu_R$$

Realistic *models* have large and messy mass matrix \tilde{M} , where

$$\tilde{m}_{\nu} = -\tilde{M}_D \tilde{M}_R^{-1} \tilde{M}_D^T \text{ with active-sterile mixing } \tilde{V} = \tilde{M}_D \tilde{M}_R^{-1}$$

By introducing new particles and writing the most general, gauge-invariant Lagrangian allowed, we have simultaneously:

- Established neutrino masses through Yukawa couplings and
- Suppressed the effective neutrino masses through mixing

However, Seesaws are more frameworks than models. Their strength and weakness are their ability to be readily embedded in specific models.

• Going beyond fermionic $SU(3)_c \otimes U(1)_{EM}$ singlets makes physics and life more entertaining due to additional mixing

E.g., Type II, III Seesaws, (N)MSSM, Randall-Sundrum, GUTs

Agnostic Approach to Heavy N Mixing

In pure Type I scenarios, tiny m_{ν} obtained in two ways:

4 High-scale seesaw: $\mu_M \gg \langle \Phi_{SM} \rangle \implies m_\nu \sim m_D \left(\frac{m_D}{\mu_M} \right), \ m_N \sim \mu_M$

Leads to generic decoupling of N and LNV from colliders

2 Low-scale seesaw: $\mu_M \ll \langle \Phi_{SM} \rangle \implies m_\nu \sim \mu_M \left(\frac{m_D}{m_R} \right)^2$, $m_N \sim m_R$

Known also in literature as Inverse Seesaw, Linear Seesaw, Protective Symmetries, etc.

Agnostic Approach to Heavy N Mixing

In pure Type I scenarios, tiny m_{ν} obtained in two ways:

• High-scale seesaw: $\mu_M \gg \langle \Phi_{SM} \rangle \implies m_\nu \sim m_D \left(\frac{m_D}{\mu_M} \right), \ m_N \sim \mu_M$

Leads to generic decoupling of N and LNV from colliders

2 Low-scale seesaw: $\mu_M \ll \langle \Phi_{SM} \rangle \implies m_{\nu} \sim \mu_M \left(\frac{m_D}{m_R} \right)^2$, $m_N \sim m_R$ Known also in literature as Inverse Seesaw. Linear Seesaw. Protective Symmetries, etc.

Apriori, no preference for either without additional theory prejudice:

• LNC Option: Low-scale Type I + if ν approx. massless on expt scale, i.e., $\tilde{m}_{\nu}^2/Q^2 \approx 0 \implies$ approximate *L* conservation w/ Pascoli, et al. [1812.08750]

See also, Pilaftsis [hep-ph/9901206], Kersten and Smirnov [0705.3221], Pascoli, et al, [1712.07611]

• **LNV Options**: Collider LNV via $N_i \implies$ more new particles!

RR [1703.04669]

Heavy Neutrino Production At Hadron Colliders

Heavy N can be produced through a variety of mechanisms in pp collisions

In fact, a resurgence of calculations in recent years¹

- Clarity needed on understanding m_N, \sqrt{s} dependence
- \implies more physical collider definitions + public tools

HeavyN UFOs [1602.06957]

¹DY@NLO [*1509.06375]; GF [1408.0983; *1602.06957] @NNNLL [*1706.02298]; VBF [1308.2209, *1411.7305,

*1602.06957]; DY,VBF Automation@NLO [*1602.06957]. For extensive details, see review: [*1711.02180] 🕢 🚊 🛷 🤤 🖉 🔍

27 / 41

Across different colliders, wild interplay of PDF and matrix elements

w/ Pascoli, RR, et al, [1812.08750]

Plotted: Flavor-independent heavy *N* production rate $(\sigma/|V|^2)$ vs mass • **GF** and **VBF** dominate at larger \sqrt{s} , m_N • At $\sqrt{s} = 100$ TeV and $|V_{\ell N}|^2 \sim 10^{-3}$, about one $N(10 \text{ TeV})/\text{ab}^{-1}$ If roughly BR× $\varepsilon \times A \times L \sim \frac{1}{3} \times 30 \text{ ab}^{-1}$, then $\sqrt{N_{Obs}} > 3\sigma$. • $\sigma \propto 3\sigma$.

Experimental Tests on Intermediate- and High-Mass N

Joint push by hep-ex and hep-ph/th have broken new ground!

Plotted: LHC 14 sensitivity to (coupling)² vs heavy neutrino mass

Plotted: Exclusion on mixing $|V_{\ell N}|^2$ vs heavy N mass (m_N)

- (L) Search for $pp \to N\ell \to 3\ell + X$ [1802.02965]

R. Ruiz - CP3, Universite Catholique de Louvain

With $\mathcal{L} = 300 - 3000 \text{ fb}^{-1}$ of data, LHC can compete with dedicated experiments testing charged lepton flavor violation , and Pascoli, RR, et al [1812.08750] $_{\odot}$

Type II Seesaw

∃ →

Type II Seesaw Mechanism

Hypothesize an SU(2)_L scalar triplet with lepton number L = -2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2} \Delta^{++} \\ \sqrt{2} \Delta^0 & -\Delta^+ \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta \Phi} \ni \mu_{h\Delta} \Big(\Phi^\dagger \hat{\Delta} \cdot \Phi^\dagger + \text{H.c.} \Big)$$

The mass scale $\mu_{h\Delta}$ explicitly breaks lepton number, and induces $\langle \Delta \rangle$:

$$\sqrt{s}\langle \hat{\Delta}
angle = v_{\Delta} pprox rac{\mu_{h\Delta}v_{
m EW}}{\sqrt{2}m_{\Delta}^2}$$

This includes a left-handed Majorana mass of neutrinos!

$$\mathcal{L} = \underbrace{\frac{y_{\Delta}^{ij}}{\sqrt{2}}\overline{L^{c}}\hat{\Delta}L}_{=\underbrace{\frac{y_{\Delta}^{ij}}{\sqrt{2}}\left(\overline{\nu^{jc}} \quad \overline{\ell^{jc}}\right)\begin{pmatrix}0 & 0\\\nu_{\Delta} & 0\end{pmatrix}\begin{pmatrix}\nu^{i}\\\ell^{i}\end{pmatrix}}_{=m_{\nu}^{ij}}$$

Generates light ν_m masses via vev **WITHOUT** invoking a sterile N!

Type II Seesaw is characterized by existence of scalars that are triplets under SU(2)_L: Δ^0 , Δ^{\pm} , $\Delta^{\pm\pm}$

• Couples to W, Z, γ through gauge couplings

Production at 100 TeV HUGE compared to LHC!

• Clear that $\sigma_{DY}(\Delta^{\pm\pm}\Delta^{\mp\mp}) \gg \sigma_{\gamma\gamma}(\Delta^{\pm\pm}\Delta^{\mp\mp})$

Discovery Potential of Triplet Scalars

LHC: $m_{\Delta^{\pm\pm}} \lesssim 700 - 900$ GeV excluded with $\mathcal{L} \approx 36$ fb⁻¹ • LHC Run III-V: Anticipate $\sim 10 - 150 \times$ more data

100 TeV: $m_{\Delta^{\pm\pm}} \lesssim 3-5$ TeV can be discovered within first 300-3000 fb $_{acc}^{-1}$

Type III Seesaw

< □ > < /□ >

A B A A B A

э

Type III Seesaw Mechanism

Introduce SU(2)_L fermion triplet (zero hypercharge) with mass m_T

$$\Sigma = \begin{pmatrix} \Sigma_L^3 & \sqrt{2}\Sigma_L^+ \\ \sqrt{2}\Sigma_L^- & -\Sigma^3 \end{pmatrix},$$

$$\mathcal{L}_{T} = \frac{1}{2} \operatorname{Tr} \left[\overline{\Sigma_{L}} i \ \mathcal{D} \Sigma_{L} \right] - \left(\frac{m_{T}}{2} \overline{\Sigma_{L}^{3}} \Sigma_{R}^{3c} + m_{T} \overline{\Sigma_{L}^{-}} \Sigma_{R}^{+c} + \text{H.c.} \right)$$

and couple to SM leptons via Higgs Yukawa couplings

$$\mathcal{L}_{Y} = y_{T} \overline{L^{c}} \Sigma_{L} (i\sigma^{2}) \Phi \rightarrow \frac{y_{T}}{\sqrt{2}} (v+h) \overline{\nu_{R}^{c}} \Sigma_{L}^{3} + y_{T} (v+h) \overline{e_{R}} \Sigma_{L}^{-}$$

The resulting mass matrix for neutral fermions is

$$\mathcal{L} \ni \frac{1}{2} \overline{\mathcal{N}^{c}} \mathcal{M} \mathcal{N} = \frac{1}{2} \begin{pmatrix} \overline{\nu_{L}^{c}} & \overline{\Sigma_{L}^{3c}} \end{pmatrix} \begin{pmatrix} 0 & y_{\Sigma} \nu / \sqrt{2} \\ y_{\Sigma} \nu / \sqrt{2} & m_{T} \end{pmatrix} \begin{pmatrix} \nu_{L} \\ \Sigma_{L}^{3} \end{pmatrix}$$

Type III Interaction Theory

Assuming that m_T (Majorana mass) $\gg y_T \langle \Phi \rangle$ (Dirac mass)

$$m_{
m light} pprox rac{y_{\Sigma}^2 v^2}{2m_T}, \quad m_{
m heavy} pprox -m_T$$

For $m_{\rm light} = 0.1$ eV, if $y_T \sim \mathcal{O}(y_e) \sim 1 \cdot 10^{-6}$, $m_{\rm heavy} \approx 300$ GeV! For today, denote mixing between gauge and mass states by Y and ϵ :

$$ilde{T}^{\pm}=Y \; T^{\pm}+\epsilon \; \ell^{\pm}, \quad ilde{T}^0=Y \; T^0+\epsilon \;
u_m, \quad |Y|\sim \mathcal{O}(1), \quad |\epsilon|\ll 1.$$

In the mass basis (after mixing)

$$\mathcal{L}_{T}^{\mathrm{Mass \ Basis}} \ni -\overline{\mathcal{T}^{-}} (eY \gamma^{\mu} A_{\mu} + g \cos \theta_{W} Y \gamma^{\mu} Z_{\mu}) \mathcal{T}^{-} - gY \overline{\mathcal{T}^{-}} \gamma^{\mu} W_{\mu}^{-} \mathcal{T}^{0} - gY \overline{\mathcal{T}^{0}} \gamma^{\mu} W_{\mu}^{+} \mathcal{T}^{-}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Type III Seesaw is characterized by existence of leptons that are triplets under SU(2)_L: T^0 , T^{\pm}

- Couples to W, Z, γ through gauge couplings
- Generates light ν_m masses similar to Type I

- Production at 100 TeV HUGE compared to LHC!
- Clear that $\sigma_{DY}(T^+T^-) \gg \sigma_{\gamma\gamma}(T^+T^-)$
 - $\sigma_{GF}(T^{\pm}\ell^{\mp})$ competitive if mixing sizable!

Discovery Potential of Triplet Leptons

LHC: $m_T \lesssim 800$ GeV excluded with $\mathcal{L} \approx 36 \text{ fb}^{-1}$ • LHC Run III-V: Anticipate $\sim 10 - 150 \times$ more data

100 TeV: $m_T \lesssim 4-6$ TeV can be discovered within first 300-3000 fb⁻¹

• Sensitivity can be improved with refined analysis and combining channels (See [**RR**, 1509.05416] for details)

Lecture II: Left-Right Symmetric Model

▶ < ∃ >

Thank you for your time.

イロト イポト イヨト イヨト