Lectures on Next-To-Leading Order Quantum Corrections

Hua-Sheng Shao

MadGraph School 2019, Chennai, India 18-22 November 2019

1

Plan

- **• Lecture 1:**
	- **• Basics in NLO calculations**
- **• Lecture 2:**
	- **• Generics in NLO calculations**
- **• Lecture 3:**
	- **• Advanced NLO topics**

LECTURE 1 NLO Basics

LECTURE 1 NLO Basics

Introduction

PRECISION MEASUREMENTS AT THE LHC

• Huge data sample collected at the LHC run 2

 $\overline{1}$

A. Hoecker's talk at EPS 2019

PRECISION MEASUREMENTS AT THE LHC

• Very impressive SM cross section measurements at the LHC

PRECISION MEASUREMENTS AT THE LHC

• Very impressive SM cross section measurements at the LHC

In order to fully exploit these data, theoretical calculations are crucial to keep pace !

$$
\sigma(pp \to Z + X) = \int dx_1 dx_2 f(x_1, \mu_F) f(x_2, \mu_F) \hat{\sigma}(\alpha_s, \mu_F, \mu_R)
$$

$$
\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \left[\hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \right]
$$

$$
\sigma(pp \to Z + X) = \int dx_1 dx_2 f(x_1, \mu_F) f(x_2, \mu_F) \hat{\sigma}(\alpha_s, \mu_F, \mu_R)
$$

$$
\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \left[\hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \right]
$$

$$
\sigma(pp \to Z + X) = \int dx_1 dx_2 f(x_1, \mu_F) f(x_2, \mu_F) \hat{\sigma}(\alpha_s, \mu_F, \mu_R)
$$

$$
\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \left[\hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \right]
$$
NLO

$$
\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \left[\hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \right]
$$

CROSS SECTION @

IMSc, Chennai 7 Hua-Sheng Shao

HADRON COLLIDER PHYSICS: 15 YEARS AGO

1 2 3 4 5 6 7 8 9 0 1 2 3 10 Complexity [n] $d\sigma = d\sigma_0 \left[1 + \frac{\alpha_s}{2\pi} \Delta_1 + \left(\frac{\alpha_s}{2\pi}\right)^2 \Delta_2 + \dots \right]$

Tuesday, November 19, 19

Accuracy

 $\lceil \alpha_s \rceil$ **OODS**

HADRON COLLIDER PHYSICS: 15 YEARS AGO

IMSc, Chennai 8 Hua-Sheng Shao

IN COLLIDER PHYSICS: NOW

IMSC, CHENNAI NE ANN AN 11 An Dùbhlachas ann an Dùbhlachas ann an Dùbhlachas ann an Dùbhlachas Shao

N³LO HIGGS(+HIGGS) PRODUCTION: HIGHEST ACCURACY CITIS

• Percent level inclusive ggF Higgs cross section

- Reverse Unitarity
- Differential equations
- Mellin Barnes Representations
- Hopf Algebra of Generalized Polylogs
- Number Theory
- Soft Expansion by Region
- Optimised Algorithm for IBP reduction and powerful computing resour

IMSC, CHENNAI 12 IMSC, CHENNAI IMSC, CHENNAI

N3LO HIGGS(+HIGGS) PRODUCTION: HIGHEST ACCURACY

• Percent level inclusive ggF Higgs cross section

• Percent level inclusive ggF Higgs+Higgs cross section

- **• Higher order -> more reliable of (differential cross sections)**
- **• Scale uncertainties decrease**
- **• Perturbative series is convergent**
- **• The scale uncertainties are not reliable in LO but capture the correct missing higher order in NLO !**

• Important (and often dominant) background at the LHC

• Important (and often dominant) background at the LHC

• NLO QCD correction: W+(>=n) jets, n=0,...,5

Bern, Dixon, Febres Cordero, Hoche, Ita, Kosower, Maitre, Ozeren (PRD'13)

 $rac{1}{6}$

ä

良

- **• Important (and often dominant) background at the LHC**
- **• NLO QCD correction: W+(>=n) jets, n=0,...,5**

Bern, Dixon, Febres Cordero, Hoche, Ita, Kosower, Maitre, Ozeren (PRD'13)

• Automated NLO QCD: exclusive W+n jets, n=0,...,2

Frederix, Frixione, Papaefstathiou, Prestel, Torrielli (JHEP'15)

Commands:

```
./bin/mg5_aMC
MG5_aMC > import model loop_sm-no_b_mass
MG5 aMC > define p = p b b b~; define j = pMG5 aMC > define l = e+ mu+ e- mu-MG5 aMC > define vl = ve vm ve~ vm~
MG5 aMC > generate p p > l vl [QCD] @ 0
MG5 aMC > generate p p > l vl j [QCD] @ l
MG5_aMC > generate p p > l vl j j [QCD] @ 2MG5 aMC > output; launch
```


- **• Important (and often dominant) background at the LHC**
- **• NLO QCD correction: W+(>=n) jets, n=0,...,5**

Bern, Dixon, Febres Cordero, Hoche, Ita, Kosower, Maitre, Ozeren (PRD'13)

• Automated NLO QCD: exclusive W+n jets, n=0,...,2

Frederix, Frixione, Papaefstathiou, Prestel, Torrielli (JHEP'15)

Commands:

```
./bin/mg5_aMC
MG5_aMC > import model loop_sm-no_b_mass
MG5 aMC > define p = p b b b~; define j = pMG5 aMC > define l = e+ mu+ e- mu-MG5 aMC > define vl = ve vm ve~ vm~
MG5_aMC > generate p p > l vl [QCD] @ 0
MG5_aMC > generate p p > l vl j [QCD] @ 1
MG5_aMC > generate p p > l vl j j [QCD] @ 2
MG5 aMC > output; launch
```
Technique improvements:

- Matured automated framework
- Methods of matching ME to PS
- Merging of multi-jet ME with PS

Alwall, Frederix, Frixione, Hirschi, Maltni, Mattelaer, HSS, Stelzer, Torrielli, Zaro (JHEP'14)

LECTURE 1 NLO Basics

IMSc, Chennai Hua-Sheng Shao ¹⁴

LECTURE 1 NLO Basics A NLO example

A NLO EXAMPLE: BORN

• Let us calculate NLO QCD of Z -> q qbar decay

• Writing down Born amplitude according to Feynman rules

For simplicity, we assume quarks are massless

$$
\mathcal{A}_{\text{Born}} = -\delta_{c_q c_{\overline{q}}} \varepsilon_{\mu}(p_Z) \overline{u}(p_q) . \Gamma_{Zq\overline{q}}^{\mu} \cdot v(p_{\overline{q}})
$$
\n
$$
\Gamma_{Zq\overline{q}}^{\mu} = ie \left(\frac{I_q}{\cos \theta_w \sin \theta_w} - Q_q \frac{\sin \theta_w}{\cos \theta_w} \right) \gamma^{\mu} P_L - ieQ_q \frac{\sin \theta_w}{\cos \theta_w} \gamma^{\mu} P_R
$$

• Squaring amplitude, summing over colours and spins, and averaging the spin of the initial state

$$
\overline{\sum}|\mathcal{A}_{\rm Born}|^2=8\pi\alpha m_Z^2\left(2Q_q^2\left(\frac{\sin\theta_w}{\cos\theta_w}\right)^2-2\frac{I_qQ_q}{\cos^2\theta_w}+\frac{I_q^2}{\cos^2\theta_w\sin^2\theta_w}\right)
$$

• Phase-space integration

$$
\Gamma_{\text{Born}}(Z \to q\bar{q}) = \frac{1}{2m_Z} \int (2\pi)^4 \delta^4(p_Z - p_q - p_{\bar{q}}) \frac{1}{(2\pi)^{3\times2}} \frac{d^3 p_q}{2E_q} \frac{d^3 p_{\bar{q}}}{2E_{\bar{q}}} \overline{\sum} |\mathcal{A}_{\text{Born}}|^2
$$

$$
= \alpha m_Z \left(Q_q^2 \frac{\sin^2 \theta_w}{\cos^2 \theta_w} - \frac{Q_q I_q}{\cos^2 \theta_w} + \frac{I_q^2}{2\cos^2 \theta_w \sin^2 \theta_w} \right)
$$

IMSc, Chennai 16 Hua-Sheng Shao

 $\alpha =$

*e*2

 4π

- **• Let us calculate NLO QCD of Z -> q qbar decay**
	- **• Writing down one-loop amplitude according to Feynman rules**

• Need to evaluate two tensor integrals

$$
I_1^{\mu} = \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{\bar{l}^{\mu}}{\bar{l}^2 (\bar{l} - p_q)^2 (\bar{l} - p_Z)^2} \qquad I_2^{\mu\nu} = \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{\bar{l}^{\mu} \bar{l}^{\nu}}{\bar{l}^2 (\bar{l} - p_q)^2 (\bar{l} - p_Z)^2}
$$

according to Lorentz structures

 $I_1^{\mu} = p_q^{\mu} B_1 + p_Z^{\mu} B_2$ $I_2^{\mu\nu} = g^{\mu\nu} B_{00} + p_q^{\mu} p_q^{\nu} B_{11} + p_Z^{\mu} p_Z^{\nu} B_{22} + (p_q^{\mu} p_Z^{\nu} + p_Z^{\mu} p_q^{\nu})$ B_{12}

Solving the coefficients B, e.g.

$$
p_q \cdot I_1 = p_q^2 B_1 + p_q \cdot p_Z B_2 = p_q \cdot p_Z B_2 \quad p_Z \cdot I_1 = p_q \cdot p_Z B_1 + p_Z^2 B_2 = p_q \cdot p_Z B_1 + m_Z^2 B_2
$$

• Let us calculate NLO QCD of Z -> q qbar decay

• Need to evaluate two tensor integrals

Solving the coefficients B, e.g.

$$
B_2 = \frac{p_q \cdot I_1}{p_q \cdot p_Z} \qquad B_1 = \frac{p_Z \cdot I_1 - m_Z^2 B_2}{p_q \cdot p_Z}
$$

\n
$$
p_q \cdot I_1 = \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{p_q \cdot \bar{l}}{\bar{l}^2 (\bar{l} - p_q)^2 (\bar{l} - p_Z)^2}
$$

\n
$$
= \frac{1}{2} \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{\bar{l}^2 - (\bar{l} - p_q)^2}{\bar{l}^2 (\bar{l} - p_q)^2 (\bar{l} - p_Z)^2}
$$

\n
$$
= \frac{1}{2} \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{1}{(\bar{l} - p_q)^2 (\bar{l} - p_Z)^2} - \frac{1}{2} \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{1}{\bar{l}^2 (\bar{l} - p_Z)^2}
$$

\n
$$
= \frac{1}{2} \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{1}{\bar{l}^2 (\bar{l} - p_{\bar{q}})^2} - \frac{1}{2} \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{1}{\bar{l}^2 (\bar{l} - p_Z)^2}
$$

• Let us calculate NLO QCD of Z -> q qbar decay

• Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

$$
\int \frac{d^d \bar{l}}{(2\pi)^d} \frac{1}{\bar{l}^2 (\bar{l} - p_{\bar{q}})^2} = \int_0^1 dx \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{1}{\left[x\bar{l}^2 + (1-x) (\bar{l} - p_{\bar{q}})^2\right]^2}
$$
 Feynman parameterization!
\n
$$
= \int_0^1 dx \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{1}{(\bar{l} - (1-x)p_{\bar{q}})^4}
$$
Using on-shell condition!
\n
$$
= \int_0^1 dx \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{1}{(\bar{l}^2)^2}
$$
Translational invariance!
\n
$$
= \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{1}{(\bar{l}^2)^2}
$$
Integration over x!
\n
$$
= \int \frac{d \bar{l}_0 d^{d-1} \bar{l}}{(2\pi)^d} \frac{1}{(\bar{l}_0^2 - |\bar{l}|^2)^2}
$$

• Let us calculate NLO QCD of Z -> q qbar decay

• Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

$$
\begin{split} \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{1}{\bar{l}^2 \left(\bar{l} - p_{\bar{q}}\right)^2} \stackrel{\bar{l}}{=} \frac{i}{(2\pi)^d} \int d\Omega_d \int_0^{+\infty} d|\bar{l}| |\bar{l}|^{d-5} & \text{Wick rotation & spherical coordinate } l \\ &= \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^d} \int_0^{+\infty} d|\bar{l}| |\bar{l}|^{d-5} & \text{Integration over solid angle } l \\ &= \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^d} \left(\int_0^1 d|\bar{l}| |\bar{l}|^{d-5} + \int_1^{+\infty} d|\bar{l}| |\bar{l}|^{d-5} \right) \end{split}
$$

• Let us calculate NLO QCD of Z -> q qbar decay

• Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

$$
\begin{split} \int \frac{d^d \overline{l}}{(2\pi)^d} \frac{1}{\overline{l}^2 (\overline{l} - p_{\overline{q}})^2} \stackrel{\overline{l}}{=} \frac{i}{(2\pi)^d} \int d\Omega_d \int_0^{+\infty} d|\overline{l}| |\overline{l}|^{d-5} & \text{Wick rotation & spherical coordinate } l \\ &= \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^d} \int_0^{+\infty} d|\overline{l}| |\overline{l}|^{d-5} & \text{Integration over solid angle } l \\ &= \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^d} \left(\int_0^1 d|\overline{l}| |\overline{l}|^{d-5} + \int_1^{+\infty} d|\overline{l}| |\overline{l}|^{d-5} \right) \end{split}
$$

 $|\bar{l}| \rightarrow 0$ (IR): the integral is divergent when $d \leq 4$ $|\bar{l}| \rightarrow +\infty$ (UV): the integral is divergent when $d \geq 4$

• Let us calculate NLO QCD of Z -> q qbar decay

• Need to evaluate two tensor integrals

Evaluating the scalar integrals, e.g.

$$
\begin{split} \int \frac{d^{d}\overline{l}}{(2\pi)^{d}}\frac{1}{\overline{l}^{2}\left(\overline{l}-p_{\overline{q}}\right)^{2}}\overset{\overline{l}}{=} &\frac{i}{(2\pi)^{d}}\int d\Omega_{d}\int_{0}^{+\infty}d|\overline{l}||\overline{l}|^{d-5} \qquad \qquad \stackrel{\text{Wick rotation }\&\text{spherical coordinate } !}{\text{spherical coordinate } !} \\ &=\frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^{d}}\int_{0}^{+\infty}d|\overline{l}||\overline{l}|^{d-5} \qquad \qquad \text{Integration over solid angle } ! \\ &=\frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^{d}}\left(\int_{0}^{1}d|\overline{l}||\overline{l}|^{d-5}+\int_{1}^{+\infty}d|\overline{l}||\overline{l}|^{d-5}\right) \end{split}
$$

 $|\bar{l}| \rightarrow 0$ (IR): the integral is divergent when $d \leq 4$ $|\bar{l}| \rightarrow +\infty$ (UV): the integral is divergent when $d \geq 4$ *Regularisations:* $d = 4 - 2\epsilon_{UV}$, $\epsilon_{UV} \rightarrow 0+$ $d = 4 - 2\epsilon_{IR}$, $\epsilon_{IR} \rightarrow 0$

- **• Let us calculate NLO QCD of Z -> q qbar decay**
	- **• Need to evaluate two tensor integrals**

Evaluating the scalar integrals, e.g.

$$
\int \frac{d^d\bar{l}}{(2\pi)^d} \frac{1}{\bar{l}^2 (\bar{l} - p_{\bar{q}})^2} = \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^d} \left(-\frac{1}{2\epsilon_{\text{IR}}} + \frac{1}{2\epsilon_{\text{UV}}} \right)
$$

• Squaring with Born amplitude, summing over colours and spins, and averaging the spin of the initial state

$$
\sum 2\Re{\{\mathcal{A}_{1\text{loop}}\mathcal{A}_{\text{Born}}^*\}} = \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left(\sum |\mathcal{A}_{\text{Born}}|^2\right) \frac{\alpha_s}{\pi} \left[\frac{2}{3\epsilon_{\text{UV}}} - \frac{4}{3\epsilon_{\text{IR}}^2} - \frac{4}{3\epsilon_{\text{IR}}} \left(1 - \log \frac{m_Z^2}{4\pi^2 \mu_R^2}\right)\right]
$$

$$
-\frac{2}{3} \left(5 - \pi^2 - \log \frac{m_Z^2}{4\pi^2 \mu_R^2} + \log^2 \frac{m_Z^2}{4\pi^2 \mu_R^2}\right)
$$

• The UV divergence needs renormalisation

$$
\sum 2\Re\{\mathcal{A}_{\rm UV}\mathcal{A}_{\rm Born}^*\} = \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left(\sum |\mathcal{A}_{\rm Born}|^2\right) \frac{\alpha_s}{\pi} \left[-\frac{2}{3\epsilon_{\rm UV}} + \frac{2}{3\epsilon_{\rm IR}}\right]
$$
A NLO EXAMPLE: VIRTUAL

- **• Let us calculate NLO QCD of Z -> q qbar decay**
	- **• Need to evaluate two tensor integrals**

Evaluating the scalar integrals, e.g.

$$
\int \frac{d^d\bar{l}}{(2\pi)^d} \frac{1}{\bar{l}^2 (\bar{l} - p_{\bar{q}})^2} = \frac{i2\pi^{d/2}}{\Gamma(d/2)(2\pi)^d} \left(-\frac{1}{2\epsilon_{\text{IR}}} + \frac{1}{2\epsilon_{\text{UV}}} \right)
$$

• Squaring with Born amplitude, summing over colours and spins, and averaging the spin of the initial state

$$
\sum 2\Re{\{\mathcal{A}_{1\text{loop}}\mathcal{A}^*_{\text{Born}}\}} = \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \left(\sum |\mathcal{A}_{\text{Born}}|^2\right) \frac{\alpha_s}{\pi} \left[\sum_{3\epsilon_{\text{UV}}}^2 - \frac{4}{3\epsilon_{\text{IR}}^2} - \frac{4}{3\epsilon_{\text{IR}}} \left(1 - \log \frac{m_Z^2}{4\pi^2 \mu_R^2}\right)\right]
$$

$$
-\frac{2}{3} \left(5 - \pi^2 - \log \frac{m_Z^2}{4\pi^2 \mu_R^2} + \log^2 \frac{m_Z^2}{4\pi^2 \mu_R^2}\right)\right]
$$

• The UV divergence needs renormalisation

$$
\sum 2\Re\{\mathcal{A}_{\rm UV}\mathcal{A}_{\rm Born}^*\} = \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)}\left(\sum |\mathcal{A}_{\rm Born}|^2\right)\frac{\alpha_s}{\pi}\left[-\frac{\Delta^2}{3\epsilon_{\rm UV}}+\frac{2}{3\epsilon_{\rm IR}}\right]
$$

• The virtual matrix element is:

$$
\mathcal{V} = \sum 2 \Re \{\mathcal{A}_{\rm 1loop} \mathcal{A}_{\rm Born}^*\} + \sum 2 \Re \{\mathcal{A}_{\rm UV} \mathcal{A}_{\rm Born}^*\}
$$

IMSc, Chennai 21 Hua-Sheng Shao

- **• Let us calculate NLO QCD of Z -> q qbar decay**
	- **• Writing down real amplitude according to Feynman rules**

• Squaring amplitude, summing over colours and spins, and averaging the spin of the initial state

$$
\sum |\mathcal{A}_{\text{real}}|^2 = \left(\sum |\mathcal{A}_{\text{Born}}|^2\right) \alpha_s \frac{8\pi (d-2)}{3m_Z^2 s_{24} s_{34}}
$$

$$
\times \left[(d-2)s_{24}^2 + 2(d-4)s_{24} s_{34} + (d-2)s_{34}^2 - 4m_Z^2 (s_{24} + s_{34}) + 4m_Z^4 \right]
$$

$$
s_{24} = (p_q + p_g)^2, s_{34} = (p_{\bar{q}} + p_g)^2
$$

- **• Let us calculate NLO QCD of Z -> q qbar decay**
	- **• 3-body phase-space integration**

 $\Gamma_{\rm real} =$ 1 2*m^Z* z
Z $(2\pi)^d \delta^d (p_Z - p_q - p_{\bar{q}} - p_g) \frac{1}{(2\pi)^{3d}}$ $(2\pi)^{3(d-1)}$ $d^{d-1}\vec{p}_q$ $2E_q$ $d^{d-1}\vec{p}_{\bar{q}}$ $2E_{\bar{q}}$ $d^{d-1} \vec{p}_g$ $2E_g$ $\sum|\mathcal{A}_{\rm real}|^2$

$$
y = \frac{s_{34}}{m_Z^2}, 1 - y - z = \frac{s_{24}}{m_Z^2}
$$

$$
d\Phi^{(2)}(p_Z \to p_q, p_{\bar{q}}) = (2\pi)^d \delta^d(p_Z - p_q - p_{\bar{q}}) \frac{1}{(2\pi)^{2(d-1)}} \frac{d^{d-1} \vec{p}_q}{2E_q} \frac{d^{d-1} \vec{p}_{\bar{q}}}{2E_{\bar{q}}}
$$

$$
\begin{aligned} (PZ \quad Pq, PQ) &= (2\pi)^{-0} (PZ \quad Pq \quad PQ) \left(2\pi\right)^{2(d-1)} \quad 2E_q \quad 2E_{\bar{q}}\\ &= \frac{(4\pi)^{2\epsilon}}{8(2\pi)^2} \frac{1}{m_Z^2} d\Omega_d \end{aligned}
$$

$$
d\Phi^{(3)}(p_Z \to p_q, p_{\bar{q}}, p_g) = (2\pi)^d \delta^d(p_Z - p_q - p_{\bar{q}} - p_g) \frac{1}{(2\pi)^{3(d-1)}} \frac{d^{d-1} \vec{p}_{\bar{q}}}{2E_q} \frac{d^{d-1} \vec{p}_{\bar{q}}}{2E_g}
$$

\n
$$
= \frac{(4\pi)^{3\epsilon}}{32(2\pi)^4 \Gamma(1-\epsilon)} (m_Z^2)^{1-2\epsilon} d\Omega_d
$$

\n
$$
\times \int_0^1 dz z^{-\epsilon} \int_0^{1-z} dy y^{-\epsilon} (1-z-y)^{-\epsilon}
$$

\n
$$
= d\Phi^{(2)}(p_Z \to p_{q_1} p_{\bar{q}}) \times \frac{(4\pi)^{\epsilon}}{16\pi^2 \Gamma(1-\epsilon)} (m_Z^2)^{1-\epsilon}
$$

\n
$$
\times \int_0^1 dz z^{-\epsilon} \int_0^{1-z} dy y^{-\epsilon} (1-z-y)^{-\epsilon}
$$

IMSc, Chennai 23 Hua-Sheng Shao

- **• Let us calculate NLO QCD of Z -> q qbar decay**
	- **• 3-body phase-space integration**

$$
\overline{\sum} |\mathcal{A}_{\text{real}}|^2 = \left(\overline{\sum} |\mathcal{A}_{\text{Born}}|^2 \right) \alpha_s \frac{8\pi (d-2)}{3m_Z^2 y (1-z-y)} \left[(d-2)(1-z)^2 + 4y^2 - 4y(1-z) + 4z \right]
$$

The integration over y is divergent when $d \leq 4$ ($\epsilon \geq 0$)

- **• Let us calculate NLO QCD of Z -> q qbar decay**
	- **• 3-body phase-space integration**

$$
\Gamma_{\text{real}} = \frac{1}{2m_Z} \int d\Phi^{(3)}(p_Z \to p_q, p_{\bar{q}}, p_g) \overline{\sum} |\mathcal{A}_{\text{real}}|^2 \n= \frac{1}{2m_Z} \int d\Phi^{(2)}(p_Z \to p_q, p_{\bar{q}}) \left(\overline{\sum} |\mathcal{A}_{\text{Born}}|^2 \right) \n\times \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \frac{\alpha_s}{\pi} \left[\frac{4}{3\epsilon_{\text{IR}}^2} + \frac{2}{3\epsilon_{\text{IR}}} \left(1 - 2 \log \frac{m_Z^2}{4\pi^2 \mu_R^2} \right) \n+ \frac{1}{3} \left(2 \log^2 \frac{m_Z^2}{4\pi^2 \mu_R^2} - 2 \log \frac{m_Z^2}{4\pi^2 \mu_R^2} - 2\pi^2 + 13 \right) \right]
$$

• Sum real and virtual

$$
\Gamma_{\text{virtual}} = \frac{1}{2m_Z} \int d\Phi^{(2)}(p_Z \to p_q, p_{\bar{q}}) \mathcal{V}
$$

$$
\Gamma_{\text{virtual}} + \Gamma_{\text{real}} = \frac{1}{2m_Z} \int d\Phi^{(2)}(p_Z \to p_q, p_{\bar{q}}) \left(\overline{\sum} |\mathcal{A}_{\text{Born}}|^2\right) \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \frac{\alpha_s}{\pi}
$$

A NLO EXAMPLE: NLO

• Let us calculate NLO QCD of Z -> q qbar decay

$$
\frac{1}{2} \sum_{\substack{\alpha \overline{q} \\ \alpha \overline{q}}} \Gamma_{\text{Born}}(Z \to q\overline{q}) \frac{\alpha s}{\pi}
$$

$$
\Gamma_{\mathrm{NLO}}(Z \to q\bar{q} + X) = \Gamma_{\mathrm{Born}}(Z \to q\bar{q}) \left(1 + \frac{\alpha_s}{\pi}\right)
$$

We finally get a well-known result!

ex: Filling all the gaps I did not show !

In general, NLO calculations are complex (and tedious, error-prone). Let us work with the aid of a computer and MadGraph5_aMC@NLO.

LECTURE 2 NLO Generics

• Three parts need to be computed in a NLO calculation

$$
\sigma_{\text{NLO}} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{V} + \int d\Phi^{(n+1)} \mathcal{R}
$$

\n
$$
\mathcal{O}(\alpha_s^b)
$$
\n
$$
\mathcal{O}(\alpha_s^{b+1})
$$
\n
$$
\uparrow
$$
\n
$$
\downarrow
$$
\n
$$
\downarrow
$$
\n
$$
\downarrow
$$
\n<math display="block</math>

LECTURE 2

NLO Generics

Virtual=Loop+UV

ONE-LOOP DIAGRAM GENERATION

- No external tool for loop diagram generation: Reuse MG5_aMC efficient tree level diagram generation!
- Cut loops have two extra external particles

Trees (e⁺e⁻ \rightarrow u u^{\sim} u u^{\sim}) = Loops (e⁺e⁻ \rightarrow u u \sim)

ONE-LOOP INTEX

• Consider this m -point loop diagram
with n external momenta

$$
\int \frac{d^d \ell}{(2\pi)^d} \frac{\mathcal{N}(\ell)}{D_0 D_1 D_2 D_3 \cdots D_{m-2} D_{m-1}}
$$

with
$$
D_i = (\ell + p_i)^2 - m_i^2
$$

We will denote by C this integral.

ONE-LOOP INTEGRAL EVALUATION

$$
\mathcal{C}^{1-loop} = \sum_{i_0 < i_1 < i_2 < i_3} d_{i_0 i_1 i_2 i_3} \text{Box}_{i_0 i_1 i_2 i_3} \qquad \text{Box}_{i_0 i_1 i_2 i_3} = \int d^d l \frac{1}{D_{i_0} D_{i_1} D_{i_2} D_{i_3}} \\
+ \sum_{i_0 < i_1 < i_2} c_{i_0 i_1 i_2} \text{Triangle}_{i_0 i_1 i_2} \qquad \text{Triangle}_{i_0 i_1 i_2} = \int d^d l \frac{1}{D_{i_0} D_{i_1} D_{i_2}} \\
+ \sum_{i_0 < i_1} b_{i_0 i_1} \text{Bubble}_{i_0 i_1} \qquad \qquad \text{Bubble}_{i_0 i_1} = \int d^d l \frac{1}{D_{i_0} D_{i_1}} \\
+ \sum_{i_0} a_{i_0} \text{Tadpole}_{i_0} \qquad \qquad \text{Tadpole}_{i_0} = \int d^d l \frac{1}{D_{i_0}} \\
+ R + \mathcal{O}(\epsilon)
$$

The a, b, c, d and R coefficients depend only on external parameters and momenta.

Reduction of the loop to these scalar coefficients can be achieved using either Tensor Integral Reduction or Reduction at the integrand level

TENSOR INTEGRAL REDUCTION

Passarino-Veltman reduction:

$$
\int d^d l \, \frac{N(l)}{D_0 D_1 D_2 \cdots D_{m-1}} \to \sum_i \text{coeff}_i \int d^d l \, \frac{1}{D_0 D_1 \cdots}
$$

- Reduce a general integral to "scalar integrals" by "completing the square"
- \bullet Example: Application of PV to this triangle rank-1 integral

$$
\sum_{p} \frac{l}{p+q} \int \frac{d^n l}{(2\pi)^n} \frac{l^{\mu}}{(l^2-m_1^2)((l+p)^2-m_2^2)((l+q)^2-m_3^2)}
$$

Implemented in codes such as: \bullet

COLLIER [A. Denner, S.Dittmaier, L. Hofer, 1604.06792] GOLEM95 [T. Binoth, J.Guillet, G. Heinrich, E.Pilon, T.Reither, 0810.0992]

TENSOR INTEGRAL REDUCTION

$$
\int \frac{d^n l}{(2\pi)^n} \frac{l^{\mu}}{(l^2 - m_1^2)((l+p)^2 - m_2^2)((l+q)^2 - m_3^2)}
$$

• The only independent four vectors are p^{μ} and q^{μ} . Therefore, the integral must be proportional to those. We can set-up a system of linear equations and try to solve for C_1 and C_2

$$
\int \frac{d^n l}{(2\pi)^n} \frac{l^{\mu}}{(l^2 - m_1^2)((l+p)^2 - m_2^2)((l+q)^2 - m_3^2)} = \left(p^{\mu} q^{\mu} \right) \left(\frac{C_1}{C_2} \right)
$$

We can solve for C_1 and C_2 by contracting with p and q

$$
\left(\begin{array}{c} R_1 \\ R_2 \end{array}\right) = \left(\begin{array}{c} [2l\cdot p] \\ [2l\cdot q] \end{array}\right) = G \left(\begin{array}{c} C_1 \\ C_2 \end{array}\right) \equiv \left(\begin{array}{cc} 2p\cdot p & 2p\cdot q \\ 2p\cdot q & 2q\cdot q \end{array}\right) \left(\begin{array}{c} C_1 \\ C_2 \end{array}\right)
$$

where $[2l \cdot p] = \int \frac{d^n l}{(2\pi)^n} \frac{2l \cdot p}{l^2(l+p)^2(l+q)^2}$ (For simplicity, the masses are neglected here)

• By expressing $2l$, p and $2l$, q as a sum of denominators we can express R_1 and R_2 as a sum of simpler integrals, e.g.

$$
R_1 = \int \frac{d^n l}{(2\pi)^n} \frac{2l \cdot p}{l^2(l+p)^2(l+q)^2} = \int \frac{d^n l}{(2\pi)^n} \frac{(l+p)^2 - l^2 - p^2}{l^2(l+p)^2(l+q)^2}
$$

=
$$
\int \frac{d^n l}{(2\pi)^n} \frac{1}{l^2(l+q)^2} - \int \frac{d^n l}{(2\pi)^n} \frac{1}{(l+p)^2(l+q)^2} - p^2 \int \frac{d^n l}{(2\pi)^n} \frac{1}{l^2(l+p)^2(l+q)^2}
$$

• And similarly for R_2

$$
R_2 = \int \frac{d^n l}{(2\pi)^n} \frac{2l \cdot q}{l^2 (l+p)^2 (l+q)^2} = \int \frac{d^n l}{(2\pi)^n} \frac{(l+q)^2 - l^2 - q^2}{l^2 (l+p)^2 (l+q)^2}
$$

=
$$
\int \frac{d^n l}{(2\pi)^n} \frac{1}{l^2 (l+p)^2} - \int \frac{d^n l}{(2\pi)^n} \frac{1}{(l+p)^2 (l+q)^2} - q^2 \int \frac{d^n l}{(2\pi)^n} \frac{1}{l^2 (l+p)^2 (l+q)^2}
$$

• Now we can solve the equation

$$
\left(\begin{array}{c} R_1 \\ R_2 \end{array}\right) = \left(\begin{array}{c} [2l \cdot p] \\ [2l \cdot q] \end{array}\right) = G \left(\begin{array}{c} C_1 \\ C_2 \end{array}\right) \equiv \left(\begin{array}{cc} 2p \cdot p & 2p \cdot q \\ 2p \cdot q & 2q \cdot q \end{array}\right) \left(\begin{array}{c} C_1 \\ C_2 \end{array}\right)
$$

by inverting the "Gram" matrix G

$$
\left(\begin{array}{c} C_1 \\ C_2 \end{array}\right) = G^{-1} \left(\begin{array}{c} R_1 \\ R_2 \end{array}\right)
$$

• We have re-expressed, reduced, our original integral

$$
\int \frac{d^n l}{(2\pi)^n} \frac{l^{\mu}}{(l^2 - m_1^2)((l+p)^2 - m_2^2)((l+q)^2 - m_3^2)} = \left(p^{\mu} q^{\mu}\right) \left(\begin{array}{c} C_1\\ C_2 \end{array}\right)
$$

in terms of known, simpler *sealar* integrals

INTEGRAND REDUCT

• The decomposition to the basis scalar integrals works at the level of the integrals

 $C^{1-loop} = \sum d_{i_0i_1i_2i_3}Box_{i_0i_1i_2i_3}$ $i_0 < i_1 < i_2 < i_3$ + $\sum c_{i_0i_1i_2}$ Triangle $_{i_0i_1i_2}$ $i_0 < i_1 < i_2$ + $\sum b_{i_0i_1}$ Bubble_{ioi1} $i_0 < i_1$ $+\sum a_{i_0}$ Tadpole_{io} $+R+\mathcal{O}(\epsilon)$

Ossola, Papadopulos, Pittau (NPB'06)

TIR OPP

• Knowing a relation directly at the integrand level, we would be able to manipulate the reduction without doing the the integrals

$$
N(l) = \sum_{i_0, i_1, i_2, i_3} (d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}) \prod_{i \neq i_0, i_1, i_2, i_3} D_i
$$

+
$$
\sum_{i_0, i_1, i_2} (c_{i_0 i_1 i_2} + \tilde{c}_{i_0 i_1 i_2}) \prod_{i \neq i_0, i_1, i_2} D_i
$$

+
$$
\sum_{i_0, i_1} (b_{i_0 i_1} + \tilde{b}_{i_0 i_1}) \prod_{i \neq i_0, i_1} D_i
$$

+
$$
\sum_{i_0} (a_{i_0} + \tilde{a}_{i_0}) \prod_{i \neq i_0} D_i
$$

+
$$
\tilde{P}(l) \prod_i D_i + \mathcal{O}(\varepsilon)
$$

IMSc, Chennai 37 Hua-Sheng Shao

INTEGRAND REDUCT

• The decomposition to the basis scalar integrals works at the level of the integrals

 $C^{1-loop} = \sum d_{i_0i_1i_2i_3}Box_{i_0i_1i_2i_3}$ $i_0 < i_1 < i_2 < i_3$ + $\sum c_{i_0i_1i_2}$ Triangle $_{i_0i_1i_2}$ $i_0 < i_1 < i_2$ + $\sum b_{i_0i_1}$ Bubble_{ioi1} $i_0 < i_1$ $+\sum a_{i_0} {\rm Tadpole}_{i_0}$ $+R+\mathcal{O}(\epsilon)$

Ossola, Papadopulos, Pittau (NPB'06)

TIR OPP

• Knowing a relation directly at the integrand level, we would be able to manipulate the reduction without doing the the integrals

$$
N(l) = \sum_{i_0, i_1, i_2, i_3} (d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}) \prod_{i \neq i_0, i_1, i_2, i_3} D_i
$$

+
$$
\sum_{i_0, i_1, i_2} (c_{i_0 i_1 i_2} + \tilde{c}_{i_0 i_1 i_2}) \prod_{i \neq i_0, i_1, i_2} D_i
$$

+
$$
\sum_{i_0, i_1} (b_{i_0 i_1} + \tilde{b}_{i_0 i_1}) \prod_{i \neq i_0, i_1} D_i
$$

+
$$
\sum_{i_0} (a_{i_0} + \tilde{a}_{i_0}) \prod_{i \neq i_0} D_i
$$

+
$$
\tilde{P}(l) \prod_i D_i + \mathcal{O}(\varepsilon)
$$

Spurious term

IMSc, Chennai 37 Hua-Sheng Shao

INTEGRAND REDUCTION

- The functional form of the spurious terms is known (it depends on the \bullet rank of the integral and the number of propagators in the loop) [del Aguila, Pittau 2004]
	- for example, a box coefficient from a rank I numerator is

$$
\tilde{d}_{i_0i_1i_2i_3}(l)=\tilde{d}_{i_0i_1i_2i_3}\,\epsilon^{\mu\nu\rho\sigma}\,l^\mu p_1^\nu p_2^\rho p_3^\sigma
$$

(remember that p_i is the sum of the momentum that has entered the loop so far, so we always have $p_0 = 0$)

• The integral is zero

$$
\int d^dl \frac{\tilde{d}_{i_0i_1i_2i_3}(l)}{D_0D_1D_2D_3} = \tilde{d}_{i_0i_1i_2i_3} \int d^dl \frac{\epsilon^{\mu\nu\rho\sigma} l^\mu p_1^\nu p_2^\rho p_3^\sigma}{D_0D_1D_2D_3} = 0
$$

INTEGRAND REDUCTION

• Take Box (4-point) coefficients as an example

$$
N(l^{\pm}) = d_{0123} + \tilde{d}_{0123}(l^{\pm}) \prod_{i \neq 0,1,2,3}^{m-1} D_i(l^{\pm})
$$

• Two values are enough given the functional form for the spurious term. We can immediately determine the Box coefficient

$$
d_{0123} = \frac{1}{2} \left[\frac{N(l^+)}{\prod_{i \neq 0,1,2,3}^{m-1} D_i(l^+)} + \frac{N(l^-)}{\prod_{i \neq 0,1,2,3}^{m-1} D_i(l^-)} \right]
$$

• By choosing other values for l , that set other combinations of 4 "denominators" to zero, we can get all the Box coefficients

INTEGRAND REDUCTION

• In general:

 $N(l) = \sum_{i=1}^{m-1} \left[d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}(l) \right]$ D_i $\overline{i \neq i_0, i_1, i_2, i_3}$ $i_0 < i_1 < i_2 < i_3$ $\begin{aligned} &+\sum_{i_0$ $+\sum_{i_0}^{m-1} [a_{i_0} + \tilde{a}_{i_0}(l)] \prod_{i \neq i_0}^{m-1} D_i$ $+\tilde{P}(l)$ $\prod D_i$

To solve the OPP reduction, choosing special values for the loop momentum helps a lot

For example, choosing I such that $D_0(l^{\pm}) = D_1(l^{\pm}) =$ $= D_2(l^{\pm}) = D_3(l^{\pm}) = 0$

sets all the terms in this equation to zero except the first line

There are two (complex) solutions to this equation due to the quadratic nature of the propagators

INTEGRAND REDUCT

• In general:

Now we choose I such that

 $D_0(l^i) = D_1(l^i) = D_2(l^i) = 0$

sets all the terms in this equation to zero except the first and second line

RAND REDUC

• In general:

Now, choosing I such that $D_0(l^i) = D_1(l^i) = 0$

sets all the terms in this equation to zero except the first, second and third line

Coefficient computed in a previous step

RAND REDU

• In general:

Now, choosing I such that

$$
D_1(l^i)=0
$$

sets the last line to zero

Coefficient computed in a previous step

RAND REDU

• In general:

Now, choosing I such that

 $D_1(l^i) = 0$

sets the last line to zero

Coefficient computed in a previous step

• The previous expression should in fact be written in d dimensions

$$
\int \frac{d^d \bar{l}}{(2\pi)^d} \frac{N(\bar{l}, \epsilon)}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \cdots \bar{D}_{m-1}}
$$

$$
\bar{D}_i = (\bar{l} + p_i)^2 - m_i^2, \ \ p_0 = 0
$$

• The previous expression should in fact be written in d dimensions

$$
\int \frac{d^d \bar{l}}{(2\pi)^d} \frac{N(\bar{l}, \epsilon)}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \cdots \bar{D}_{m-1}}
$$

$$
\bar{D}_i = (\bar{l} + p_i)^2 - m_i^2, \ \ p_0 = 0
$$

• In numerical calculations, it is very convenient to perform the following decomposition

$$
\bar{l}^{\mu} = l^{\mu} + \tilde{l}^{\mu} \qquad \mu = 0, 1, 2, 3, \cdots, 3 - 2\epsilon
$$

$$
d - \dim \qquad (-2\epsilon) - \dim \qquad 4d \text{ spacetime } (-2\epsilon)d \text{ space}
$$

$$
l^{\mu} = 0, \mu \in (-2\epsilon)d \text{ space} \qquad \tilde{l}^{\mu} = 0, \mu \in 4d \text{ spacetime}
$$

• The previous expression should in fact be written in d dimensions

$$
\int \frac{d^d \bar{l}}{(2\pi)^d} \frac{N(\bar{l}, \epsilon)}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \cdots \bar{D}_{m-1}}
$$

$$
\bar{D}_i = (\bar{l} + p_i)^2 - m_i^2, \ \ p_0 = 0
$$

• In numerical calculations, it is very convenient to perform the following decomposition

$$
\bar{l}^{\mu} = l^{\mu} + \tilde{l}^{\mu} \qquad \mu = 0, 1, 2, 3, \cdots, 3 - 2\epsilon
$$
\n
$$
d - \dim \qquad (-2\epsilon) - \dim \qquad \text{4d spacetime } (-2\epsilon)d \text{ space}
$$
\n
$$
l^{\mu} = 0, \mu \in (-2\epsilon)d \text{ space } \qquad \tilde{l}^{\mu} = 0, \mu \in 4d \text{ spacetime}
$$
\n
$$
N(\bar{l}, \epsilon) = N(l) + \tilde{N}(l, \tilde{l}, \epsilon)
$$
\n
$$
\text{Suitable for numerical calc. } \qquad \text{Complement with special CT R2}
$$
\n
$$
\text{NMSC, CHENNA} \qquad \text{MMSC, CHINA} \qquad \text{M
$$

• Compute the remaining loop part in terms of rational functions of external momentum invariants and masses

$$
R_2 = \lim_{\epsilon \to 0} \int \frac{d^d \bar{l}}{(2\pi)^d} \frac{\tilde{N}(l, \tilde{l}, \epsilon)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}
$$

• For example, a gluon self-energy diagram:

$$
\text{cosor}\left(\begin{array}{c}\n\mathbf{t} \\
\mathbf{t}^{\prime}\n\end{array}\right)\n\text{cosor}\n\qquad N(\bar{l},\epsilon) = -2\pi\alpha_s\delta_{ab}\text{Tr}\left[\gamma^{\mu}\left(\bar{l}+m_t\right)\gamma^{\nu}\left(\bar{l}+\rlap{\,/}\psi_g+m_t\right)\right]\varepsilon_{\mu}\varepsilon_{\nu}
$$

- After performing some Dirac algebra, we have
 $\tilde{N}(l,\tilde{l},\epsilon) = 8\pi\alpha_s\delta_{ab}g^{\mu\nu}\tilde{l}^2\varepsilon_{\mu}\varepsilon_{\nu}$
	- **Using the integration**

$$
\int \frac{d^d\bar{l}}{(2\pi)^d} \overline{\left(\bar{l}^2 - m_t^2\right) \left((\bar{l} + p_g)^2 - m_t^2\right)} = -\frac{i}{32\pi^2} \left(2m_t^2 - \frac{p_g^2}{3}\right) + \mathcal{O}(\epsilon)
$$

We have R₂ term

$$
R_2 = -\frac{i\alpha_s}{4\pi} \delta_{ab} \left(2m_t^2 - \frac{p_g^2}{3} \right) g^{\mu\nu} \varepsilon_{\mu} \varepsilon_{\nu}
$$

• It has been proven that R2 is only UV related. Therefore, like renormalisation counterterms, they can be reexpressed into R2 Feynman rules

Draggiotis, Garzelli, Papadopoulos, Pittau (JHEP'09); HSS, Zhang, Chao (JHEP'11)

• In integrand reduction, additional rational terms R₁ are **needed !**

$$
\begin{aligned}\n\langle N(l) &= \sum_{i_0, i_1, i_2, i_3} (d_{i_0 i_1 i_2 i_3} + \tilde{d}_{i_0 i_1 i_2 i_3}) \prod_{i \neq i_0, i_1, i_2, i_3} \widehat{D_i} \\
&+ \sum_{i_0, i_1, i_2} (c_{i_0 i_1 i_2} + \tilde{c}_{i_0 i_1 i_2}) \prod_{i \neq i_0, i_1, i_2} \widehat{D_i} \\
&+ \sum_{i_0, i_1} (b_{i_0 i_1} + \tilde{b}_{i_0 i_1}) \prod_{i \neq i_0, i_1} \widehat{D_i} \\
&+ \sum_{i_0} (a_{i_0} + \tilde{a}_{i_0}) \prod_{i \neq i_0} \widehat{D_i} \\
&+ \tilde{P}(l) \prod_{i} \widehat{D_i} + \tilde{P}(l) \prod_{i} \widehat{D_i} + \tilde{O}(\varepsilon)\n\end{aligned}\n\qquad\n\begin{aligned}\n\text{integration of this point} \\
\text{integration of the point} \\
\text{int}(x) &= \sum_{i_0} (a_i + \tilde{a}_{i_0}) \prod_{i_0, i_1, i_2, i_3} \widehat{D_i} \\
\text{int}(x) &= \sum_{i_0, i_1, i_2, i_3} \widehat{D_i} \\
\text{integration of
$$

integration of this piece gives rise R1

- **• Can be included in OPP reduction**
- **• Not needed in TIR reduction**

4d couterparts

LECTURE 2 NLO Generics

Real

-
- **• Three parts need to be computed in a NLO calculation**

$$
\sigma_{\rm NLO} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{V} + \int d\Phi^{(n+1)} \mathcal{R}
$$

Born
cross section correction correction

$$
\text{Virtual} = \frac{A}{\epsilon^2} + \frac{B}{\epsilon} + V \qquad \text{Real} = -\frac{A}{\epsilon^2} - \frac{B}{\epsilon} + R
$$

• Three parts need to be computed in a NLO calculation

$$
\sigma_{\text{NLO}} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{V} + \int d\Phi^{(n+1)} \mathcal{R}
$$

Born
cross section correction correction

$$
\text{Virtual} = \frac{\mathbf{A}}{\epsilon} + \frac{\mathbf{B}}{\epsilon} + \mathcal{V} \qquad \text{Real} = -\frac{\mathbf{A}}{\epsilon} - \frac{\mathbf{B}}{\epsilon} + \mathcal{R}
$$

• Three parts need to be computed in a NLO calculation

$$
\sigma_{\text{NLO}} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{V} + \int d\Phi^{(n+1)} \mathcal{R}
$$

\nBorn
\n
$$
\text{Virtual} \quad \text{Real} \quad \text{correction}
$$

\n
$$
\text{Virtual} = \frac{1}{\epsilon} + \frac{1}{4} + \mathcal{V} \quad \text{Real} = -\frac{1}{\epsilon} - \frac{1}{4} + \mathcal{R}
$$

\n
$$
\frac{d\sigma^{\text{NLO}}}{d\theta^{\text{NLO}}}
$$

\n
$$
= \begin{bmatrix} d\phi^B & d\sigma & d\sigma \\ +B & + \mathcal{V} & + \mathcal{V} \\ +B & + \mathcal{V} & + \mathcal{V} \end{bmatrix}
$$

\n
$$
\frac{1}{\epsilon^2} + \frac{1}{\epsilon^2} + \frac{1}{\epsilon^2} + \mathcal{V} \quad \text{J} \frac{d^d\phi_1}{d^d\phi_1} \mathcal{R} = \frac{A}{\epsilon^2} + \frac{B}{\epsilon} + \mathcal{R}
$$

IMSC, CHENNAI 1986 Report of the CHANGE SHAO

BRANCHING: TO BE OR NOT TO BE

• Let us consider the branching of a gluon from a quark

 $\sigma_{h+g} \simeq \sigma_h \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$ Where k_t is the transverse momentum of the gluon $k_t = E \sin\theta$. It diverges in the soft ($z\rightarrow 1$) and collinear ($k_t \rightarrow 0$) region

• These singularities cancel with the virtual contribution, which comes from the integration of the loop momentum

$$
\underbrace{\left(\sigma_{h}\right)}_{\sigma_{h}} \xrightarrow{P} \underbrace{\rho}{\sigma_{e_{e}} \sigma_{e_{e}}^{2}} \qquad \sigma_{h+V} \simeq -\sigma_{h} \frac{\alpha_{s} C_{F}}{\pi} \frac{dz}{1-z} \frac{dk_{t}^{2}}{k_{t}^{2}}
$$

• The cancelation happens if we cannot distinguish between the case of no branching, and of a soft or collinear branching
IR SAFETY

• In order to have meaningful fixed-order predictions in perturbation theory, observables must be IR-safe, i.e. not sensitive to the emission of soft/collinear partons

 $\lim_{n \to \infty} \mathcal{O}(1, \dots, i, \dots, j-1, j, j+1, \dots, n) = \mathcal{O}(1, \dots, ij, \dots, j-1, j+1, \dots, n)$ $p_i||p_i$

 $\lim_{n \to \infty} \mathcal{O}(1, \dots, i-1, i, i+1, \dots, n) = \mathcal{O}(1, \dots, i-1, i+1, \dots, n)$ $p_i\rightarrow 0$

- **• For example,**
	- **• The number of gluons is NOT IR safe.**
	- The leading p_T/energy particle is NOT IR safe (soft or collinear unsafe?).
	- **• The colour in a given cone is NOT IR safe (soft or collinear unsafe ?).**
	- **• The transverse energy sum is IR safe.**

A TOY EXAMPL

• Assuming the phase space integration can be casted into a one-dimensional case $x \in [0,1]$:

A TOY EXAMPLE

$$
\mathcal{O}(0)\mathcal{V} + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x)\mathcal{R} \qquad \text{Dimensionally regularise in } x!
$$

= $\frac{\alpha_X}{\pi} \left[\mathcal{O}(0) \left(\frac{\mathcal{B}}{2\epsilon_{\text{IR}}} + V \right) + \int_0^1 dx x^{-1-2\epsilon_{\text{IR}}} \mathcal{O}(x)R(x) \right]$
= $\frac{\alpha_X}{\pi} \left[\mathcal{O}(0) \left(\frac{\mathcal{B}}{2\epsilon_{\text{IR}}} + V \right) + \left(-\mathcal{O}(0) \frac{\mathcal{B}}{2\epsilon_{\text{IR}}} + \int_0^1 dx \left(\frac{1}{x} \right)_{+} \mathcal{O}(x)R(x) \right) \right]$
= $\frac{\alpha_X}{\pi} \left[\mathcal{O}(0)\mathcal{V} + \int_0^1 dx \left(\frac{1}{x} \right)_{+} \mathcal{O}(x)R(x) \right]$

• We have used:

$$
x^{-1-2\epsilon_{\text{IR}}}
$$
 = $-\frac{1}{2\epsilon_{\text{IR}}} \delta(x) + \left(\frac{1}{x}\right)_+ + \epsilon_{\text{IR}}$ term

$$
\left(\frac{1}{x}\right)_+ f(x) \equiv \frac{f(x) - f(0)}{x} \qquad \forall f(x)
$$

PHASE-SPACE SLICING

- **• In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !**
	- **• Phase-space slicing**

$$
\int_0^1 dx x^{-1-2\epsilon_{\rm IR}} O(x) R(x)
$$

ASE-SPACE SLICIN

- **• In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !**
	- **• Phase-space slicing**

PHASE-SPACE SLICING

- **• In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !** finite integral
	- **• Phase-space slicing**

(can be computed numerically)

PHASE-SPACE SLICING

- **• In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !** finite integral
	- **• Phase-space slicing**

(can be computed numerically)

- **• In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !**
	- **• Subtraction method**
		- Find a generic simple function S has exactly same IR singularity as real matrix element

$$
\lim_{p_i||p_j} \mathcal{O}(x)S = \lim_{p_i||p_j} \mathcal{O}(x)\mathcal{R} \quad \lim_{p_i \to 0} \mathcal{O}(x)S = \lim_{p_i \to 0} \mathcal{O}(x)\mathcal{R}
$$

• ... but much easier to integrate analytically.

$$
\mathcal{O}(0)\mathcal{V} + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x)\mathcal{R}
$$

= $\left(\mathcal{O}(0)\mathcal{V} + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x)S\right) + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x) (\mathcal{R} - S)$

- **• In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !**
	- **• Subtraction method**
		- Find a generic simple function S has exactly same IR singularity as real matrix element

$$
\lim_{p_i \vert\vert p_j} \mathcal{O}(x) S = \lim_{p_i \vert\vert p_j} \mathcal{O}(x) \mathcal{R} \quad \lim_{p_i \to 0} \mathcal{O}(x) S = \lim_{p_i \to 0} \mathcal{O}(x) \mathcal{R}
$$

• ... but much easier to integrate analytically.

$$
\mathcal{O}(0)\mathcal{V} + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x)\mathcal{R}
$$

= $\left(\mathcal{O}(0)\mathcal{V} + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x)S\right) + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x) (\mathcal{R} - S)$
Finite
Finite

- **• In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !**
	- **• Subtraction method**
		- Find a generic simple function S has exactly same IR singularity as real matrix element

$$
\lim_{p_i||p_j} \mathcal{O}(x)S = \lim_{p_i||p_j} \mathcal{O}(x)\mathcal{R} \quad \lim_{p_i \to 0} \mathcal{O}(x)S = \lim_{p_i \to 0} \mathcal{O}(x)\mathcal{R}
$$

... but much easier to integrate analytically.

$$
\mathcal{O}(0)\mathcal{V} + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x)\mathcal{R}
$$

= $\left(\mathcal{O}(0)\mathcal{V} + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x)S\right) + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x) (\mathcal{R} - S)$
Finite
Finite

Analytically known

- **• In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !**
	- **• Subtraction method**
		- Find a generic simple function S has exactly same IR singularity as real matrix element

$$
\lim_{p_i||p_j} \mathcal{O}(x)S = \lim_{p_i||p_j} \mathcal{O}(x)\mathcal{R} \quad \lim_{p_i \to 0} \mathcal{O}(x)S = \lim_{p_i \to 0} \mathcal{O}(x)\mathcal{R}
$$

• ... but much easier to integrate analytically.

$$
\mathcal{O}(0)\mathcal{V} + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x)\mathcal{R}
$$

= $\left(\mathcal{O}(0)\mathcal{V} + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x)S\right) + \int_0^1 dx x^{-2\epsilon_{\text{IR}}} \mathcal{O}(x) (\mathcal{R} - S)$
Finite
Analytically known Integrating numerically
in 4d

- **• In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !**
	- **• Subtraction method**

- **• In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !**
	- **• Subtraction method**
		- In above toy example

 0.6

 0.4

 0.2

 -0.2

-
- **• In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !**
	- **• Subtraction method**
		- In above toy example

- **• In general, the phase-space integration over real matrix element is very hard. Dedicated general approaches are developed !**
	- **• Subtraction method**
		- In above toy example

NLO SUBTRACTION

• Master formula:

$$
\sigma_{\rm NLO} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{V} + \int d\Phi^{(n+1)} \mathcal{R}
$$

$$
= \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \left[\mathcal{V} + \int d\Phi^{(1)} S \right] + \int d\Phi^{(n+1)} \left[\mathcal{R} - S \right]
$$

• The subtraction counterterm S should be chosen:

- **• It exactly matches the singular behaviour of real ME**
- **• It can be integrated numerically in a convenient way**
- **• It can be integrated exactly in d dimension**
- **• It is process independent (overall factor times Born ME)**
- **• In gauge theory, the singular structure is universal**

$$
p + k)^{2} = 2E_{p}E_{k}(1 - \cos \theta_{pk})
$$

\n**Collinear singularity:**
\n
$$
\lim_{p//k} |M_{n+1}|^{2} \simeq |M_{n}|^{2} P^{AP}(z)
$$

\n**Soft singularity:**

$$
\lim_{k \to 0} |M_{n+1}|^2 \simeq \sum_{ij} |M_n^{ij}|^2 \frac{p_i p_j}{p_i k \ p_j k}
$$

TWO WIDELY-USED SUBTRACTION METHODS

Dipole subtraction

Catani, Seymour, hep-ph/9602277 & hep-ph/9605323

- Most used method
- Recoil taken by one parton \rightarrow N³ scaling
- Method evolves from cancelation of soft divergences
- Proven to work for simple and complicated processes
- Automated in MadDipole, AutoDipole, Sherpa, Helac-NLO, ...

FKS subtraction

Frixione, Kunszt, Signer, hep-ph/9512328

- Less known method
- Recoil distributed among all particles \rightarrow N² scaling
- Probably (?) more efficient because less subtraction terms are needed
- Method evolves from cancelation of collinear divergences
- Proven to work for simple and complicated processes
- Automated in MadGraph5_aMC@NLO and in the Powheg box/Powhel

FKS SUBTRACTION

 $\overline{\mathbf{1}}$

 \blacktriangleleft

• The real ME singular as

\n
$$
R \xrightarrow{\text{IR limit}} \frac{1}{\xi_i} \frac{1}{1 - y_{ij}}
$$
\n

\n\n • Partition the phase space in order to have at most one soft and/or one collinear singularity\n

 E_i

 \overline{r}

$$
\mathcal{R}d\Phi^{(n+1)} = \sum_{ij} S_{ij} \mathcal{R}d\Phi^{(n+1)} \qquad \sum_{ij} S_{ij} = 1
$$

$$
S_{ij} \to 1 \text{ if } p_i \cdot p_j \to 0
$$

$$
S_{ij} \to 0 \text{ if } p_m \cdot p_n \to 0, \ \{m, n\} \neq \{i, j\}
$$

• Use plus prescriptions to subtract the divergences

$$
d\sigma_{\tilde{R}} = \sum_{ij} \left(\frac{1}{\xi_i}\right)_+ \left(\frac{1}{1 - y_{ij}}\right)_+ \xi_i \left(1 - y_{ij}\right) S_{ij} \mathcal{R} d\Phi^{(n+1)}
$$

$$
\int d\xi \left(\frac{1}{\xi}\right)_+ f(\xi) = \int d\xi \frac{f(\xi) - f(0)}{\xi} \int dy \left(\frac{1}{1 - y}\right)_+ g(y) = \int dy \frac{g(y) - g(1)}{1 - y}
$$

FKS SUBTRACTION

• Counterevents:

- Soft counterevent $(\xi_i \rightarrow 0)$
- Collinear counterevents $(y_{ij}\rightarrow 1)$
- Soft-collinear counterevents ($\xi_i \rightarrow 0$ and $y_{ij} \rightarrow 1$)

Real emission

Subtraction term

- If i and j are on-shell in the event, for the counterevent the combined particle $i+j$ must be on shell
- $i+j$ can be put on shell only be reshuffling the momenta of the other particles
- It can happen that event and counterevent end up in different histogram bins
	- Use IR-safe observables and don't ask for infinite resolution!

WHY MATCH TO PARTON SHOWERS ?

- **• Parton showers evolve hard partons by emitting extra quanta down to a more realistic final states (made of hadrons)**
- **• They resum the large logarithms appearing in the phasespace corners, which complement with fixed order.**
- **• A fully exclusive description of the event is available**
- **• Only after matching to parton showers, the NLO unweighted events can be generated.**
	- **• Higher efficiency in particular for time-consuming simulations (e.g. detector)**
- **• NLO calculations are inclusive (though fully-differential), but provide the first reliable estimate of rates and uncertainties.**

• Matching to parton showers: avoid double counting

XVVV

Parton shower

• Matching to parton showers: avoid double counting

Born

+Virtual

...

• Matching to parton showers: avoid double counting

• Matching to parton showers: avoid double counting

A CAVEAT IN DOUBLE COUNTING • **Matching to parton showers:** avoid double counting Parton shower ... Real emission Born eal emission +Virtual ... Real

- **• Double couting between real emission and parton shower**
- **• Double couting between virtual corrections and the non-emission probability via the Sudakov factor in parton shower**

• Like LO, let us wrongly generate events separately from Born, virtual and real parts, and then pass these events to a parton shower:

$$
d\sigma_{\rm NLO+PS}^{\rm naive} = \left[\mathcal{B} + \mathcal{V}\right] d\Phi^{(n)} I_{\rm MC}^{(n)} + \mathcal{R} d\Phi^{(n+1)} I_{\rm MC}^{(n+1)}
$$

• Like LO, let us wrongly generate events separately from Born, virtual and real parts, and then pass these events to a parton shower:

$$
d\sigma_{\rm NLO+PS}^{\rm naive} = \left[\mathcal{B} + \mathcal{V}\right] d\Phi^{(n)} \Big| I_{\rm MC}^{(n)} + \mathcal{R} d\Phi^{(n+1)} \Big| I_{\rm MC}^{(n+1)}
$$

Parton shower operators

• Like LO, let us wrongly generate events separately from Born, virtual and real parts, and then pass these events to a parton shower:

$$
d\sigma _{\mathrm{NLO+PS}}^{\mathrm{naive}}=\left[\mathcal{B}+\mathcal{V}\right] d\Phi ^{(n)}I_{\mathrm{MC}}^{(n)}+\mathcal{R}d\Phi ^{(n+1)}I_{\mathrm{MC}}^{(n+1)}
$$

• Because of unitarity of parton shower, we should get full NLO cross section after expanding PS operators

• Like LO, let us wrongly generate events separately from Born, virtual and real parts, and then pass these events to a parton shower:

$$
d\sigma_{\rm NLO+PS}^{\rm naive} = \left[\mathcal{B} + \mathcal{V}\right] d\Phi^{(n)} I_{\rm MC}^{(n)} + \mathcal{R} d\Phi^{(n+1)} I_{\rm MC}^{(n+1)}
$$

- **• Because of unitarity of parton shower, we should get full NLO cross section after expanding PS operators**
	- **• Let us check ...**

$$
I_{\rm MC} = \Delta_a + \Delta_a d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc}
$$

\n
$$
\Delta_a = \exp\left(-\int d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc}\right) = 1 - \int d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc} + \mathcal{O}(\alpha_s^2)
$$

\n
$$
I_{\rm MC} = \left(1 - \int d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc}\right) + d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc} + \mathcal{O}(\alpha_s^2)
$$

\n
$$
d\sigma_{\rm NLO+PS}^{\rm naive} = (\mathcal{B} + \mathcal{V}) d\Phi^{(n)} + \mathcal{R} d\Phi^{(n+1)}
$$

\n
$$
+ \mathcal{B} d\Phi^{(n)} \left(d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc} - \int d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc}\right) + \mathcal{O}(\alpha_s^{b+2})
$$

• Like LO, let us wrongly generate events separately from Born, virtual and real parts, and then pass these events to a parton shower:

$$
d\sigma_{\rm NLO+PS}^{\rm naive} = \left[\mathcal{B} + \mathcal{V}\right] d\Phi^{(n)} I_{\rm MC}^{(n)} + \mathcal{R} d\Phi^{(n+1)} I_{\rm MC}^{(n+1)}
$$

- **• Because of unitarity of parton shower, we should get full NLO cross section after expanding PS operators**
	- **• Let us check ...**

$$
I_{\rm MC} = \Delta_a + \Delta_a d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc}
$$

\n
$$
\Delta_a = \exp\left(-\int d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc}\right) = 1 - \int d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc} + \mathcal{O}(\alpha_s^2)
$$

\n
$$
I_{\rm MC} = \left(1 - \int d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc}\right) + d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc} + \mathcal{O}(\alpha_s^2)
$$

\n
$$
d\sigma_{\rm NLO+PS}^{\rm naive} = (\mathcal{B} + \mathcal{V}) d\Phi^{(n)} + \mathcal{R} d\Phi^{(n+1)}
$$

\n
$$
+ \mathcal{B} d\Phi^{(n)} \left(d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc} - \int d\Phi^{(1)} \frac{\alpha_s}{2\pi} P_{a \to bc}\right) + \mathcal{O}(\alpha_s^{b+2}) \neq d\sigma_{\rm NLO} + \mathcal{O}(\alpha_s^{b+2})
$$

 \sim

Frixione, Webber JHEP'02

• In the MC@NLO formalism, double counting can be cured by the so-called Monte Carlo counterterms

$$
\Delta = \exp\left(-\int d\Phi^{(1)}MC\right)
$$

$$
I_{MC} = \Delta + \Delta d\Phi^{(1)}MC = 1 - \int d\Phi^{(1)}MC + d\Phi^{(1)}MC + \mathcal{O}(\alpha_s^2)
$$

• The MC@NLO cross section is:

$$
d\sigma_{\rm NLO+PS}^{\rm MC@NLO} = \left(\mathcal{B} + \mathcal{V} + \mathcal{B}\int d\Phi^{(1)}MC\right) d\Phi^{(n)}I_{\rm MC}^{(n)} + \left(\mathcal{R} - \mathcal{B}MC\right)d\Phi^{(n+1)}I_{\rm MC}^{(n+1)}
$$

• Expanding the Sudakov up to NLO:

$$
d\sigma_{\text{NLO+PS}}^{\text{MC@NLO}} = \left(\mathcal{B} + \mathcal{V} + \mathcal{B} \int d\Phi^{(1)}MC\right) d\Phi^{(n)} + (\mathcal{R} - \mathcal{B}MC) d\Phi^{(n+1)}
$$

$$
+ \mathcal{B} \left(d\Phi^{(1)}MC - \int d\Phi^{(1)}MC\right) d\Phi^{(n)} + \mathcal{O}(\alpha_s^{b+2})
$$

$$
= d\sigma_{\text{NLO}} + \mathcal{O}(\alpha_s^{b+2})
$$

- **• The MC counterterm has remarkable properties:**
	- **• Avoiding double counting**
	- **• Matching the IR singular behaviour of the real ME, making it possible to generate unweighted events (up to a sign though)**
	- **• A smooth matching between PS and ME: in the IR (hard) region, same shape as PS (ME)** 10^{3}

- **• The MC counterterm has remarkable properties:**
	- **• Avoiding double counting**
	- **• Matching the IR singular behaviour of the real ME, making it possible to generate unweighted events (up to a sign though)**
	- **• A smooth matching between PS and ME: in the IR (hard) region, same shape as PS (ME)**
	- **• However, the MC counterterm is PS dependent.**

- **• The MC counterterm has remarkable properties:**
	- **• Avoiding double counting**
	- **• Matching the IR singular behaviour of the real ME, making it possible to generate unweighted events (up to a sign though)**
	- **• A smooth matching between PS and ME: in the IR (hard) region, same shape as PS (ME)**
	- **• However, the MC counterterm is PS dependent.**
- **• Two type of events:**

$$
d\sigma_{\text{NLO+PS}}^{\text{MC@NLO}} = \left(\mathcal{B} + \mathcal{V} + \mathcal{B} \int d\Phi^{(1)}MC \right) d\Phi^{(n)} I_{\text{MC}}^{(n)} + \left(\mathcal{R} - \mathcal{B}MC \right) d\Phi^{(n+1)} I_{\text{MC}}^{(n+1)}
$$

S-event
$$
\begin{array}{c} \mathsf{H}\text{-event} \end{array}
$$

- **• The MC counterterm has remarkable properties:**
	- **• Avoiding double counting**
	- **• Matching the IR singular behaviour of the real ME, making it possible to generate unweighted events (up to a sign though)**
	- **• A smooth matching between PS and ME: in the IR (hard) region, same shape as PS (ME)**
	- **• However, the MC counterterm is PS dependent.**
- **• Two type of events:**

$$
d\sigma_{\rm NLO+PS}^{\rm MC@NLO} = \left(\mathcal{B} + \mathcal{V} + \mathcal{B} \int d\Phi^{(1)}MC\right) d\Phi^{(n)} I_{\rm MC}^{(n)} + \left(\mathcal{R} - \mathcal{B}MC\right) d\Phi^{(n+1)} I_{\rm MC}^{(n+1)}
$$

Without showering, NLO events from LHE file is NOT physical.

S-event H-event

• In the POWHEG formalism, it modifies the Sudakov for the first emission. $\overline{ }$ Δ $\overline{}$

$$
\tilde{\Delta}(Q, Q_0) = \exp\left(-\int_{Q_0}^{Q} d\Phi^{(1)} \frac{\mathcal{R}}{\mathcal{B}}\right)
$$

$$
\tilde{I}_{\rm MC} = \tilde{\Delta}(Q, Q_0) + \tilde{\Delta}(Q, t) d\Phi^{(1)} \frac{\mathcal{R}}{\mathcal{B}}
$$

Nason JHEP'04

• In the POWHEG formalism, it modifies the Sudakov for the first emission. $\overline{ }$ Δ $\overline{}$

$$
\tilde{\Delta}(Q, Q_0) = \exp\left(-\int_{Q_0}^{Q} d\Phi^{(1)} \frac{\mathcal{R}}{\mathcal{B}}\right)
$$
\n
$$
\tilde{I}_{\text{MC}} = \tilde{\Delta}(Q, Q_0) + \tilde{\Delta}(Q, t) d\Phi^{(1)} \frac{\mathcal{R}}{\mathcal{B}}
$$
\nWhere *t* is the scale at which *R/B* is evaluated

Tuesday, November 19, 19

Nason JHEP'04

• In the POWHEG formalism, it modifies the Sudakov for the first emission. $\overline{ }$ \mathbf{A}

$$
\tilde{\Delta}(Q, Q_0) = \exp\left(-\int_{Q_0}^{Q} d\Phi^{(1)} \frac{\mathcal{R}}{\mathcal{B}}\right)
$$

$$
\tilde{I}_{\rm MC} = \tilde{\Delta}(Q, Q_0) + \tilde{\Delta}(Q, t) d\Phi^{(1)} \frac{\mathcal{R}}{\mathcal{B}}
$$

• The POWHEG cross section is:

$$
d\sigma_{\rm NLO+PS}^{\rm powHEG} = \left(\mathcal{B} + \mathcal{V} + \int d\Phi^{(1)} \mathcal{R}\right) d\Phi^{(n)} \tilde{I}_{\rm MC}
$$

Tuesday, November 19, 19

Nason JHEP'04

Nason JHEP'04

• In the POWHEG formalism, it modifies the Sudakov for the first emission. $\sqrt{ }$ \mathbf{A}

$$
\tilde{\Delta}(Q,Q_0) = \exp\left(-\int_{Q_0}^{Q} d\Phi^{(1)} \frac{\mathcal{R}}{\mathcal{B}}\right)
$$
\n
$$
\tilde{I}_{\rm MC} = \tilde{\Delta}(Q,Q_0) + \tilde{\Delta}(Q,t) d\Phi^{(1)} \frac{\mathcal{R}}{\mathcal{B}}
$$

• The POWHEG cross section is:

$$
d\sigma _{\mathrm{NLO+PS}}^{\mathrm{POWHEG}} = \left(\mathcal{B} + \mathcal{V} + \int d\Phi^{(1)} \mathcal{R}\right) d\Phi^{(n)} \tilde{I}_{\mathrm{MC}}
$$

• Verifying there is no double counting.

$$
\tilde{\Delta}(Q, t)d\Phi^{(1)}\frac{\mathcal{R}}{\mathcal{B}} = \frac{d\tilde{\Delta}(Q, t)}{dt} \longrightarrow \int_{Q_0}^{Q} dt \tilde{\Delta}(Q, t)d\Phi^{(1)}\frac{\mathcal{R}}{\mathcal{B}} = \tilde{\Delta}(Q, Q) - \tilde{\Delta}(Q, Q_0) = 1 - \tilde{\Delta}(Q, Q_0)
$$
\n
$$
d\sigma_{\text{NLO+PS}}^{\text{POWHEG}} = \left(B + \mathcal{V} + \int d\Phi^{(1)}\mathcal{R}\right) d\Phi^{(n)} \left(1 - \int d\Phi^{(1)}\frac{\mathcal{R}}{\mathcal{B}} + d\Phi^{(1)}\frac{\mathcal{R}}{\mathcal{B}} + O(\alpha_s^2)\right)
$$
\n
$$
= d\sigma_{\text{NLO}} + \mathcal{O}(\alpha_s^{b+2})
$$

IMSc, Chennai 64 Hua-Sheng Shao

POWHEG

$$
d\sigma_{\text{NLO+PS}}^{\text{POWHEG}} = \left(\mathcal{B} + \mathcal{V} + \int d\Phi^{(1)} \mathcal{R} \right) d\Phi^{(n)} \left(\tilde{\Delta}(Q, Q_0) + \tilde{\Delta}(Q, t) d\Phi^{(1)} \frac{\mathcal{R}}{\mathcal{B}} \right)
$$

global K factor modified Sudakov
for 1st emission

- Note that when matching to PS one has to veto emissions harder than t (in the Powheg formalism, is has to be interpreted as transverse momentum), even for showers with a different ordering variable
	- Formula to be modified for angular-ordered PS in order to keep color coherence
- MC@NLO and Powheg are formally equivalent at NLO level. In practice, there are many differences between the two

MC@NLO VS POWHEG

• The two methods can be cast into a single formula

$$
d\sigma_{\text{NLO+PS}} = \overline{\mathcal{B}}^s \left(\Delta^s(Q, Q_0) + \Delta^s(Q, t) d\Phi^{(1)} \frac{\mathcal{R}^s}{\mathcal{B}} \right) d\Phi^{(n)} + \mathcal{R}^f d\Phi^{(n+1)}
$$

\n
$$
\overline{\mathcal{B}}^s = \mathcal{B} + \mathcal{V} + \int d\Phi^{(1)} \mathcal{R}^s
$$

\n
$$
\mathcal{R} = \overline{\mathcal{R}^s} + \overline{\mathcal{R}^f}
$$

\nsingular finite
\n
$$
\text{MCGNLO} \qquad \mathcal{R}^s = \mathcal{B}MC
$$

\n
$$
\mathcal{R}^s = \mathcal{F}\mathcal{R}, \mathcal{R}^f = (1 - F)\mathcal{R} \qquad \text{but can be tuned in order to}
$$

\n
$$
\text{Suppress non-singular part of } \mathcal{R}
$$

MC@NLO VS POWHEG

• The two methods can be cast into a single formula

 $d\sigma_{\text{NLO-DC}} = \overline{\mathcal{B}}^s \left(\Delta^s(Q, Q_0) + \Delta^s(Q, t) d\Phi^{(1)} \frac{\mathcal{R}^s}{\Delta} \right) d\Phi^{(n)} + \mathcal{R}^f d\Phi^{(n+1)}$ $F = \frac{h^2}{h^2 + p_T^2}$ $p_T \gg h$ are suppressed

 $m_h = 140 \text{ GeV}$ - LHC@7TeV

MC@NLO VS POWHEG

LECTURE 3 Advanced NLO Topics

More Is Different

Broken symmetry and the nature of the hierarchical structure of science.

P. W. Anderson

and the control of the cont

LECTURE 3 Advanced NLO Topics

- **LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV**
	- **• energy reaches deeper into multi-TeV region & high integrated luminosity**
	- **• many processes (even rare processes before) reach precision era (precent)**
- **NLO QCD becomes standard: automation (e.g. MG5_aMC)**
	- **• scale uncertainty reaches to 10% level**

- **LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV**
	- **• energy reaches deeper into multi-TeV region & high integrated luminosity**
	- **• many processes (even rare processes before) reach precision era (precent)**
- **NLO QCD becomes standard: automation (e.g. MG5_aMC)**
	- **• scale uncertainty reaches to 10% level**

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, HSS, Stelzer, Torrielli, Zaro JHEP'14

- **LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV**
	- **• energy reaches deeper into multi-TeV region & high integrated luminosity**
	- **• many processes (even rare processes before) reach precision era (precent)**
- **NLO QCD becomes standard: automation (e.g. MG5_aMC)**
	- **• scale uncertainty reaches to 10% level**
- **Frontier of precision theory for ElectroWeak scale observables**
	- **• Goal: to achieve the precent level predictions**
	- **• Request: NNLO QCD and NLO EW**

• LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV

Tuesday, November 19, 19

- **LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV**
	- **• energy reaches deeper into multi-TeV region & high integrated luminosity**
	- **• many processes (even rare processes before) reach precision era (precent)**
- **NLO QCD becomes standard: automation (e.g. MG5_aMC)**
	- **• scale uncertainty reaches to 10% level**
- **Frontier of precision theory for ElectroWeak scale observables**
	- **• Goal: to achieve the precent level predictions**
	- **• Request: NNLO QCD and NLO EW**
	- **• Automation: complete NLO (i.e. QCD+EW+subleading orders)**

- **LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV**
	- **• energy reaches deeper into multi-TeV region & high integrated luminosity**
	- **• many processes (even rare processes before) reach precision era (precent)**
- **NLO QCD becomes standard: automation (e.g. MG5_aMC)**
	- **• scale uncertainty reaches to 10% level**
- **Frontier of precision theory for ElectroWeak :** $\int_{37\text{ TeV}, 4.6}^{ATLAS}$
	- **• Goal: to achieve the precent level predictions**
	- **• Request: NNLO QCD and NLO EW**
	- Automation: complete NLO (i.e. QCD+EW+subleadir and all premapore process and the process and
- **Necessity of EW corrections:**
	- **• First opportunity to explore TeV scale kinematics, where EWC ~ 10%**
	- **• High precision measurements are present or in planned**
		- **• cross section ratios, e.g. different center-of-mass energy, different processes**

- **LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV**
	- **• energy reaches deeper into multi-TeV region & high integrated luminosity**
	- **• many processes (even rare processes before) reach precision era (precent)**
- **NLO QCD becomes standard: automation (e.g. MG5_aMC)**
	- **• scale uncertainty reaches to 10% level**
- **Frontier of precision theory for ElectroWeak scale observables**
	- **• Goal: to achieve the precent level predictions**
	- **• Request: NNLO QCD and NLO EW**
	- **• Automation: complete NLO (i.e. QCD+EW+subleading orders)**
- **Necessity of EW corrections:**
	- **First opportunity to explore TeV scale kinematics, where the set of the EWK Fit (Gfitter, w. m.**
	- **High precision measurements are present or in plani**
		- **eross section ratios, e.g. different center-of-mass energy, differ** $\frac{a}{10^{-1}}$
		- **• fundamental parameters, e.g. W mass**

- **LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV energy reaches deeper into multi-TeV region** \circ **high integrated luminosity •• many processes (even rare processes** $\mathbf{r} \cdot \mathbf{r} = \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r}$ (precent) ent) **NLO QCD becomes standar NLO — NNLO — Data scale uncertainty reaches to** 1.3 Gehrmann-de Ridder et al. JHEP'16 **Frontier of precision theor** 1.2 1.1 **Goal: to achieve the precent** *^s* ' ↵ ' 1% **Request: NNLO QCD and NLO** 1.0 0.9 **Automation: complete NLO (i**
66 GeV < m_u < 116 GeV 0.8 **Necessity of EW correctic First opportunity to explore T** and the scale of $\frac{50}{7}$ and $\frac{500}{7}$ p⁷ [GeV]^{also see Boughezal et al. PRL'16} **High precision measurement.** \ldots products **• cross section ratios, e.g. different center-of-mass energy, different processes**
	- **• fundamental parameters, e.g. W mass**
	- **• (differential) cross sections for candle processes, e.g. top quark pair xs, Z pt**

- **LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV**
	- **• energy reaches deeper into multi-TeV region & high integrated luminosity**
	- **• many processes (even rare processes before) reach precision era (precent)**
- **NLO QCD becomes standard: automation (e.g. MG5_aMC)**
	- **• scale uncertainty reaches to 10% level**
- **Frontier of precision theory for ElectroWeak scale observables**
	- **• Goal: to achieve the precent level predictions**
	- **Request: NNLO QCD and NLO EW** $\alpha_s^2 \simeq \alpha \simeq 1\%$
	- **• Automation: complete NLO (i.e. QCD+EW+subleading orders)**
- **Necessity of EW corrections:**
	- **• First opportunity to explore TeV scale kinematics, where EWC ~ 10%**
	- **• High precision measurements are present or in planned**
		- **• cross section ratios, e.g. different center-of-mass energy, different processes**
		- **• fundamental parameters, e.g. W mass**
		- **• (differential) cross sections for candle processes, e.g. top quark pair xs, Z pt**

• Let us start from defining NLO "EW Corrections" (= "EWC")

$$
\sigma(pp \to Z + X) = \int dx_1 dx_2 f(x_1, \mu_F) f(x_2, \mu_F) \hat{\sigma}(\alpha_s, \mu_F, \mu_R)
$$

• Let us start from defining NLO "EW Corrections" (= "EWC") GENERAL FEATURE OF EW CORRECTIONS $\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n$ ſ ${\hat\sigma}^{(0)}+$ α_s 2π $\sigma^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)$ 2π $\int^2 \hat{\sigma}^{(2)}(\mu_F,\mu_R)+\cdots\bigg]$ **QCD** *LO NLO NNLO*

• Let us start from defining NLO "EW Corrections" (= "EWC") PAL FEATURE OF EW CORRECT QCD *LO NLO NNLO* $\hat{\sigma}(\alpha_s, \alpha, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \alpha^m$ ſ ${\hat\sigma}^{(0,0)}+$ $\overline{\alpha_s}$ 2π $\sigma^{(1,0)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2}\right)$ 2π $\sqrt{2}$ $\hat{\sigma}^{(2,0)}(\mu_F, \mu_R) + \cdot \cdot \cdot \cdot$ $+$ $\overline{\alpha}$ 2π $\sigma^{(0,1)}(\mu_F, \mu_R) + \left(\frac{\alpha}{2\pi}\right)$ 2π $\sqrt{2}$ $\hat{\sigma}^{(0,2)}(\mu_F, \mu_R) + \cdots$ $+$ \sum **EW** $i \geq 1$ \sum $j \geq 1$ $\sqrt{\alpha_s}$ 2π λ^i / α 2π λ^j $\hat{\sigma}^{(i,j)}(\mu_F,\mu_R)$ 7 $\mathbf{1}$

- **• Let us start from defining NLO "EW Corrections" (= "EWC")**
	- So far, it seems obvious that EWC is just one more α expansion wrt Born

- **• Let us start from defining NLO "EW Corrections" (= "EWC")**
	- So far, it seems obvious that EWC is just one more α expansion wrt Born
	- **• Situation may be more complicated**

- **• Let us start from defining NLO "EW Corrections" (= "EWC")**
	- So far, it seems obvious that EWC is just one more α expansion wrt Born
	- **• Situation may be more complicated**
		- **• There may present several order contributions in Born (e.g. dijet)**

- **• Let us start from defining NLO "EW Corrections" (= "EWC")**
	- So far, it seems obvious that EWC is just one more α expansion wrt Born
	- **• Situation may be more complicated**
		- **• There may present several order contributions in Born (e.g. dijet)**

- **• Let us start from defining NLO "EW Corrections" (= "EWC")**
	- So far, it seems obvious that EWC is just one more α expansion wrt Born
	- **• Situation may be more complicated**
		- **• There may present several order contributions in Born (e.g. dijet)**

-
- **• Let us start from defining NLO "EW Corrections" (= "EWC")**
	- So far, it seems obvious that EWC is just one more α expansion wrt Born
	- **• Situation may be more complicated**
		- **• There may present several order contributions in Born (e.g. dijet)**

-
- **• Let us start from defining NLO "EW Corrections" (= "EWC")**
	- So far, it seems obvious that EWC is just one more α expansion wrt Born
	- **• Situation may be more complicated**
		- **• There may present several order contributions in Born (e.g. dijet)**

- **• Let us start from defining NLO "EW Corrections" (= "EWC")**
	- So far, it seems obvious that EWC is just one more α expansion wrt Born
	- **• Situation may be more complicated**
		- **• There may present several order contributions in Born (e.g. dijet)**
		- The usually ignored off-shell effect may be important $\Gamma/M \simeq \alpha$
		- **• Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)**
		- **• Photon and jet is not well separated (need fragmentation function or some approximations)**
		- **• If phase space is enough, EW boson radiation will be quite often (do we need them ?)**
		- **• The general matching between matrix element and parton shower will be difficult**

- **• Let us start from defining NLO "EW Corrections" (= "EWC")**
	- So far, it seems obvious that EWC is just one more α expansion wrt Born
	- **• Situation may be more complicated**
		- **• There may present several order contributions in Born (e.g. dijet)**
		- The usually ignored off-shell effect may be important $\,\Gamma/M \simeq \alpha$
		- **• Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)**
		- **• Photon and jet is not well separated (need fragmentation function or some approximations)**
		- **• If phase space is enough, EW boson radiation will be quite often (do we need them ?)**
		- **• The general matching between matrix element and parton shower will be difficult**
- Three α schemes are frequently used
	- $\alpha(0)$ scheme: appropriate for external photon
	- $\cdot \alpha(M_Z)$ scheme: works good for internal photon
	- G_u scheme: works good for weak bosons and well measured

- **• Let us start from defining NLO "EW Corrections" (= "EWC")**
	- So far, it seems obvious that EWC is just one more α expansion wrt Born
	- **• Situation may be more complicated**
		- **• There may present several order contributions in Born (e.g. dijet)**
		- The usually ignored off-shell effect may be important $\Gamma/M \simeq \alpha$
		- **• Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)**
		- **• Photon and jet is not well separated (need fragmentation function or some approximations)**
		- **• If phase space is enough, EW boson radiation will be quite often (do we need them ?)**
		- **• The general matching between matrix element and parton shower will be difficult**
- Three α schemes are frequently used
	- $\alpha(0)$ scheme: appropriate for external photon
	- $\cdot \alpha(M_Z)$ scheme: works good for internal photon
	- G_{μ} scheme: works good for weak bosons and well measured

Shall we use different scheme/renormalization for different vertices in one diagram ?

- **• Let us start from defining NLO "EW Corrections" (= "EWC")**
	- So far, it seems obvious that EWC is just one more α expansion wrt Born
	- **• Situation may be more complicated**
		- **• There may present several order contributions in Born (e.g. dijet)**
		- The usually ignored off-shell effect may be important $\Gamma/M \simeq \alpha$
		- **• Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)**
		- **• Photon and jet is not well separated (need fragmentation function or some approximations)**
		- **• If phase space is enough, EW boson radiation will be quite often (do we need them ?)**
		- **• The general matching between matrix element and parton shower will be difficult**
- Three α schemes are frequently used
	- $\alpha(0)$ scheme: appropriate for external photon
	- $\cdot \alpha(M_Z)$ scheme: works good for internal photon
	- G_{μ} scheme: works good for weak bosons and well measured
- Shall we use different scheme/renormalization for different vertices in one diagram ?
	- Use $K_{\text{NLO QCD}} \times K_{\text{NLO EW}}$ to capture the missing higher order?

ENHANCE EW CORRECTIONS

• Enhance EWC by Yukawa coupling

ENHANCE EW CORRECTIONS

 πs_w^2

 M_W^2

- **• Enhance EWC by Yukawa coupling** M_t^2
- **e.g. H+2jets at LHC, EWC** $\sim \frac{\alpha}{\alpha} \frac{M_t^2}{M_t^2} \sim 5\%$
- **• Enhance EWC by Yukawa coupling**
- **e.g. H+2jets at LHC, EWC** $\sim \frac{\alpha}{\alpha} \frac{M_t^2}{M_t^2} \sim 5\%$ πs_w^2 M_t^2 M_W^2
- **• Enhance EWC by electromagnetic logarithms**

- **• Enhance EWC by Yukawa coupling**
- **e.g. H+2jets at LHC, EWC** $\sim \frac{\alpha}{\alpha} \frac{M_t^2}{M_t^2} \sim 5\%$ πs_w^2 M_t^2 M_W^2
- **• Enhance EWC by electromagnetic logarithms**
	- Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 3% *Z* m_e^2

- **• Enhance EWC by Yukawa coupling**
- **e.g. H+2jets at LHC, EWC** $\sim \frac{\alpha}{\alpha} \frac{M_t^2}{M_t^2} \sim 5\%$ πs_w^2 M_t^2 M_W^2
- **• Enhance EWC by electromagnetic logarithms**
	- Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 3% *Z* m_e^2
	- Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 2% *Z* m_μ^2

Z

 m_e^2

- **• Enhance EWC by Yukawa coupling**
- **e.g. H+2jets at LHC, EWC** $\sim \frac{\alpha}{\alpha} \frac{M_t^2}{M_t^2} \sim 5\%$ πs_w^2 M_t^2 M_W^2
- **• Enhance EWC by electromagnetic logarithms**
	- Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 3%
	- Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 2% *Z* m_μ^2
- **• Enhance EWC by EW Sudakov logarithms**

- **• Enhance EWC by Yukawa coupling**
	- **e.g. H+2jets at LHC, EWC** $\sim \frac{\alpha}{\alpha} \frac{M_t^2}{M_t^2} \sim 5\%$ πs_w^2 M_t^2 M_W^2
- **• Enhance EWC by electromagnetic logarithms**
	- Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 3% m_e^2
	- Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 2% *Z* m_μ^2
- **• Enhance EWC by EW Sudakov logarithms**
	- **• EW Sudakov logarithms come from exchange of virtual weak bosons**

e.g. $Q = 1 \text{ TeV}$ $-c_{\text{LL}} \times 26\% + c_{\text{NLL}} \times 16\%$

Z

- **• Enhance EWC by Yukawa coupling**
- **e.g. H+2jets at LHC, EWC** $\sim \frac{\alpha}{\alpha} \frac{M_t^2}{M_t^2} \sim 5\%$ πs_w^2 M_t^2 M_W^2
- **• Enhance EWC by electromagnetic logarithms**
	- Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 3% *Z* m_e^2
	- Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 2% *Z* m_μ^2
- **• Enhance EWC by EW Sudakov logarithms**
	- **• EW Sudakov logarithms come from exchange of virtual weak bosons**
	- **• Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel**

- **• Enhance EWC by Yukawa coupling**
- **e.g. H+2jets at LHC, EWC** $\sim \frac{\alpha}{\alpha} \frac{M_t^2}{M_t^2} \sim 5\%$ πs_w^2 M_t^2 M_W^2
- **• Enhance EWC by electromagnetic logarithms**
	- Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 3% *Z* m_e^2
	- Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 2% *Z* m_μ^2
- **• Enhance EWC by EW Sudakov logarithms**
	- **• EW Sudakov logarithms come from exchange of virtual weak bosons**
	- **• Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel**
	- **• One does not treat W/Z inclusively as they can be (at least partially) reconst.**

- **• Enhance EWC by Yukawa coupling**
- **e.g. H+2jets at LHC, EWC** $\sim \frac{\alpha}{\alpha} \frac{M_t^2}{M_t^2} \sim 5\%$ πs_w^2 M_t^2 M_W^2
- **• Enhance EWC by electromagnetic logarithms**
	- Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 3% *Z* m_e^2
	- Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 2% *Z* m_μ^2
- **• Enhance EWC by EW Sudakov logarithms**
	- **• EW Sudakov logarithms come from exchange of virtual weak bosons**
	- **• Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel**
	- **• One does not treat W/Z inclusively as they can be (at least partially) reconst.**
	- **• Even treat W/Z as inclusive as gluon/photon: initial state is not SU(2) singlet**

- **• Enhance EWC by Yukawa coupling**
- **e.g. H+2jets at LHC, EWC** $\sim \frac{\alpha}{\alpha} \frac{M_t^2}{M_t^2} \sim 5\%$ πs_w^2 M_t^2 M_W^2
- **• Enhance EWC by electromagnetic logarithms**
	- Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 3% *Z* m_e^2
	- Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{2}$ ~ 2% *Z* m_μ^2
- **• Enhance EWC by EW Sudakov logarithms**
	- **• EW Sudakov logarithms come from exchange of virtual weak bosons**
	- **• Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel**
	- **• One does not treat W/Z inclusively as they can be (at least partially) reconst.**
	- **• Even treat W/Z as inclusive as gluon/photon: initial state is not SU(2) singlet**
	- **• However, EW Sudakov logarithms is not always relevant in Sudakov regime**
		- **• e.g. Drell-Yan at large invariant mass receives large contributions from small t** Dittmaier et al. '10

EW IN HIGH-ENERGY SCATTERINGS

- **• BSM effects are expected to be enhanced in the highenergy scatterings**
- **• -> motivated BSM search go to the tail**
- **• EW corr. increase up to tens of percent due to EW Sudakov logs**
	- **• The EW log resummation is still not mandatory@ (HL-)LHC as**

MADGRAPH5_AMC@NLO IN A NUTSHELL

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, HSS, Stelzer, Torrielli, Zaro JHEP'14

4 commands for a NLO calculation

- > ./bin/mg5_aMC
- > generate process [QCD]
- > output
- > launch

MADGRAPH5_AMC@NLO IN A NUTSHELL

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, HSS, Stelzer, Torrielli, Zaro JHEP'14

complete automation for QCD+EW

4 commands for a NLO calculation

- > ./bin/mg5_aMC
- > generate process [QCD]
- > output
- > launch

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

- > ./bin/mg5_aMC
- > generate process [QCD QED]
- > output
- > launch

MADGRAPH5_AMC@NLO: COMPLETE NLO

• Generation syntax for any LO and NLO (in v3.X):

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

 $\alpha_S^n\alpha^m\,,\hspace{0.5cm}n\leq \mathtt{n}_{\mathtt{max}}\,,\hspace{0.5cm}m\leq \mathtt{m}_{\mathtt{max}}\,,\hspace{0.5cm}n+m=k_0\,,$ $LO:$ $NLO:$ $\alpha_S^n\alpha^m\,,\hspace{0.5cm} n\leq \mathtt{n}_{\mathtt{max}}+1\,,\hspace{0.3cm} m\leq \mathtt{m}_{\mathtt{max}}+1\,,\hspace{0.3cm} n+m=k_0+1\,.$

MADGRAPH5_AMC@NLO: NLO EW

Examples:

MADGRAPH5_AMC@NLO: NLO EW

 $\overline{1}$

• Examples:

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

MADGRAPH5_AMC@NLO: COMPLETE NLO

• Examples:

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP'18

LECTURE 3 Advanced NLO Topics

BSM TH/EXP INTERACTIONS: THE OLD WAY

Tuesday, November 19, 19

IMSc, Chennai 79 Hua-Sheng Shao

BSM TH/EXP INTERACTIONS: THE OLD WAY

BSM TH/EXP INTERACTIONS AUGMENTED

BSM TH/EXP INTERACTIONS AUGMENTED

• How to incorporate all of above information in a model file ? Christensen, Duhr (CPC'09); Alloul, Christensen, Duhr, Degrande, Fuks (CPC'14)

Artwork by C. Degrande

• How to incorporate all of above information in a model file ? Christensen, Duhr (CPC'09); Alloul, Christensen, Duhr, Degrande, Fuks (CPC'14)

- Input : model.fr Feyn RuLes Bo Output : vertices Artwork by C. Degrande
	- UFO stands for Universal FeynRules Output:

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC'12)

FEYNRULES: NLO

Christensen, Duhr (CPC'09); Alloul, Christensen, Duhr, Degrande, Fuks (CPC'14); Degrande (CPC'15)

★ The UFO is a set of PYTHON files

- * Particle information (particles.py)
- * Interaction information (vertices.py, couplings.py, lorentz.py, couplings_orders.py)
- * Parameter information (parameters.py)
- * Propagator information (propagators.py)
- * Tools (function_library.py, object_library.py, write_param_card.py, decays.py)
- \cdot NLO counterterms (CT couplings.py, CT parameters.py, CT vertices.py)

For example: SUSY QCD

bogon:SUSYQCD_CTprm_UFO erdissshaw\$ ls CT_couplings.py CT_parameters.py __init__.py CT_vertices.py

SUSYQCD_CTprm_UFO.log coupling_orders.py

couplings.py function_library.py lorentz.py

object_library.py parameters.py particles.py

propagators.py vertices.py write_param_card.py

★ The UFO is a set of PYTHON files

- * Particle information (particles.py)
- * Interaction information (vertices.py, couplings.py, lorentz.py, couplings_orders.py)
- * Parameter information (parameters.py)
- * Propagator information (propagators.py)
- * Tools (function_library.py, object_library.py, write_param_card.py, decays.py)
- \cdot NLO counterterms (CT couplings.py, CT parameters.py, CT vertices.py)

For example: SUSY QCD

bogon:SUSYQCD_CTprm_UFO erdissshaw\$ ls CT_couplings.py SUSYQCD_CTprm_UFO.log CT_parameters.py __init__.py CT_vertices.py coupling_orders.py

couplings.py function_library.py lorentz.py

propagators.py vertices.py write_param_card.py

★ The UFO is a set of PYTHON files

- * Particle information (particles.py)
- * Interaction information (vertices.py, couplings.py, lorentz.py, couplings_orders.py)
- * Parameter information (parameters.py)
- * Propagator information (propagators.py)
- * Tools (function_library.py, object_library.py, write_param_card.py, decays.py)
- * NLO counterterms (CT_couplings.py, CT_parameters.py, CT_vertices.py)

For example: SUSY QCD

★ The UFO is a set of PYTHON files

- * Particle information (particles.py)
- * Interaction information (vertices.py, couplings.py, lorentz.py, couplings_orders.py)
- * Parameter information (parameters.py)
- * Propagator information (propagators.py)
- * Tools (function_library.py, object_library.py, write_param_card.py, decays.py)
- * NLO counterterms (CT_couplings.py, CT_parameters.py, CT_vertices.py)

For example: SUSY QCD

★ The UFO is a set of PYTHON files

- * Particle information (particles.py)
- * Interaction information (vertices.py, couplings.py, lorentz.py, couplings_orders.py)
- * Parameter information (parameters.py)
- * Propagator information (propagators.py)
- * Tools (function_library.py, object_library.py, write_param_card.py, decays.py)
- * NLO counterterms (CT_couplings.py, CT_parameters.py, CT_vertices.py)

★ The UFO is a set of PYTHON files

- * Particle information (particles.py)
- * Interaction information (vertices.py, couplings.py, lorentz.py, couplings_orders.py)
- * Parameter information (parameters.py)
- * Propagator information (propagators.py)
- * Tools (function_library.py, object_library.py, write_param_card.py, decays.py)
- * NLO counterterms (CT_couplings.py, CT_parameters.py, CT_vertices.py)

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC'12)

- **• Particles are in** particles.py
	- Instances of the particle class
	- spin, color, mass, width, PDG etc

```
go = Particle(pdg\_code = 1000021,name = 'go',antiname = 'go',spin = 2,
                 color = 8,mass = Param.Mgo,width = Param.Wgo,\text{texname{name}} = \text{kg} \cdot \text{g} \cdot \text{g}antitexname = 'go',charge = \theta,
                 GhostNumber = 0,LeptonNumber = 0,Y = 0
```


Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC'12)

- **• Particles are in** particles.py **• Parameters are in** parameters.py
	- Instances of the particle class • External parameters are in LHA-like
	- spin, color, mass, width, PDG etc Python-compliant formula for int. para

```
go = Particle(pdg\_code = 1000021,name = 'go',antiname = 'go',spin = 2,
               color = 8,mass = Param.Mgo,width = Param.Wgo,\text{texname} = 'go',antitexname = 'qo',charge = \theta,
               GhostNumber = \theta,
               LeptonNumber = 0,Y = 0
```

```
aS = Parameter(name = 'aS',nature = 'external',type = 'real',value = 0.1184,texname = '\\alpha _s',
                    \mathsf{lhablock} = \mathsf{^\prime}\mathsf{SMINPUTS\prime},
                   1hacode = [3])G = Parameter(name = 'G',nature = 'internal',type = 'real',value = '2*cmath.sqrt(aS)*cmath.sqrt(cmath,pi)
```
 $texname{max} = 'G')$

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC'12)

• **Interactions are in** vertices.py, couplings.py, lorentz.py, coupling orders,py

- Vertices are decomposed in a spin x color basis, coupling being coordinates
- Example: the quartic gluon vertex can be written as

 $(f^{a_1a_2b}f^{ba_3a_4}, f^{a_1a_3b}f^{ba_2a_4}, f^{a_1a_4b}f^{ba_2a_3})$ $ig_s^2 f^{a_1 a_2 b} f^{b a_3 a_4} (\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4})$ *• • ig_s f*^{*a*₁*a*₃*b*^{*b*_{*a*}₂*a*₄} (*η*^μ₁*μ*₄*η*^μ²*μ*₄</sup> (*γ*^μ₁*μ*₄*β*^{*μ*}₄^{*β*} (*γ*^μ₁*μ*₄^{*β*}_{*β*^{*μ*}₄^{*β*}^{*β*}^{*4*}^{*4*}^{*4*}^{*γ*}^{*4*}^{*4*}^{*γ*}^{*4*}^{*4*}^{*γ*}^{*4*}</sup>}}</sup>

```
V_37 = Vertex(name = 'V_37',particles = [ P.g, P.g, P.g, P.g ],
              color = [ 'f(-1,1,2)*f(3,4,-1) ', 'f(-1,1,3)*f(2,4,-1) ', 'f(-1,1,4)*f(2,3,-1) ]lorentz = [ L.VVVV2, L.VVVV3, L.VVVV4 ],
              couplings = {(1,0):C.GC_20,(0,0):C.GC_20,(2,1):C.GC_20,(0,1):C.GC_19,(2,2):C.GC_19,(1,2):C.GC_19})
```
• lorentz.py: define the Lorentz structure in the model

```
VVVV2 = Lorentz (name = 'VVVV2', )spins = [3, 3, 3, 3],
   • couplings.py: define the coupling constant in the model<br>
• couplings.py: define the coupling constant in the model
                                value = 'complex(0,1)*G**2',
   • coupling orders.py: define the coupling orders in the model
         QCD = CouplingOrder(name = 'QCD',expansion order = 99,
And the state of the state
```


Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC'12)

• **Interactions are in** vertices.py, couplings.py, lorentz.py, coupling orders,py

- Vertices are decomposed in a spin x color basis, coupling being coordinates
- Example: the quartic gluon vertex can be written as

 $(f^{a_1a_2b}f^{ba_3a_4}, f^{a_1a_3b}f^{ba_2a_4}, f^{a_1a_4b}f^{ba_2a_3})$ $ig_s^2 f^{a_1 a_2 b} f^{b a_3 a_4} (\eta^{\mu_1 \mu_4} \eta^{\mu_2 \mu_3} - \eta^{\mu_1 \mu_3} \eta^{\mu_2 \mu_4})$ *• • ig_s f*^{*a*_{1aa}b} *f*^{ba_{2a4}} (*η*^μ₁μ₄ η^μ₂μ₃</sup> − *η*^μ₁μ₂ η^μ₄ η^μ₂ ημ_β_{*β*} (*π*^μ₁μ₃ η^μ₄ ημ_β^{*β*} (*π*_μ^{μ₄ ημ_β^{*μ*₄ ημ_β^{*μ*₄ ημ_β_{*β*^{*μ*₄ ημ_β_{*β*} (*π}}}}}* $+ig_s^2f^{a_1a_3b}f^{ba_2a_4}\,\left(\eta^{\mu_1\mu_4}\eta^{\mu_2\mu_3}-\eta^{\mu_1\mu_2}\eta^{\mu_3\mu_4}\right)\ +ig_s^2f^{a_1a_4b}f^{ba_2a_3}\,\left(\eta^{\mu_1\mu_3}\eta^{\mu_2\mu_4}-\eta^{\mu_1\mu_2}\eta^{\mu_3\mu_4}\right)$

```
V_37 = Vertex(name = 'V_37',particles = [ P.g, P.g, P.g, P.g ],
              color = [ 'f(-1,1,2)*f(3,4,-1) ', 'f(-1,1,3)*f(2,4,-1) ', 'f(-1,1,4)*f(2,3,-1) ]lorentz = [ L.VVVV2, L.VVVV3, L.VVVV4 ],
              couplings = {(1, 0):C.GC_20,(0, 0):C.GC_20,(2, 1):C.GC_20,(0, 1):C.GC_19,(2, 2):C.GC_19,(1, 2):C.GC_19})
```
• lorentz.py: define the Lorentz structure in the model

```
VVVV2 = Lorentz (name = 'VVVV2', )spins = [3, 3, 3, 3],
  • couplings.py: define the coupling constant in the model<br>
• couplings.py: define the coupling constant in the model
                     value = 'complex(0,1)*G***2',• coupling_orders.py: define the coupling orders in the model
                                                 Make sure > 0 for NLO QCD
      QCD = CouplingOrder(name = 'QCD',expanion-order = 99,IMSC, Chennai Chennai Berturbative_expansion = 1)<br>
BS
CHENG SHAO
```


IMSc, Chennai 86 Hua-Sheng Shao

• Provide renormalization scale in parameters.py
MU_R = Parameter(name = 'MU_R',

 $nature = 'external',$ $type = 'real',$ $value = 91.188$, $\text{taxname} = \text{...\num}$, $\mathsf{lhablock} = \mathsf{'}\mathsf{LOOP}$, $hacode = [1])$

• Provide renormalization scale in parameters.py
MUR = Parameter(name = 'MU_R',

 $nature = 'external',$ $type = 'real',$ $value = 91.188$, $\text{taxname} = \text{.\text{.\}'}$ $\mathsf{lhablock} = \mathsf{`LOOP'}$,

```
hacode = [1])
```
• CT_vertices.py:UV, R2 counter term vertices

 V_2 = CTVertex(name = ' V_2 ',

type = $'R2'$, particles = $[P.g., P.g., P.g., P.g]$,

color = ['d(-1,1,3)*d(-1,2,4)', 'd(-1,1,3)*f(-1,2,4)', 'd(-1,1,4)*d(-1,2,3)', 'd(-1,1,4)*f(-1,2,3)', 'd(-1,2,3)*f(-1,1,4)', 'd(-1,2,4)*f(-1,1,3)', 'f(-1,1) ,2)*f(-1,3,4)', 'f(-1,1,3)*f(-1,2,4)', 'f(-1,1,4)*f(-1,2,3)', 'Identity(1,2)*Identity(3,4)', 'Identity(1,3)*Identity(2,4)', 'Identity(1,4)*Identity(2,3)'],

 $lorentz = [L.VVVV2, L.VVVV3, L.VVVV4],$

loop_particles = [[[P.b], [P.c], [P.d], [P.s], [P.t], [P.u]], [[P.g]], [[P.go]]],

couplings = {(2,0,0):C.R2GC_101_4,(2,0,1):C.R2GC_100_3,(2,0,2):C.R2GC_100_2,(0,0,0):C.R2GC_101_4,(0,0,1):C.R2GC_100_3,(0,0,2):C.R2GC_100_2,(4,0,0):C.R2GC_9\ 9_171,(4,0,1):C.R2GC_99_172,(4,0,2):C.R2GC_99_173,(3,0,0):C.R2GC_99_171,(3,0,1):C.R2GC_99_172,(3,0,2):C.R2GC_99_173,(8,0,0):C.R2GC_100_1,(8,0,1):C.R2GC_100_2,(8,0,2):C.R2\ GC_100_3,(6,0,0):C.R2GC_110_22,(6,0,1):C.R2GC_112_26,(6,0,2):C.R2GC_110_23,(7,0,0):C.R2GC_111_24,(7,0,1):C.R2GC_105_11,(7,0,2):C.R2GC_111_25,(5,0,0):C.R2GC_99_171,(5,0,1)\ :C.R2GC_99_172,(5,0,2):C.R2GC_99_173,(1,0,0):C.R2GC_99_171,(1,0,1):C.R2GC_99_172,(1,0,2):C.R2GC_99_173,(11,0,0):C.R2GC_103_7,(11,0,1):C.R2GC_103_8,(11,0,2):C.R2GC_103_9,(\ 10,0,0):C.R2GC_103_7,(10,0,1):C.R2GC_103_8,(10,0,2):C.R2GC_103_9,(9,0,1):C.R2GC_102_5,(9,0,2):C.R2GC_102_6,(2,1,0):C.R2GC_101_4,(2,1,1):C.R2GC_100_3,(2,1,2):C.R2GC_100_2,\ $(0,1,0):$ C.R2GC_101_4,(0,1,1):C.R2GC_100_3,(0,1,2):C.R2GC_100_2,(4,1,0):C.R2GC_99_171,(4,1,1):C.R2GC_99_172,(4,1,2):C.R2GC_99_173,(3,1,0):C.R2GC_99_171,(3,1,1):C.R2GC_99_1\ 72,(3,1,2):C.R2GC_99_173,(8,1,0):C.R2GC_100_1,(8,1,1):C.R2GC_105_11,(8,1,2):C.R2GC_100_3,(6,1,0):C.R2GC_115_29,(6,1,1):C.R2GC_115_30,(6,1,2):C.R2GC_115_31,(7,1,0):C.R2GC_\ 111_24,(7,1,1):C.R2GC_100_2,(7,1,2):C.R2GC_111_25,(5,1,0):C.R2GC_99_171,(5,1,1):C.R2GC_99_172,(5,1,2):C.R2GC_99_173,(1,1,0):C.R2GC_99_171,(1,1,1):C.R2GC_99_172,(1,1,2):C.\ R2GC_99_173,(11,1,0):C.R2GC_103_7,(11,1,1):C.R2GC_103_8,(11,1,2):C.R2GC_103_9,(10,1,0):C.R2GC_103_7,(10,1,1):C.R2GC_103_8,(10,1,2):C.R2GC_103_9,(9,1,1):C.R2GC_102_5,(9,1,\ 2):C.R2GC_102_6,(0,2,0):C.R2GC_101_4,(0,2,1):C.R2GC_100_3,(0,2,2):C.R2GC_100_2,(2,2,0):C.R2GC_101_4,(2,2,1):C.R2GC_100_3,(2,2,2):C.R2GC_100_2,(5,2,0):C.R2GC_99_171,(5,2,1\):C.R2GC_99_172,(5,2,2):C.R2GC_99_173,(1,2,0):C.R2GC_99_171,(1,2,1):C.R2GC_99_172,(1,2,2):C.R2GC_99_173,(7,2,0):C.R2GC_114_27,(7,2,1):C.R2GC_104_10,(7,2,2):C.R2GC_114_28,\ (4,2,0):C.R2GC_99_171,(4,2,1):C.R2GC_99_172,(4,2,2):C.R2GC_99_173,(3,2,0):C.R2GC_99_171,(3,2,1):C.R2GC_99_172,(3,2,2):C.R2GC_99_173,(8,2,0):C.R2GC_100_1,(8,2,1):C.R2GC_10\ 4_10,(8,2,2):C.R2GC_100_3,(6,2,0):C.R2GC_110_22,(6,2,2):C.R2GC_110_23,(11,2,0):C.R2GC_103_7,(11,2,1):C.R2GC_103_8,(11,2,2):C.R2GC_103_9,(10,2,0):C.R2GC_103_7,(10,2,1):C.R\ 2GC 103 8, (10, 2, 2): C.R2GC 103 9, (9, 2, 1): C.R2GC 102 5, (9, 2, 2): C.R2GC 102 6})

• Provide renormalization scale in parameters.py
MU_R = Parameter(name = 'MU_R',

 $nature = 'external',$ $type = 'real',$ $value = 91.188$, $\text{taxname} = \text{.\text{.\}'}$ $\mathsf{lhablock} = \mathsf{`LOOP'}$,

```
hacode = [1])
```
• CT_vertices.py:UV, R2 counter term vertices

 $V_351 = CTVertex(name = 'V_351',$ $type = 'UV'.$

particles = $[P.g., P.g., P.g., P.g]$,

 $color = ['d(-1,1,3)*d(-1,2,4) ' - d(-1,1,3)*f(-1,2,4) ' - d(-1,1,4)*d(-1,2,3) ' - d(-1,1,4)*f(-1,2,3) ' - d(-1,2,3)*f(-1,1,4) ' - d(-1,2,4)*f(-1,1,3) ' - f(-1,1,2)*f(-1,3,4) ' - f(-1,1,3)*f(-1,1,3) }$

 $lorentz = [L.VVVV2, L.VVVV3, L.VVVV4],$

loop_particles = [[[P.b]], [[P.b], [P.c], [P.s], [P.sbL], [P.sbR], [P.scL], [P.scR], [P.sdL], [P.ssL], [P.ssR], [P.stR], [P.stR], [P.suL], [P.suR], [P.t], [P.u]],\ [[P.b], [P.c], [P.d], [P.s], [P.t], [P.u]], [[P.c]], [[P.d]], [[P.g]], [[P.ghG]], [[P.go]], [[P.sbl.]], [[P.sbl.], [P.sbl.], [P.scl], [P.scl], [P.sdl], [P.scl], [P.ssl], [P.ssl], [P.ssi], [P.ssi], [P.ssi], [], [P.stL], [P.stR], [P.suL], [P.suR]], [[P.sbR]], [[P.scL]], [[P.scR]], [[P.sdL]], [[P.ssL]], [[P.ssR]], [[P.stL]], [[P.stR]], [[P.suL]], [[P.suR]], [[P.t]], [[P.\ u]]],

couplings = {(2,0,5):C.UVGC_100_2,(2,0,6):C.UVGC_100_1,(0,0,5):C.UVGC_100_2,(0,0,6):C.UVGC_100_1,(4,0,5):C.UVGC_100_1,(4,0,5):C.UVGC_99_1085,(4,0,6):C.UVGC_99_1085,(3,0,5):C.UVGC_99_1085,(3,0,6):C.UVGC_99_1085,(3,0,6):C.UV _1086,(8,0,5):C.UVGC_100_1,(8,0,6):C.UVGC_100_2,(6,0,0):C.UVGC_112_137,(6,0,3):C.UVGC_112_138,(6,0,4):C.UVGC_112_139,(6,0,5):C.UVGC_112_140,(6,0,6):C.UVGC_112_141,(6,0,7):C.UVGC_112_142,(6,0,8):C.UVGC\ 112_143,(6,0,9):C.UVGC_112_144,(6,0,11):C.UVGC_112_145,(6,0,12):C.UVGC_112_146,(6,0,13):C.UVGC_112_147,(6,0,14):C.UVGC_112_148,(6,0,15):C.UVGC_112_149,(6,0,15):C.UVGC_112_149,(6,0,15):C.UVGC_112_149,(6,0,17):C.UVGC_112_151 (6,0,18):C.UVGC_112_152,(6,0,19):C.UVGC_112_153,(6,0,20):C.UVGC_112_154,(6,0,21):C.UVGC_112_155,(6,0,22):C.UVGC_112_156,(6,0,23):C.UVGC_112_157,(7,0,0):C.UVGC_112_137,(7,0,3):C.UVGC_112_138,(7,0,4):C.\ UVGC_112_139,(7,0,5):C.UVGC_105_31,(7,0,6):C.UVGC_113_158,(7,0,7):C.UVGC_112_142,(7,0,8):C.UVGC_112_143,(7,0,9):C.UVGC_112_144,(7,0,11):C.UVGC_112_145,(7,0,12):C.UVGC_112_146,(7,0,13):C.UVGC_112_147,(\ 7,0,112_148,(7,0,15):C.UVGC_112_148,(7,0,15):C.UVGC_112_149,(7,0,16):C.UVGC_112_150,(7,0,17):C.UVGC_112_151,(7,0,18):C.UVGC_112_152,(7,0,19):C.UVGC_112_153,(7,0,20):C.UVGC_112_154,(7,0,21):C.UVGC_112_155,(7,0,22):\ C.UVGC_112_156,(7,0,23):C.UVGC_112_157,(5,0,5):C.UVGC_99_1085,(5,0,6):C.UVGC_99_1086,(1,0,5):C.UVGC_99_1085,(1,0,6):C.UVGC_99_1086,(11,0,5):C.UVGC_103_5,(11,0,6):C.UVGC_103_5,(10,0,5):C.UVGC_103_6,(10,0,5):C.UVGC_103_5,(10 ,0,6):0.1075(,4,1,6):0.1002_1085, (4,1,6):0.1002_1085, (9,0,6):0.1002_102_4, (2,1,5):0.1002_100_2, (2,1,6):0.1002_100_1, (0,1,5):0.1002_100_2, (0,1,6):0.1002_100_1, (4,1,5):0.1002_99_1085, (4,1,6):0.1002_1086, (3,1,5):0. .uvGC_99_1085,(3,1,6):C.uvGC_99_1086,(8,1,0):C.uvGC_105_28,(8,1,3):C.uvGC_105_29,(8,1,4):C.uvGC_105_30,(8,1,5):C.uvGC_105_31,(8,1,6):C.uvGC_105_32,(8,1,7):C.uvGC_105_33,(8,1,8):C.uvGC_105_33,(8,1,8):C.uvGC_105_34,(8,1,9):C .uvGC_105_35,(8,1,11):C.UVGC_105_36,(8,1,12):C.UVGC_105_37,(8,1,13):C.UVGC_105_38,(8,1,14):C.UVGC_105_39,(8,1,15):C.UVGC_105_40,(8,1,16):C.UVGC_105_41,(8,1,17):C.UVGC_105_42,(8,1,18):C.UVGC_105_43,(8,\ 1,19):C.UVGC_105_44,(8,1,20):C.UVGC_105_45,(8,1,21):C.UVGC_105_46,(8,1,22):C.UVGC_105_47,(8,1,23):C.UVGC_105_48,(6,1,0):C.UVGC_114_159,(6,1,3):C.UVGC_114_160,(6,1,4):C.UVGC_114_161,(6,1,5):C.UVGC_115_\ 179,(6,1,6):C.UVGC_115_180,(6,1,7):C.UVGC_114_163,(6,1,8):C.UVGC_114_164,(6,1,9):C.UVGC_115_181,(6,1,9):C.UVGC_115_182,(6,1,12):C.UVGC_115_183,(6,1,13):C.UVGC_115_184,(6,1,7):C.UVGC_114_163,(6,1,8):C.UVGC_114_163,(6,1,9):C :C.UVGC_115_186,(6,1,16):C.UVGC_115_187,(6,1,17):C.UVGC_115_188,(6,1,18):C.UVGC_115_189,(6,1,19):C.UVGC_115_190,(6,1,20):C.UVGC_115_191,(6,1,21):C.UVGC_115_192,(6,1,22):C.UVGC_114_177,(6,1,23):C.UVGC_\ 114_178,(7,1,1):C.UVGC_110_133,(7,1,5):C.UVGC_100_1,(7,1,6):C.UVGC_111_136,(7,1,7):C.UVGC_110_134,(5,1,5):C.UVGC_99_1085,(5,1,6):C.UVGC_99_1086,(1,1,5):C.UVGC_99_1085,(1,1,6):C.UVGC_99_1085,(1,1,6):C.UVGC_99_1085,(1,1,6):C .UVGC_103_5,(11,1,6):C.UVGC_103_6,(10,1,5):C.UVGC_103_5,(10,1,6):C.UVGC_103_6,(9,1,5):C.UVGC_102_3,(9,1,6):C.UVGC_102_4,(0,2,5):C.UVGC_100_2,(0,2,6):C.UVGC_100_1,(2,2,5):C.UVGC_100_2,(2,2,6):C.UVGC_101 0_1,(5,2,5):C.UVGC_99_1085,(5,2,6):C.UVGC_99_1086,(1,2,5):C.UVGC_99_1085,(1,2,6):C.UVGC_99_1086,(7,2,0):C.UVGC_114_159,(7,2,3):C.UVGC_114_160,(7,2,4):C.UVGC_114_161,(7,2,5):C.UVGC_104_161,(7,2,5):C.UVGC_104_10,(7,2,6):C.UV C_114_163,(7,2,7):C.UVGC_114_163,(7,2,8):C.UVGC_114_164,(7,2,9):C.UVGC_114_165,(7,2,11):C.UVGC_114_166,(7,2,12):C.UVGC_114_167,(7,2,13):C.UVGC_114_168,(7,2,13):C.UVGC_114_168,(7,2,13):C.UVGC_114_169,(7,2,13):C.UVGC_114_169 7,2,16):C.UVGC_114_171,(7,2,17):C.UVGC_114_172,(7,2,18):C.UVGC_114_173,(7,2,19):C.UVGC_114_174,(7,2,20):C.UVGC_114_175,(7,2,21):C.UVGC_114_175,(7,2,22):C.UVGC_114_177,(7,2,23):C.UVGC_114_178,(4,2,5):C\ .uvGC_99_1085,(4,2,6):C.uvGC_99_1086,(3,2,5):C.uvGC_99_1085,(3,2,6):C.uvGC_99_1086,(8,2,0):C.uvGC_104_7,(8,2,3):C.uvGC_104_8,(8,2,4):C.uvGC_104_9,(8,2,5):C.uvGC_104_10,(8,2,6):C.uvGC_104_11,(8,2,7):C.\ UVGC_104_12,(8,2,8):C.UVGC_104_13,(8,2,9):C.UVGC_104_14,(8,2,11):C.UVGC_104_15,(8,2,12):C.UVGC_104_16,(8,2,13):C.UVGC_104_17,(8,2,14):C.UVGC_104_18,(8,2,15):C.UVGC_104_19,(8,2,16):C.UVGC_104_20,(8,2,1\ 7):C.UVGC_104_21,(8,2,18):C.UVGC_104_22,(8,2,19):C.UVGC_104_23,(8,2,20):C.UVGC_104_24,(8,2,21):C.UVGC_104_25,(8,2,22):C.UVGC_104_26,(8,2,23):C.UVGC_104_27,(6,2,2):C.UVGC_110_133,(6,2,6):C.UVGC_102_3,(\ 6,2,7):C.UVGC_110_134,(6,2,10):C.UVGC_110_135,(11,2,5):C.UVGC_103_5,(11,2,6):C.UVGC_103_6,(10,2,5):C.UVGC_103_5,(10,2,6):C.UVGC_103_6,(9,2,5):C.UVGC_102_3,(9,2,6):C.UVGC_102_4})

• Provide renormalization scale in parameters.py

 MU_R = Parameter(name = 'MU_R', $\mathsf{nature} = \mathsf{'external}',$ $type = 'real',$ $value = 91.188$, $\text{taxname} = \text{.\text{.\}'}$ $\mathsf{lhablock} = 'LOOP',$ $hacode = [1]$

- CT_vertices.py:UV, R2 counter term vertices
- CT_couplings.py: couplings for UV and R2 counter terms

 $UVGC_104_23 = Coupling(name = 'UVGC_104_23'.$ **value** = '-((FRCTdeltaxaSxstR*complex(0,1)*G**2)/aS) - 2*FRCTdeltaZxGGxstR*complex(0,1)*G**2 + (complex(0,1)*G**4*invFREps)/(32.*cmath.pi**2)', $order = \{ 'QCD';4 \})$

• Provide renormalization scale in parameters.py
MU_R = Parameter(name = 'MU_R',

 $\mathsf{nature} = \mathsf{`external'},$ $type = 'real',$ $value = 91.188$, $\text{texname} = \text{t\tmin}$, $\mathsf{lhablock} = 'LOOP',$ $hacode = [1])$

- CT_vertices.py:UV, R2 counter term vertices
- CT_couplings.py: couplings for UV and R2 counter terms

 $UVGC_104_23 = Coupling(name = 'UVGC_104_23'.$ **value** = '-((FRCTdeltaxaSxstR*complex(0,1)*G**2)/aS) - 2*FRCTdeltaZxGGxstR*complex(0,1)*G**2 + (complex(0,1)*G**4*invFREps)/(32.*cmath.pi**2)' $order = \{ 'QCD' : 4 \})$

• CT parameters.py: parameters for UV and R2 FRCTdeltazxttLxtG = CTParameter(name = 'FRCTdeltazxttLxtG',

 $type = 'complex',$

 $value = \{-1: (-G**2/(6.*cmath,pi**2)', 0: (-G**2/(3.*cmath,pirk2) + (G**2*reglog(MT/MU_R))/(2.*cmath,pik*2)'\},$ $\text{taxname} = 'FRCTdeltaZxttktG')$

• Provide renormalization scale in parameters.py

 MU_R = Parameter(name = 'MU_R', $\mathsf{nature} = \mathsf{`external'},$ $type = 'real',$ $value = 91.188$, $\text{texname} = \text{t\tmin}$, $\mathsf{lhablock} = 'LOOP',$ $hacode = [1])$

- CT_vertices.py:UV, R2 counter term vertices
- CT_couplings.py: couplings for UV and R2 counter terms

UVGC 104 23 = Coupling(name = 'UVGC 104 23', **value** = '-((FRCTdeltaxaSxstR*complex(0,1)*G**2)/aS) - 2*FRCTdeltaZxGGxstR*complex(0,1)*G**2 + (complex(0,1)*G**4*invFREps)/(32.*cmath.pi**2)' $order = \{ 'QCD' : 4 \})$

• $CT_{\text{p} \text{a} \text{r}}$ arameters.py: parameters for UV and R2 $\text{r}}$

type = α -G**2/(6.*cmath.pi**2)',0:'-G**2/(3.*cmath.pi**2) + (G**2*reglog(MT/MU_R))/(2.*cmath.pi**2)'}, $value = [-1;$ $texname =$ FRCTdeltaZxttLxtG')

$$
\begin{array}{c}\n\text{coefficient of } 1 \\
\hline\n\epsilon\n\end{array}
$$

• Provide renormalization scale in parameters.py

 MU_R = Parameter(name = 'MU_R', $\mathsf{nature} = \mathsf{`external'},$ $type = 'real',$ $value = 91.188$, $\text{texname} = \text{t\tmin}$, $\mathsf{lhablock} = 'LOOP',$ $hacode = [1]$

- CT_vertices.py:UV, R2 counter term vertices
- CT_couplings.py: couplings for UV and R2 counter terms

 $UVGC_104_23 = Coupling(name = 'UVGC_104_23'.$ **value** = '-((FRCTdeltaxaSxstR*complex(0,1)*G**2)/aS) - 2*FRCTdeltaZxGGxstR*complex(0,1)*G**2 + (complex(0,1)*G**4*invFREps)/(32.*cmath.pi**2)' $order = \{ 'QCD' : 4 \})$

• $CT_{\text{p} \text{a} \text{r}}$ arameters.py: parameters for UV and R2 $\text{r}}$

type = α $value = [-1; -G**2/(6.*cmath, \text{pix}2)$, 0: $-G**2/(3.*cmath, \text{pix}2)$ + $(G**2*reglog(MT/MU_R))/(2.*cmath, \text{pix}2)$ '}, $\text{texname{name}} = \text{rRCTdeltazxttLxtG}')$

$$
\begin{array}{ccc}\n\text{coefficient of} & \frac{1}{\epsilon} & \text{finite piece}\n\end{array}
$$

• Provide renormalization scale in parameters.py
MUR = Parameter(name = 'MU_R',

 $nature = 'external',$ $type = 'real',$ $value = 91.188$, $\text{taxname} = \text{.\text{.\}'}$ $\mathsf{lhablock} = 'LOOP',$ $hacode = [1]$

- CT_vertices.py:UV, R2 counter term vertices
- CT_couplings.py: couplings for UV and R2 counter terms

UVGC 104 23 = Coupling(name = 'UVGC 104 23',

value = '-((FRCTdeltaxaSxstR*complex(0,1)*G**2)/aS) - 2*FRCTdeltaZxGGxstR*complex(0,1)*G**2 + (complex(0,1)*G**4*invFREps)/(32.*cmath.pi**2)' $order = \{ 'QCD' : 4 \})$

parameters.py: parameters for UV and R2

 $\mathbf{type} = 'connect$

value = {0:'(0 if 2*Mgo*MstL + MT**2>=Mgo**2 + MstL**2 and MT**2<=(Mgo + MstL)**2 else (0 if Mgo==MstL else (0 if Mgo==MT else (0 if MstL==MT else \ (G**2*cmath.sqrt(MstL**4/MU_R**4 + (-(Mgo**2/MU_R**2) + MT**2/MU_R**2) == (2*MstL**2*(Mgo**2/MU_R**2 + MT**2/MU_R**2))/MU_R**2))/MU_R**2))/AU_R**2)//12.*cmath.pi**2*cmath.sqrt((-4*Mgo**2*MstL**2)/MU_R**4) $*2)$ $\}$, + (Mgo**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2)**2)) + (G**2*Mgo**2*cmath.sqrt(MstL**4/MU_R**4 + (-(Mgo**2/MU_R**2) + MT**2/MU_R**2)**2 - (2*MstL**2*(Mgo**2/MU_R**2 + MT**2/MU_R**2)))/MU R**2))/(12.*cmath.pi**2*MT**2*cmath.sqrt((-4*Mgo**2*MstL**2)/MU R**4 + (Mgo**2/MU R**2 + MstL**2/MU R**2 - MT**2/MU R**2)) - (G**2*MstL**2*cmath.sqrt(MstL**4/MU R**4 + (-(Mgo** 2/MU_R**2) + MT**2/MU_R**2)**2 - (2*MstL**2*(Mgo**2/MU_R**2 + MT**2/MU_R**2))/MU_R**2))/12.*cmath.pi**2*MT**2*cmath.sqrt((-4*Mgo**2*MstL**2)/MU_R**4 + (Mgo**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2)**2)) - (G**2*Mgo**4*cmath.sqrt(MstL**4/MU_R**4 + (-(Mgo**2/MU_R**2) + MT**2/MU_R**2)**2 - (2*MstL**2*(Mgo**2/MU_R**2 + MT**2/MU_R**2))/MU_R**2)*reglog(Mgo/MstL))/(12.*cm ath.pi**2*MT**4*cmath.sqrt((-4*Mgo**2*MstL**2)/MU_R**4 + (Mgo**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2)**2)) + (6*2*Mgo**2*MstL**2*cmath.sqrt(MstL**4/MU_R**4 + (-(Mgo**2/MU_R**2) + \
http://W_R**2)**2 - (2*MstL**2/MU_R 2/MU_R**2)**2 - (2*MstL**2*(Mgo**2/MU_R**2 + MT**2/MU_R**2))/MU_R**2)*reglog(Mgo/MstL))/(12.*cmath.pi**2*Omath.sgrt((-4*Mgo**2*MstL**2)/MU_R**4 + (Mgo**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2)**2)* + (G**2*MstL**2*cmath.sqrt(MstL**4/MU_R**4 + (-(Mgo**2/MU_R**2) + MT**2/MU_R**2)**2 - (2*MstL**2*(Mgo**2/MU_R**2 + MT**2/MU_R**2))/MU_R**2)*reglog(Mgo/MstL))/(12.*c\
math.pi**2*MT**2*cmath.sqrt((-4*Mg MstL\))*reglog((MU_R**2*(Mgo**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2 + cmath.sqrt((-4*Mgo**2*MstL**2)/MU_R**4 + (Mgo**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2 + MstL**2/MU_R**2 + MstL** (12.*cmath.pi**2*MT**2)))) if 2*Mgo*MstL + MT**2>=Mgo**2 + MstL**2 and MT**2<(Mgo + MstL)**2 else 0) + ((0 if Mgo==MstL else (0 if Mgo==MT else (0 if MstL==MT else (MU R**2*G**2*A Mgo**2*re(((MT**2*cmath.sqrt(MstL**4/MU_R**4 + (-(Mgo**2/MU_R**2) + MT**2/MU_R**2)**2 - (2*MstL**2*(Mgo**2/MU_R**2 + MT**2/MU_R**2))/MU_R**2))/MU_R**2 + (-(Mgo**2/MU_R**2) + MstL**2/MU_R **2)*cmath.sqrt(MstL**4/MU_R**4 + (-(Mgo**2/MU_R**2) + MT**2/MU_R**2)**2 - (2*MstL**2*(Mgo**2/MU_R**2 + MT**2/MU_R**2))/MU_R**2)*reglog(Mgo/MstL) + (MstL**4/MU_R**4 + (Mgo**2*(Mgo**2/MU_N R**2 - MT**2/MU_R**2))/MU_R**2 - (MstL**2*((2*Mgo**2)/MU_R**2 + MT**2/MU_R**2))/MU_R**2)*reglog((MU_R**2*(Mgo**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2 + cmath.sqrt((-4*Mgo**2*MstL**2)/MU_R**4 + (Mgo**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2)**2)))/(2.*Mgo*MstL)))/cmath.sqrt((-4*Mgo**2*MstL**2)/MU_R**4 + (Mgo**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2)**2)))/(12\ .*cmath.pi**2*MT**4) - (MU R**2*G**2*MstL**2*re(((MT**2*cmath.sqrt(MstL**4/MU R**4) + (-(Mgo**2/MU R**2) + MT**2/MU R**2) **2 - (2*MstL**2*(Mgo**2/MU R**2 + MT**2/MU R**2))/MU_R**2))/MU_R**2 *2 + (-(Mgo**2/MU_R**2) + MstL**2/MU_R**2)*cmath.sqrt(MstL**4/MU_R**4 + (-(Mgo**2/MU_R**2) + MT**2/MU_R**2)**2 - (2*MstL**2*(Mgo**2/MU_R**2)*1 HT**2/MU_R**2) /MU_R**2) *reglog(Mgo/MstL) + (MstL**4/MU_R**4 + (Mgo**2*(Mgo**2*/MU_R**2 - MT**2/MU_R**2))/MU_R**2 - (MstL**2*((2*Mgo**2)/MU_R**2 + MT**2/MU_R**2)*/MU_R**2)*reglog((MU_R**2*(Mgo**2/MU_R**2 + MstL**2/MU_R**2 + T+x2/MU_R**2 U_R**2 + cmath.sqrt((-4*Mgo**2*MstL**2)/MU_R**4 + (Mgo**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2) **2)))/(2.*Mgo*MstL)))/cmath.sqrt((-4*Mgo**2*MstL**2)/MU_R**4 + (Mgo**2/MU_R**2 + MstL **2/MU R**2 - MT**2/MU R**2)**2)))/(12.*cmath.pi**2*MT**4) + (MU R**2*G**2*re(((MT**2*cmath.sqrt(MstL**4/MU R**4) + (-(Mqo**2/MU R**2) + MT**2/MU R**2)**2 - (2*MstL**2*(Mqo**2/MU R**2) T##2/MU R##211/MU R##211/MU R##2 + (-(Moo##2/MU R##2) R##4 + (-(Moo##2/MU R##2)

IMSc, Chennai Hua-Sheng Shao

• Provide renormalization scale in parameters.py

 MU_R = Parameter(name = 'MU_R', $\mathsf{native} = 'external',$

> $type = 'real',$ $value = 91.188$, $\text{taxname} = \text{.\text{.\}'}$ $\mathsf{lhablock} = \mathsf{'}\mathsf{LOOP}$,

- $hacode = [1]$
- CT_vertices.py:UV, R2 counter term vertices
- CT_couplings.py: couplings for UV and R2 counter terms

UVGC 104 23 = Coupling(name = 'UVGC 104 23',

value = '-((FRCTdeltaxaSxstR*complex(0,1)*G**2)/aS) - 2*FRCTdeltaZxGGxstR*complex(0,1)*G**2 + (complex(0,1)*G**4*invFREps)/(32.*cmath.pi**2)' $order = \{ 'QCD' : 4 \})$

parameters.py: parameters for UV and R2

 t vpe $=$

value = {0:'(0 if 2+Mgo+MstL + MT**2>=Mgo**2 + MstL**2 and MT**2<=(Mgo + MstL)**2 else (0 if Mgo==MstL else (0 if Mgo==MT else (0 if MstL==MT else \ (G**2*cmath.sqrt(MstL**4/MU_R**4 + (-(Mgo**2/MU_R**2) + MT**2/MU_R**2)**2 - (2*MstL**2*(Mgo**2/MU_R**2 + MT**2/MU_R**2))/MU_R**2))/MU_R**2))/Au_R**2+MstL**2*cmath.sqrt((-4*Mgo**2*MstL**2)/MU_R**4 $*2)'$ + (Mgo**2/MU_R**2 + MstL**2/MU_R**2 - MT**2/MU_R**2)**2)) + (G**2*Mgo**2*cmath.sqrt(MstL**4/MU_R**4 + (-(Mgo**2/MU_R**2) + MT**2/MU_R**2)**2 - (2*MstL**2*(Mgo**2/MU_R**2 + MT**2/MU_R**2))/MU R**2))/(12.*cmath.pi**2*MT**2*cmath.sqrt((-4*Mgo**2*MstL**2)/MU R**4 + (Mgo**2/MU R**2 + MstL**2/MU R**2 - MT**2/MU R**2)) - (G**2*MstL**2*cmath.sqrt(MstL**4/MU R**4 + (-(Mgo** 2/MU R**2) + MT**2/MU R**2)**2 - (2*MstL**2*(Mgo**2/MU R**2 + MT**2/MU R**2))/MU R**2))/12.*cmath.pi**2*MT**2*cmath.sgrt((-4*Mgo**2*MstL**2)/MU R**4 + (Mgo**2/MU R**2 + MstL**2/MU R**2 - MT**2/MU_R**2)**2)) - (G**2*Mgo**4*cmath.sgrt(MstL**4/MU_R**4 + (-(Mgo**2/MU_R**2) + MT**2/MU_R**2)**2 - (2*MstL**2*(Mgo**2/MU_R**2 + MT**2/MU_R**2))/MU_R**2)*reglog(Mgo/MstL))/ ath.oi**2*MT**4*cmath.sort((-4*Moo**2*MstL**2)/MU R**4 + (Moo**2/MU R**2 + MstL**2/MU R**2 - MT**2/MU R**2)**2)) + (G**2*Moo**2*MstL**2*cmath.sort(MstL**4/MU R**4 + (-(Moo**2/MU $(0.0642 \times 10^{-10} \text{R} \cdot \text{m}^2 \$ **Complete Complicate Complicate Complete C the negotion putation in heavy I!!!** .*cmath.pi**2*MT**4) - (MU R**2*G**2*MstL**2*re(((MT**2*cmath.sort(MstL**4/MU R**4) + (-(Moo**2/MU R**2) + MT**2/MU R**2) **2 - (2*MstL**2*(Moo**2/MU R**2) + MT**2/MU R**2 *2 + (-(Mgo**2/MU_R**2) + MstL**2/MU_R**2)*cmath.sqrt(MstL**4/MU_R**4 + (-(Mgo**2/MU_R**2) + MT**2/MU_R**2)**2 - (2*MstL**2*(Mgo**2/MU_R**2) + MT**2/MU_R**2) //MU_R**2)*reglog((MstL**4/MU_R**4 + (Mgo**2*(Mgo**2/MU_R**2 - MT**2/MU_R**2))/MU_R**2 - (MstL**2*((2*Mgo**2)/MU_R**2 + MT**2/MU_R**2))/MU_R**2)*reglog((MU_R**2*(Mgo**2/MU_R**2 + MstL**2/MU_R**2 U R**2 + cmath.sort((-4*Moo**2*MstL**2)/MU R**4 + (Moo**2/MU R**2 + MstL**2/MU R**2 - MT**2/MU R**2)**2)))/(2.*Moo*MstL)))/cmath.sort((-4*Moo**2*MstL**2)/MU R**4 + (Moo**2/MU **2/MU R**2 - MT**2/MU R**2)**2)))/(12.*cmath.pi**2*MT**4) + (MU R**2*G**2*re(((MT**2*cmath.sort(MstL**4/MU R**4 + (-(Moo**2/MU R**2) + MT**2/MU R**2)**2 - (2*MstL**2*(Moo**2/MU R**2

• How to define final states at NLO without spoiling perturbative convergence ?

- **• How to define final states at NLO without spoiling perturbative convergence ?**
	- **• Let us consider gluino pair production in SUSY**

NLO diagram for gluino-pair

• How to define final states at NLO without spoiling perturbative convergence ?

• Let us consider gluino pair production in SUSY

NLO diagram for gluino-pair LO diagram for gluino-squark with squark decay

• How to define final states at NLO without spoiling perturbative convergence ?

• Let us consider gluino pair production in SUSY

Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JHEP'19)

IED TREATMENTS OF RESONANCES Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JH

• The formulation of the problem is:

LO: $a+b \longrightarrow \delta+X$ **NLO(Real):** $a + b \longrightarrow \delta + \gamma + X$ with/without $\beta \longrightarrow \delta + \gamma$ non-resonance resonance $\left| \mathcal{A}_{ab\to \delta\gamma X} \right|^2 = \left| \mathcal{A}_{ab\to \delta\gamma X}^{(\beta)} \right|^2 + 2 \Re \left(\mathcal{A}_{ab\to \delta\gamma X}^{(\beta)} \mathcal{A}_{ab\to \delta\gamma X}^{(\beta)^\dagger} \right) + \left| \mathcal{A}_{ab\to \delta\gamma X}^{(\beta)} \right|^2$

- No fully satisfactory solutions but a few proposals: Diagram Removal
- istr=1 DR: remove the resonance diagrams/amplitude
- istr=2 DRI: remove the resonance amplitude squared Diagram Subtraction ${}_{d\sigma_{ab\to\delta\gamma X}^{(\rm DS)}} \propto \left\{\left|{\cal A}_{ab\to\delta\gamma X}^{(\beta)}\right|^2+2\Re\left({\cal A}_{ab\to\delta\gamma X}^{(\beta)}{\cal A}_{ab\to\delta\gamma X}^{(\beta)\dagger}\right)+\left|{\cal A}_{ab\to\delta\gamma X}^{(\beta)}\right|^2\right\}d\phi$ $- f(m_{\delta\gamma}^2) \mathbb{P}\left(\left|\mathcal{A}_{ab\to\delta\gamma X}^{(\beta)}\right|^2 d\phi\right)$, **DS subtraction term** (18)

- **•** DS-finalresh-runBW**:P (FS momenta reshuffling), f (ratio of two BWs with running width)** istr=6
- **•** DS-initresh-runBW**:P (IS momenta reshuffling), f (ratio of two BWs with running width)** istr=4
- **•** DS-finalresh-stdBW**:P (FS momenta reshuffling), f (ratio of two standard BWs)** istr=5
- **•** DS-initresh-stdBW**:P (IS momenta reshuffling), f (ratio of two standard BWs)** istr=3

SIMPLIFIED TREATMENTS OF RESONANCES Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JH

• The formulation of the problem is:

10:
$$
a + b \longrightarrow \delta + X
$$

\n**NLO(Real):** $a + b \longrightarrow \delta + \gamma + X$ with/without $\beta \longrightarrow \delta + \gamma$
\n $\mathcal{A}_{ab \to \delta \gamma X} = \frac{\mathcal{A}_{ab \to \delta \gamma X}^{(\beta)}}{A_{ab \to \delta \gamma X}} + \frac{\mathcal{A}_{ab \to \delta \gamma X}^{(\beta)}}{A_{ab \to \delta \gamma X}} \qquad \text{non-resonance} \qquad \text{resonance} \qquad \text{resonance$

istr=6 • DS-finalresh-runBW:P (FS momenta reshuffling), f (ratio of two BWs with running width

- istr=4 DS-initresh-runBW:P (IS momenta reshuffling), f (ratio of two BWs with running width)
- istr=5 DS-finalresh-stdBW:P (FS momenta reshuffling), f (ratio of two standard BWs)
- **•** DS-initresh-stdBW**:P (IS momenta reshuffling), f (ratio of two standard BWs)** istr=3

MENIS UF RES

Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JH

• Jets plus missing Et $pp \rightarrow nj + E_T$

IFIED TREATMENTS OF RESONANC

Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JH

• Jets plus missing Et $pp \rightarrow nj + \not\!\!{E_T}$

[https://code.launchpad.net/~maddevelopers/mg5amcnlo/MadSTRPlugin](https://code.launchpad.net/%7Emaddevelopers/mg5amcnlo/MadSTRPlugin)

LIFIED TREATMENTS OF RESONAN

Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JH

• Jets plus missing Et $pp \rightarrow nj + \not\!\!{E_T}$

[https://code.launchpad.net/~maddevelopers/mg5amcnlo/MadSTRPlugin](https://code.launchpad.net/%7Emaddevelopers/mg5amcnlo/MadSTRPlugin)

IFIED TREATMENTS OF RESONAN

Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JH

• Jets plus missing Et $pp \rightarrow nj + \not\!\!{E_T}$

[https://code.launchpad.net/~maddevelopers/mg5amcnlo/MadSTRPlugin](https://code.launchpad.net/%7Emaddevelopers/mg5amcnlo/MadSTRPlugin)

