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Lecture 1
NLO Basics

Introduction
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PRECISION MEASUREMENTS AT THE LHC
• Huge data sample collected at the LHC run 2

A. Hoecker’s talk at EPS 2019
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PRECISION MEASUREMENTS AT THE LHC
• Very impressive SM cross section measurements at the LHC

•  many processes are at percent even subpercent level
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PRECISION MEASUREMENTS AT THE LHC
• Very impressive SM cross section measurements at the LHC

•  many processes are at percent even subpercent level

In order to fully exploit these data, theoretical calculations are crucial to keep pace !

Tuesday, November 19, 19
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CROSS SECTION @ LHC

The “femto-universe” 
size = factorization scale µF  
(“arbitrary”) 

 
 

Short-distance cross section 
 
predictable using perturbative QCD 

Parton distribution  
functions  
(from experiment) 

�(pp ! Z +X) =

Z
dx1dx2f(x1, µF )f(x2, µF )�̂(↵s, µF , µR)

�̂(↵s, µF , µR) = [↵s(µR)]
n


�̂(0) +

↵s

2⇡
�̂(1)(µF , µR) +

⇣↵s

2⇡

⌘2
�̂(2)(µF , µR) + · · ·

�
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CROSS SECTION @ LHC

The “femto-universe” 
size = factorization scale µF  
(“arbitrary”) 

 
 

Short-distance cross section 
 
predictable using perturbative QCD 

Parton distribution  
functions  
(from experiment) 

�(pp ! Z +X) =

Z
dx1dx2f(x1, µF )f(x2, µF )�̂(↵s, µF , µR)

�̂(↵s, µF , µR) = [↵s(µR)]
n


�̂(0) +

↵s

2⇡
�̂(1)(µF , µR) +

⇣↵s

2⇡

⌘2
�̂(2)(µF , µR) + · · ·

�

NNLO

d�
all�orders

d logµR/F
= 0

d�NkLO

d logµR/F
⇠ O(↵n+k+1

s )

remaining scale 
uncertainty
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HADRON COLLIDER PHYSICS: NOW
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HADRON COLLIDER PHYSICS: NOW
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N3LO HIGGS(+HIGGS) PRODUCTION: HIGHEST ACCURACY

• Percent level inclusive ggF Higgs cross section
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N3LO HIGGS(+HIGGS) PRODUCTION: HIGHEST ACCURACY

• Percent level inclusive ggF Higgs cross section

• Percent level inclusive ggF Higgs+Higgs cross section
Chen, Li, HSS, Wang (1909.06808)

• Higher order -> more reliable of  
(differential cross sections)

• Scale uncertainties decrease

• Perturbative series is convergent

• The scale uncertainties are not 
reliable in LO but capture the 
correct missing higher order in 
NLO ! 

Tuesday, November 19, 19
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NLO W+JETS: HIGHEST JET MULTIPLICITY AT NLO 
• Important (and often dominant) background at the LHC
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NLO W+JETS: HIGHEST JET MULTIPLICITY AT NLO 
• Important (and often dominant) background at the LHC

• NLO QCD correction: W+(>=n) jets, n=0,...,5
Bern, Dixon, Febres Cordero, Hoche, Ita, Kosower, Maitre, Ozeren (PRD’13)

Technique improvements:
- Unitarity cuts
- Integrand reduction
- Recursion relations
- Local IR subtraction

Tuesday, November 19, 19
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NLO W+JETS: HIGHEST JET MULTIPLICITY AT NLO 
• Important (and often dominant) background at the LHC

• NLO QCD correction: W+(>=n) jets, n=0,...,5
Bern, Dixon, Febres Cordero, Hoche, Ita, Kosower, Maitre, Ozeren (PRD’13)

• Automated NLO QCD: exclusive W+n jets, n=0,...,2
Frederix, Frixione, Papaefstathiou, Prestel, Torrielli (JHEP’15)

Commands:
./bin/mg5_aMC
MG5_aMC > import model loop_sm-no_b_mass
MG5_aMC > define p = p b b~; define j = p
MG5_aMC > define l = e+ mu+ e- mu-
MG5_aMC > define vl = ve vm ve~ vm~
MG5_aMC > generate p p > l vl [QCD] @ 0
MG5_aMC > generate p p > l vl j [QCD] @ 1
MG5_aMC > generate p p > l vl j j [QCD] @ 2
MG5_aMC > output; launch

Tuesday, November 19, 19
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NLO W+JETS: HIGHEST JET MULTIPLICITY AT NLO 
• Important (and often dominant) background at the LHC

• NLO QCD correction: W+(>=n) jets, n=0,...,5
Bern, Dixon, Febres Cordero, Hoche, Ita, Kosower, Maitre, Ozeren (PRD’13)

• Automated NLO QCD: exclusive W+n jets, n=0,...,2
Frederix, Frixione, Papaefstathiou, Prestel, Torrielli (JHEP’15)

Commands:
./bin/mg5_aMC
MG5_aMC > import model loop_sm-no_b_mass
MG5_aMC > define p = p b b~; define j = p
MG5_aMC > define l = e+ mu+ e- mu-
MG5_aMC > define vl = ve vm ve~ vm~
MG5_aMC > generate p p > l vl [QCD] @ 0
MG5_aMC > generate p p > l vl j [QCD] @ 1
MG5_aMC > generate p p > l vl j j [QCD] @ 2
MG5_aMC > output; launch

Technique improvements:
- Matured automated framework
- Methods of matching ME to PS
- Merging of multi-jet ME with PS

Alwall, Frederix, Frixione, Hirschi, Maltni, Mattelaer, HSS, 
Stelzer, Torrielli, Zaro (JHEP’14)
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Lecture 1
NLO Basics
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Lecture 1
NLO Basics

A NLO example

Zq q̄

Tuesday, November 19, 19
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A NLO EXAMPLE: BORN
• Let us calculate NLO QCD of  Z -> q qbar decay

For simplicity, we assume quarks are massless

A
Born

= ��cqcq̄"µ(pZ)ū(pq).�
µ
Zqq̄.v(pq̄)

�

µ
Zqq̄ = ie

✓
Iq

cos ✓w sin ✓w
�Qq

sin ✓w
cos ✓w

◆
�µPL � ieQq

sin ✓w
cos ✓w

�µPR

• Writing down Born amplitude according to Feynman rules

• Squaring amplitude, summing over colours and spins, and 
averaging the spin of  the initial state
X

|A
Born

|2 = 8⇡↵m2

Z

 
2Q2

q

✓
sin ✓w
cos ✓w

◆
2

� 2

IqQq

cos

2 ✓w
+

I2q
cos

2 ✓w sin

2 ✓w

!

• Phase-space integration

�
Born

(Z ! qq̄) =
1

2mZ

Z
(2⇡)4�4(pZ � pq � pq̄)

1

(2⇡)3⇥2

d3pq
2Eq

d3pq̄
2Eq̄

X
|A

Born

|2

= ↵mZ

 
Q2

q
sin

2 ✓w
cos

2 ✓w
� QqIq

cos

2 ✓w
+

I2q
2 cos

2 ✓w sin

2 ✓w

!

↵ =
e2

4⇡

Tuesday, November 19, 19
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A NLO EXAMPLE: VIRTUAL
• Let us calculate NLO QCD of  Z -> q qbar decay
• Writing down one-loop amplitude according to Feynman rules

For simplicity, we assume quarks are massless

A
1loop

= ig⌫⇢"µ(pZ)ū(pq).
⇣
�igs�⌫T

a
cqc

⌘
.

Z
dd l̄

(2⇡)d
l̄/.�µ

Zqq̄.
�
l̄/� p/Z

�

l̄2
�
l̄ � pq

�
2

�
l̄ � pZ

�
2

.
⇣
�igs�⇢T

a
ccq̄

⌘
.v(pq̄)

• Need to evaluate two tensor integrals

Iµ1 =

Z
dd l̄

(2⇡)d
l̄µ

l̄2
�
l̄ � pq

�2 �
l̄ � pZ

�2 Iµ⌫2 =

Z
dd l̄

(2⇡)d
l̄µ l̄⌫

l̄2
�
l̄ � pq

�2 �
l̄ � pZ

�2

according to Lorentz structures

Iµ1 = pµqB1 + pµZB2 Iµ⌫2 = gµ⌫B00 + pµq p
⌫
qB11 + pµZp

⌫
ZB22 +

�
pµq p

⌫
Z + pµZp

⌫
q

�
B12

Solving the coefficients B, e.g.
pq · I1 = p2qB1 + pq · pZB2 = pq · pZB2 pZ · I1 = pq · pZB1 + p2ZB2 = pq · pZB1 +m2

ZB2

Tuesday, November 19, 19
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A NLO EXAMPLE: VIRTUAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• Need to evaluate two tensor integrals

B2 =
pq · I1
pq · pZ

Solving the coefficients B, e.g.

B1 =
pZ · I1 �m2

ZB2

pq · pZ

pq · I1 =

Z
dd l̄

(2⇡)d
pq · l̄

l̄2
�
l̄ � pq

�2 �
l̄ � pZ

�2

=
1

2

Z
dd l̄

(2⇡)d
l̄2 �

�
l̄ � pq

�2

l̄2
�
l̄ � pq

�2 �
l̄ � pZ

�2

=
1

2

Z
dd l̄

(2⇡)d
1

�
l̄ � pq

�2 �
l̄ � pZ

�2 � 1

2

Z
dd l̄

(2⇡)d
1

l̄2
�
l̄ � pZ

�2

=
1

2

Z
dd l̄

(2⇡)d
1

l̄2
�
l̄ � pq̄

�2 � 1

2

Z
dd l̄

(2⇡)d
1

l̄2
�
l̄ � pZ

�2

Tuesday, November 19, 19
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A NLO EXAMPLE: VIRTUAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• Need to evaluate two tensor integrals
Evaluating the scalar integrals, e.g.
Z

d

d
l̄

(2⇡)d
1

l̄

2
�
l̄ � pq̄

�2 =

Z 1

0
dx

Z
d

d
l̄

(2⇡)d
1

h
xl̄

2 + (1� x)
�
l̄ � pq̄

�2i2 Feynman parameterization !

Using on-shell condition !=

Z 1

0
dx

Z
d

d
l̄

(2⇡)d
1

�
l̄ � (1� x)pq̄

�4

=

Z 1

0
dx

Z
d

d
l̄

(2⇡)d
1

�
l̄

2
�2 Translational invariance !

=

Z
dd l̄

(2⇡)d
1

�
l̄2
�2 Integration over x !

=

Z
dl̄0dd�1~̄l

(2⇡)d
1

⇣
l̄20 � |~̄l|2

⌘2

Tuesday, November 19, 19



IMSc, Chennai Hua-Sheng Shao

• Let us calculate NLO QCD of  Z -> q qbar decay

20

A NLO EXAMPLE: VIRTUAL

• Need to evaluate two tensor integrals
Evaluating the scalar integrals, e.g.
Z

dd l̄

(2⇡)d
1

l̄2
�
l̄ � pq̄

�2
l̄0!il̄0=

i

(2⇡)d

Z
d⌦d

Z +1

0
d|l̄||l̄|d�5 Wick rotation & 

spherical coordinate !

=
i2⇡d/2

�(d/2)(2⇡)d

Z +1

0
d|l̄||l̄|d�5 Integration over solid angle !

=
i2⇡d/2

�(d/2)(2⇡)d

✓Z 1

0
d|l̄||l̄|d�5 +

Z +1

1
d|l̄||l̄|d�5

◆
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• Let us calculate NLO QCD of  Z -> q qbar decay

20

A NLO EXAMPLE: VIRTUAL

• Need to evaluate two tensor integrals
Evaluating the scalar integrals, e.g.
Z

dd l̄

(2⇡)d
1

l̄2
�
l̄ � pq̄

�2
l̄0!il̄0=

i

(2⇡)d

Z
d⌦d

Z +1

0
d|l̄||l̄|d�5 Wick rotation & 

spherical coordinate !

=
i2⇡d/2

�(d/2)(2⇡)d

Z +1

0
d|l̄||l̄|d�5 Integration over solid angle !

=
i2⇡d/2

�(d/2)(2⇡)d

✓Z 1

0
d|l̄||l̄|d�5 +

Z +1

1
d|l̄||l̄|d�5

◆

(IR): the integral is divergent when |l̄| ! 0 d  4

|l̄| ! +1(UV): the integral is divergent when d � 4

Tuesday, November 19, 19
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• Let us calculate NLO QCD of  Z -> q qbar decay

20

A NLO EXAMPLE: VIRTUAL

• Need to evaluate two tensor integrals
Evaluating the scalar integrals, e.g.
Z

dd l̄

(2⇡)d
1

l̄2
�
l̄ � pq̄

�2
l̄0!il̄0=

i

(2⇡)d

Z
d⌦d

Z +1

0
d|l̄||l̄|d�5 Wick rotation & 

spherical coordinate !

=
i2⇡d/2

�(d/2)(2⇡)d

Z +1

0
d|l̄||l̄|d�5 Integration over solid angle !

=
i2⇡d/2

�(d/2)(2⇡)d

✓Z 1

0
d|l̄||l̄|d�5 +

Z +1

1
d|l̄||l̄|d�5

◆

(IR): the integral is divergent when |l̄| ! 0 d  4

|l̄| ! +1(UV): the integral is divergent when d � 4

Regularisations:

d = 4� 2✏UV, ✏UV ! 0+
d = 4� 2✏IR, ✏IR ! 0�
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A NLO EXAMPLE: VIRTUAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• Need to evaluate two tensor integrals
Evaluating the scalar integrals, e.g.
Z

dd l̄

(2⇡)d
1

l̄2
�
l̄ � pq̄

�2 =
i2⇡d/2

�(d/2)(2⇡)d

✓
� 1

2✏IR
+

1

2✏UV

◆

• Squaring with Born amplitude, summing over colours and spins, 
and averaging the spin of  the initial state

�2

3

✓
5� ⇡2 � log

m2
Z

4⇡2µ2
R

+ log

2 m2
Z

4⇡2µ2
R

◆�

• The UV divergence needs renormalisation
X

2<{A
UV

A⇤
Born

} =
(4⇡)✏

�(1� ✏)

✓X
|A

Born

|2
◆

↵s

⇡


� 2

3✏
UV

+
2

3✏
IR

�

X
2<{A

1loop

A⇤
Born

} =

(4⇡)✏

�(1� ✏)

✓X
|A

Born

|2
◆

↵s

⇡


2

3✏
UV

� 4

3✏2
IR

� 4

3✏
IR

✓
1� log

m2

Z

4⇡2µ2

R

◆

↵s =
g2s
4⇡
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A NLO EXAMPLE: VIRTUAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• Need to evaluate two tensor integrals
Evaluating the scalar integrals, e.g.
Z

dd l̄

(2⇡)d
1

l̄2
�
l̄ � pq̄

�2 =
i2⇡d/2

�(d/2)(2⇡)d

✓
� 1

2✏IR
+

1

2✏UV

◆

• Squaring with Born amplitude, summing over colours and spins, 
and averaging the spin of  the initial state

�2

3

✓
5� ⇡2 � log

m2
Z

4⇡2µ2
R

+ log

2 m2
Z

4⇡2µ2
R

◆�

• The UV divergence needs renormalisation
X

2<{A
UV

A⇤
Born

} =
(4⇡)✏

�(1� ✏)

✓X
|A

Born

|2
◆

↵s

⇡


� 2

3✏
UV

+
2

3✏
IR

�

• The virtual matrix element is:

V =
X

2<{A
1loop

A⇤
Born

}+
X

2<{A
UV

A⇤
Born

}

X
2<{A

1loop

A⇤
Born

} =

(4⇡)✏

�(1� ✏)

✓X
|A

Born

|2
◆

↵s

⇡


2

3✏
UV

� 4

3✏2
IR

� 4

3✏
IR

✓
1� log

m2

Z

4⇡2µ2

R

◆

↵s =
g2s
4⇡
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A NLO EXAMPLE: REAL
• Let us calculate NLO QCD of  Z -> q qbar decay
• Writing down real amplitude according to Feynman rules

• Squaring amplitude, summing over colours and spins, and 
averaging the spin of  the initial state

s24 = (pq + pg)
2, s34 = (pq̄ + pg)

2

X
|A

real

|2 =

✓X
|A

Born

|2
◆
↵s

8⇡(d� 2)

3m2

Zs24s34

⇥
⇥
(d� 2)s224 + 2(d� 4)s24s34 + (d� 2)s234 � 4m2

Z(s24 + s34) + 4m4
Z

⇤
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A NLO EXAMPLE: REAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• 3-body phase-space integration

�real =
1

2mZ

Z
(2⇡)d �d (pZ � pq � pq̄ � pg)

1

(2⇡)3(d�1)

dd�1~pq
2Eq

dd�1~pq̄
2Eq̄

dd�1~pg
2Eg

X
|Areal|2

y =
s34
m2

Z

, 1� y � z =
s24
m2

Z

d�(2)(pZ ! pq, pq̄) = (2⇡)d�d(pZ � pq � pq̄)
1

(2⇡)2(d�1)

dd�1~pq
2Eq

dd�1~pq̄
2Eq̄

d�(3)(pZ ! pq, pq̄, pg) = (2⇡)d�d(pZ � pq � pq̄ � pg)
1

(2⇡)3(d�1)

dd�1~pq
2Eq

dd�1~pq̄
2Eq̄

dd�1~pg
2Eg

=
(4⇡)2✏

8(2⇡)2
1

m2✏
Z

d⌦d

=
(4⇡)3✏

32(2⇡)4�(1� ✏)
(m2

Z)
1�2✏d⌦d

⇥
Z 1

0
dzz�✏

Z 1�z

0
dyy�✏(1� z � y)�✏

= d�(2)(pZ ! pq, pq̄)⇥
(4⇡)✏

16⇡2�(1� ✏)
(m2

Z)
1�✏

⇥
Z 1

0
dzz�✏

Z 1�z

0
dyy�✏(1� z � y)�✏
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A NLO EXAMPLE: REAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• 3-body phase-space integration
X

|A
real

|2 =

✓X
|A

Born

|2
◆
↵s

8⇡(d� 2)

3m2

Zy(1� z � y)

⇥
(d� 2)(1� z)2 + 4y2 � 4y(1� z) + 4z

⇤

The integration over y is divergent when d  4 (✏ � 0)

y ! 0 (s34 ! 0)

y ! 1� z (s24 ! 0) on shell

on shell

pg ! 0

pg ! 0

pg||pq

pg||pq̄

(1)

(2)

(1)

(2)

(z ! 0)

(z ! 0)

soft singularity

collinear singularity

soft singularity

collinear singularity
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A NLO EXAMPLE: REAL
• Let us calculate NLO QCD of  Z -> q qbar decay

• 3-body phase-space integration

�virtual =
1

2mZ

Z
d�(2)(pZ ! pq, pq̄)V

�real =
1

2mZ

Z
d�(3)(pZ ! pq, pq̄, pg)

X
|Areal|2

=
1

2mZ

Z
d�(2)(pZ ! pq, pq̄)

✓X
|A

Born

|2
◆

+

1

3

✓
2 log

2 m2
Z

4⇡2µ2
R

� 2 log

m2
Z

4⇡2µ2
R

� 2⇡2
+ 13

◆�
⇥ (4⇡)✏

�(1� ✏)

↵s

⇡


4

3✏2IR
+

2

3✏IR

✓
1� 2 log

m2
Z

4⇡2µ2
R

◆

�
virtual

+ �
real

=
1

2mZ

Z
d�(2)(pZ ! pq, pq̄)

✓X
|A

Born

|2
◆

(4⇡)✏

�(1� ✏)

↵s

⇡

• Sum real and virtual
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A NLO EXAMPLE: NLO
• Let us calculate NLO QCD of  Z -> q qbar decay

• Sum real and virtual

�
virtual

+ �
real

=
1

2mZ

Z
d�(2)(pZ ! pq, pq̄)

✓X
|A

Born

|2
◆

(4⇡)✏

�(1� ✏)

↵s

⇡

All remaining IR poles cancel (in general KLN theorem)
Kinoshita Lee Nauenberg

✏!0

= �
Born

(Z ! qq̄)
↵s

⇡

�NLO(Z ! qq̄ +X) = �Born(Z ! qq̄)
⇣
1 +

↵s

⇡

⌘

We finally get a well-known result !
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ex: Filling all the gaps I 
did not show !

In general, NLO calculations are 
complex (and tedious, error-prone). 

Let us work with the aid of a computer 
and MadGraph5_aMC@NLO.
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NLO Generics
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NLO ANATOMY
• Three parts need to be computed in a NLO calculation

�NLO =

Z
d�(n)B +

Z
d�(n)V +

Z
d�(n+1)R

O(↵b
s) O(↵b+1

s ) O(↵b+1
s )

Born
cross section

Virtual
correction

Real
correction

Finite Divergent Divergent

MadEvent MadLoop MadFKS
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Lecture 2

30

NLO Generics

Virtual=Loop+UV
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ONE-LOOP DIAGRAM GENERATION
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ONE-LOOP INTEGRAL EVALUATION
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ONE-LOOP INTEGRAL EVALUATION
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TENSOR INTEGRAL REDUCTION
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TENSOR INTEGRAL REDUCTION
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TENSOR INTEGRAL REDUCTION
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INTEGRAND REDUCTION

• The decomposition to the 
basis scalar integrals 
works at the level of the 
integrals

• Knowing a relation directly at 
the integrand level, we would 
be able to manipulate the 
reduction without doing the 
the integrals

TIR OPP
Ossola, Papadopulos, Pittau  (NPB’06)
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INTEGRAND REDUCTION
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INTEGRAND REDUCTION
• Take Box (4-point) coefficients as an example
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INTEGRAND REDUCTION
• In general:
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INTEGRAND REDUCTION
• In general:
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D-DIMENSIONAL COMPLEX
• The previous expression should in fact be written in d 

dimensions Z
dd l̄

(2⇡)d
N(l̄, ✏)

D̄0D̄1D̄2 · · · D̄m�1

D̄i =
�
l̄ + pi

�2 �m2
i , p0 = 0
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D-DIMENSIONAL COMPLEX
• The previous expression should in fact be written in d 

dimensions Z
dd l̄

(2⇡)d
N(l̄, ✏)

D̄0D̄1D̄2 · · · D̄m�1

D̄i =
�
l̄ + pi

�2 �m2
i , p0 = 0

• In numerical calculations, it is very convenient to perform 
the following decomposition

l̄µ = lµ + l̃µ

d� dim

µ = 0, 1, 2, 3, · · · , 3� 2✏{
4� dim

(�2✏)� dim 4d spacetime {

physical
(�2✏)d space

abstract

lµ = 0, µ 2 (�2✏)d space l̃µ = 0, µ 2 4d spacetime
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D-DIMENSIONAL COMPLEX
• The previous expression should in fact be written in d 

dimensions Z
dd l̄

(2⇡)d
N(l̄, ✏)

D̄0D̄1D̄2 · · · D̄m�1

D̄i =
�
l̄ + pi

�2 �m2
i , p0 = 0

• In numerical calculations, it is very convenient to perform 
the following decomposition

l̄µ = lµ + l̃µ

d� dim

µ = 0, 1, 2, 3, · · · , 3� 2✏{
4� dim

(�2✏)� dim 4d spacetime {

physical
(�2✏)d space

abstract

lµ = 0, µ 2 (�2✏)d space l̃µ = 0, µ 2 4d spacetime

N(l̄, ✏) = N(l) + Ñ(l, l̃, ✏)

Suitable for numerical calc. Complement with special CT R2  
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D-DIMENSIONAL COMPLEX
• Compute the remaining loop part in terms of  rational 

functions of  external momentum invariants and masses

R2 = lim
✏!0

Z
dd l̄

(2⇡)d
Ñ(l, l̃, ✏)

D̄0D̄1 · · · D̄m�1

• For example, a gluon self-energy diagram:

• After performing some Dirac algebra, we have

• Using the integration
Z

dd l̄

(2⇡)d
l̃2�

l̄2 �m2
t

� �
(l̄ + pg)2 �m2

t

� = � i

32⇡2

 
2m2

t �
p2g
3

!
+O(✏)

• We have R2 term
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D-DIMENSIONAL COMPLEX
• It has been proven that R2 is only UV related. Therefore, 

like renormalisation counterterms, they can be 
reexpressed into R2 Feynman rules

Draggiotis, Garzelli, Papadopoulos, Pittau (JHEP’09); HSS, Zhang, Chao (JHEP’11)

QCD R2 Feynman Rules
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D-DIMENSIONAL COMPLEX
• In integrand reduction, additional rational terms R1 are 

needed !

integration of this piece 
gives rise R1

• Can be included in OPP reduction

• Not needed in TIR reduction
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NLO Generics

Real
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NLO ANATOMY
• Three parts need to be computed in a NLO calculation

�NLO =

Z
d�(n)B +

Z
d�(n)V +

Z
d�(n+1)R

Born
cross section

Virtual
correction

Real
correction
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NLO ANATOMY
• Three parts need to be computed in a NLO calculation

�NLO =

Z
d�(n)B +

Z
d�(n)V +

Z
d�(n+1)R

Born
cross section

Virtual
correction

Real
correction
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BRANCHING: TO BE OR NOT TO BE
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IR SAFETY
• In order to have meaningful fixed-order predictions in 

perturbation theory, observables must be IR-safe, i.e. not 
sensitive to the emission of  soft/collinear partons

• For example,

• The number of  gluons is NOT IR safe.

• The transverse energy sum is IR safe.

• The leading pT/energy particle is NOT IR safe (soft or collinear unsafe ?).

• The colour in a given cone is NOT IR safe (soft or collinear unsafe ?).

Tuesday, November 19, 19
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A TOY EXAMPLE
• Assuming the phase space integration can be casted into 

a one-dimensional case                   :

IR safety

Tuesday, November 19, 19
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A TOY EXAMPLE

Dimensionally regularise in x !

• We have used:
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PHASE-SPACE SLICING
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Phase-space slicing

Tuesday, November 19, 19
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• Phase-space slicing

Tuesday, November 19, 19



IMSc, Chennai Hua-Sheng Shao51

PHASE-SPACE SLICING
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Phase-space slicing

Power    terms are suppressed !
Large numerical cancellations !
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SUBTRACTION
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Subtraction method

• Find a generic simple function S has exactly same IR singularity as real matrix element

• ... but much easier to integrate analytically.

Tuesday, November 19, 19
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SUBTRACTION
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Subtraction method

• Find a generic simple function S has exactly same IR singularity as real matrix element

• ... but much easier to integrate analytically.

Finite Finite

Analytically known Integrating numerically 
in 4d 
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SUBTRACTION
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Subtraction method

Tuesday, November 19, 19



IMSc, Chennai Hua-Sheng Shao53

SUBTRACTION
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Subtraction method

• In above toy example

Tuesday, November 19, 19



IMSc, Chennai Hua-Sheng Shao53

SUBTRACTION
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element is very hard. Dedicated general approaches are 
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• Subtraction method
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• Let us use
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SUBTRACTION
• In general, the phase-space integration over real matrix 

element is very hard. Dedicated general approaches are 
developed !
• Subtraction method

• In above toy example

• Let us use

No approximation !
Numerical cancellations mitigated !
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NLO SUBTRACTION

�NLO =

Z
d�(n)B +

Z
d�(n)V +

Z
d�(n+1)R

• Master formula:

• The subtraction counterterm S should be chosen:
• It exactly matches the singular behaviour of  real ME
• It can be integrated numerically in a convenient way
• It can be integrated exactly in d dimension
• It is process independent (overall factor times Born ME)

• In gauge theory, the singular structure is universal
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TWO WIDELY-USED SUBTRACTION METHODS
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FKS SUBTRACTION
• The real ME singular as

• Partition the phase space in order to have at most one soft 
and/or one collinear singularity

• Use plus prescriptions to subtract the divergences
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FKS SUBTRACTION
• Counterevents:
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NLO Generics

NLO+PS
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WHY MATCH TO PARTON SHOWERS ?
• Parton showers evolve hard partons by emitting extra 

quanta down to a more realistic final states (made of  
hadrons)

• They resum the large logarithms appearing in the phase-
space corners, which complement with fixed order.

• A fully exclusive description of  the event is available

• Only after matching to parton showers, the NLO 
unweighted events can be generated. 

• Higher efficiency in particular for time-consuming simulations 
(e.g. detector)

• NLO calculations are inclusive (though fully-differential), 
but provide the first reliable estimate of  rates and 
uncertainties.
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• Matching to parton showers: avoid double counting

60

A CAVEAT IN DOUBLE COUNTING
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• Matching to parton showers: avoid double counting

60

A CAVEAT IN DOUBLE COUNTING

Parton shower

... Born
+Virtual
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• Matching to parton showers: avoid double counting

60

A CAVEAT IN DOUBLE COUNTING

Parton shower

... Born
+Virtual

RealRe
al 

em
iss
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n
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• Matching to parton showers: avoid double counting

60

A CAVEAT IN DOUBLE COUNTING

Parton shower

... Born
+Virtual

... RealRe
al 

em
iss

io
n

• Double couting between real emission and parton shower

• Double couting between virtual corrections and the non-emission 
probability via the Sudakov factor in parton shower
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A CAVEAT IN DOUBLE COUNTING
• Like LO, let us wrongly generate events separately 

from Born, virtual and real parts, and then pass these 
events to a parton shower:

Tuesday, November 19, 19
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A CAVEAT IN DOUBLE COUNTING
• Like LO, let us wrongly generate events separately 

from Born, virtual and real parts, and then pass these 
events to a parton shower:

Parton shower operators
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A CAVEAT IN DOUBLE COUNTING
• Like LO, let us wrongly generate events separately 

from Born, virtual and real parts, and then pass these 
events to a parton shower:

• Because of  unitarity of  parton shower, we should get 
full NLO cross section after expanding PS operators
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• Like LO, let us wrongly generate events separately 

from Born, virtual and real parts, and then pass these 
events to a parton shower:

• Because of  unitarity of  parton shower, we should get 
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• Let us check ...
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MC@NLO
• In the MC@NLO formalism, double counting can be 

cured by the so-called Monte Carlo counterterms

Frixione, Webber JHEP’02

• The MC@NLO cross section is:

• Expanding the Sudakov up to NLO:
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MC@NLO

• The MC counterterm has remarkable properties:

• Avoiding double counting

• Matching the IR singular behaviour of  the real ME, making it 
possible to generate unweighted events (up to a sign though)

• A smooth matching between PS and ME: in the IR (hard) region, 
same shape as PS (ME)
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MC@NLO

• The MC counterterm has remarkable properties:

• Avoiding double counting

• Matching the IR singular behaviour of  the real ME, making it 
possible to generate unweighted events (up to a sign though)

• A smooth matching between PS and ME: in the IR (hard) region, 
same shape as PS (ME)

• However, the MC counterterm is PS dependent.

• Two type of  events:

S-event H-event
Without showering, NLO events from LHE file is  NOT physical.
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POWHEG
• In the POWHEG formalism, it modifies the Sudakov for 

the first emission.

Nason JHEP’04
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POWHEG
• In the POWHEG formalism, it modifies the Sudakov for 

the first emission.

Nason JHEP’04

• The POWHEG cross section is:
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POWHEG
• In the POWHEG formalism, it modifies the Sudakov for 

the first emission.

Nason JHEP’04

• The POWHEG cross section is:

• Verifying there is no double counting.

t integration goes to 1
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POWHEG

global K factor modified Sudakov
for 1st emission
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MC@NLO VS POWHEG

• The two methods can be cast into a single formula

singular finite
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MC@NLO VS POWHEG
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Lecture 3
Advanced NLO Topics
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Lecture 3
Advanced NLO Topics

More Interaction Is Different
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WHY WE CARE EW CORRECTIONS ?
•  LHC will run (ran) at 14 (13) TeV and future colliders at 100 TeV

•  energy reaches deeper into multi-TeV region & high integrated luminosity
•  many processes (even rare processes before) reach precision era (precent)

•  NLO QCD becomes standard: automation (e.g. MG5_aMC)
•  scale uncertainty reaches to 10% level
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Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, HSS, Stelzer, Torrielli, Zaro JHEP’14
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•  cross section ratios, e.g. different center-of-mass energy, different processes
•  fundamental parameters, e.g. W mass 
•  (differential) cross sections for candle processes, e.g. top quark pair xs, Z pt 

Gehrmann-de Ridder et al. JHEP’16

also see Boughezal et al. PRL’16
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• Let us start from defining NLO “EW Corrections” (= “EWC”)
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GENERAL FEATURE OF EW CORRECTIONS 
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• Let us start from defining NLO “EW Corrections” (= “EWC”)

71

GENERAL FEATURE OF EW CORRECTIONS 

The “femto-universe” 
size = factorization scale µF  
(“arbitrary”) 

 
 

Short-distance cross section 
 
predictable using perturbative QCD 

Parton distribution  
functions  
(from experiment) 

�(pp ! Z +X) =

Z
dx1dx2f(x1, µF )f(x2, µF )�̂(↵s, µF , µR)
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• Let us start from defining NLO “EW Corrections” (= “EWC”)

71

GENERAL FEATURE OF EW CORRECTIONS 

�̂(↵s, µF , µR) = [↵s(µR)]
n


�̂(0) +

↵s

2⇡
�(1)(µF , µR) +

⇣↵s

2⇡

⌘2
�̂(2)(µF , µR) + · · ·

�

Q
C

DLO NLO NNLO
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• Let us start from defining NLO “EW Corrections” (= “EWC”)

71

GENERAL FEATURE OF EW CORRECTIONS 

Q
C

DLO NLO NNLO
�̂(↵s,↵, µF , µR) = [↵s(µR)]

n↵m


�̂(0,0) +

↵s

2⇡
�(1,0)(µF , µR) +

⇣↵s

2⇡

⌘2
�̂(2,0)(µF , µR) + · · ·

+
↵

2⇡
�(0,1)(µF , µR) +

⇣ ↵

2⇡

⌘2
�̂(0,2)(µF , µR) + · · ·

E
W

+
X

i�1

X

j�1

⇣↵s

2⇡

⌘i ⇣ ↵

2⇡

⌘j
�̂(i,j)(µF , µR)

3

5
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• Let us start from defining NLO “EW Corrections” (= “EWC”)
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GENERAL FEATURE OF EW CORRECTIONS 

• So far, it seems obvious that EWC is just one more      expansion wrt Born        ↵
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• Let us start from defining NLO “EW Corrections” (= “EWC”)
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GENERAL FEATURE OF EW CORRECTIONS 

• So far, it seems obvious that EWC is just one more      expansion wrt Born        ↵
• Situation may be more complicated        

• There may present several order contributions in Born (e.g. dijet)
• The usually ignored off-shell effect may be important �/M ' ↵
• Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)
• Photon and jet is not well separated (need fragmentation function or some approximations)
• If  phase space is enough, EW boson radiation will be quite often (do we need them ?)
• The general matching between matrix element and parton shower will be difficult 

Kallweit et al. JHEP’17
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GENERAL FEATURE OF EW CORRECTIONS 

• So far, it seems obvious that EWC is just one more      expansion wrt Born        ↵
• Situation may be more complicated        

• There may present several order contributions in Born (e.g. dijet)
• The usually ignored off-shell effect may be important �/M ' ↵
• Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)
• Photon and jet is not well separated (need fragmentation function or some approximations)
• If  phase space is enough, EW boson radiation will be quite often (do we need them ?)
• The general matching between matrix element and parton shower will be difficult 

• Three     schemes are frequently used ↵

•           scheme: works good for internal photon
↵(0)•           scheme: appropriate for external photon
↵(MZ)
•           scheme: works good for weak bosons and well measuredGµ

Shall we use different scheme/renormalization for different vertices in one diagram ?
• Use                                  to capture the missing higher order ?                                    KNLO QCD ⇥KNLO EW
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ENHANCE EW CORRECTIONS 
• Enhance EWC by Yukawa coupling
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• Enhance EWC by EW Sudakov logarithms
• EW Sudakov logarithms come from exchange of  virtual weak bosons

⇠ �cLL
↵

⇡s2w
log

2 Q2

M2
W

+ cNLL
3↵

⇡s2w
log

Q2

M2
W

+ · · ·

Leading Log Next-to-Leading Log

soft collinear

e.g.
Q = 1 TeV �cLL ⇥ 26% + cNLL ⇥ 16%
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• One does not treat W/Z inclusively as they can be (at least partially) reconst.
• Even treat W/Z as inclusive as gluon/photon: initial state is not SU(2) singlet
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Kallweit et al. JHEP’17

Large +QCD corr. cancel 
with large -EW corr.

QCDxEW differs 
significantly wrt QCD+EW
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• One does not treat W/Z inclusively as they can be (at least partially) reconst.
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• e.g. Drell-Yan at large invariant mass receives large contributions from small t Dittmaier et al. ’10 
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EW IN HIGH-ENERGY SCATTERINGS

Plot by M. Schonherr at Durham U.

• BSM effects are expected to 
be enhanced in the high-
energy scatterings 

• -> motivated BSM search go to 
the tail

• EW corr. increase up to tens of 
percent due to EW Sudakov 
logs

• The EW log resummation is still 
not mandatory@ (HL-)LHC as 

↵L ⌧ 1
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MADGRAPH5_AMC@NLO IN A NUTSHELL
Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, HSS, Stelzer, Torrielli, Zaro JHEP’14

4 commands for a NLO calculation

> ./bin/mg5_aMC
> generate process [QCD]
> output
> launch
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MADGRAPH5_AMC@NLO IN A NUTSHELL
Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, HSS, Stelzer, Torrielli, Zaro JHEP’14

4 commands for a NLO calculation

> ./bin/mg5_aMC
> generate process [QCD]
> output
> launch

complete automation for 
QCD+EW

> ./bin/mg5_aMC
> generate process [QCD QED]
> output
> launch

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP’18
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MADGRAPH5_AMC@NLO: COMPLETE NLO
• Generation syntax for any LO and NLO (in v3.X):

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP’18
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MADGRAPH5_AMC@NLO: NLO EW
• Examples:

LO1

NLO2

-15
-10
-5
 0
 5

 10
 15

δ E
W

 [%
]

e+νe e+νej e+νejj e+e- e+e-j e+e-jj e+e-µ+µ- e+νeµ
-ν-µ

Ma
dG
ra
ph
5_
aM
C@
NL
O

-15
-10
-5
 0
 5

 10
 15

δ E
W

 [%
]

He+νe He+e- Hjj W+W-W+ ZZW+ ZZZ HZZ HZW+

Ma
dG
ra
ph
5_
aM
C@
NL
O

-15
-10
-5
 0
 5

 10
 15

δ E
W

 [%
]

HHW+ HHZ tt-W+ tt-Z tt-H jjj tj tt-j

Ma
dG
ra
ph
5_
aM
C@
NL
O

�EW =
NLO2

LO1

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP’18
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Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP’18
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MADGRAPH5_AMC@NLO: COMPLETE NLO
• Examples:

Frederix, Frixione, Hirschi, Pagani, HSS, Zaro JHEP’18
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Lecture 3
Advanced NLO Topics

More Particle Is Different
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BSM TH/EXP INTERACTIONS: THE OLD WAY

Idea

TH PHENO

Lagrangian

EXP

PGS

Pythia

Paper

Feyn. Rules

Amplitudes

x secs

Paper

New MC

Paper

New Pythia

Amps  2→2

Aut. Feyn. Rules

Any amplitude

Any x-sec

partonic events

Pythia

Detec. Sim.

Data
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BSM TH/EXP INTERACTIONS: THE OLD WAY

Idea

TH PHENO

Lagrangian

EXP

Aut. Feyn. Rules

Any amplitude

Any x-sec

partonic events

Pythia

Detec. Sim.

Data
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BSM TH/EXP INTERACTIONS AUGMENTED

TH EXP

Idea

Lagrangian

FeynRules/LanHEP/Sarah

ME Generator

Signal & Bkg

Events

PS+Had

Delphes/Sim

Data

DM tools
Jet tools
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BSM TH/EXP INTERACTIONS AUGMENTED

TH EXP

Idea

Lagrangian

FeynRules/LanHEP/Sarah

ME Generator

Signal & Bkg

Events

PS+Had

Delphes/Sim

Data

DM tools

๏ One path for all 
๏ Physics and software validations streamlined
๏ Robust and efficient Th/Exp communication
๏ It works top-down and bottom-up

Jet tools

Tuesday, November 19, 19
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• How to incorporate all of above information in a model file ?

Sherpa

MG4

Christensen, Duhr (CPC’09); Alloul, Christensen, Duhr, Degrande, Fuks (CPC’14)

FEYNRULES
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• How to incorporate all of above information in a model file ?

• UFO stands for Universal FeynRules Output:

Christensen, Duhr (CPC’09); Alloul, Christensen, Duhr, Degrande, Fuks (CPC’14)

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC’12)

FEYNRULES

Tuesday, November 19, 19
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Christensen, Duhr (CPC’09); Alloul, Christensen, Duhr, Degrande, Fuks (CPC’14); Degrande (CPC’15)

Degrande (CPC’15)

FEYNRULES: NLO

Tuesday, November 19, 19
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For example: SUSY QCD

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC’12)

A UFO MODEL

Tuesday, November 19, 19
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For example: SUSY QCD

Particles

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC’12)

A UFO MODEL

Tuesday, November 19, 19
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For example: SUSY QCD

Interactions Particles

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC’12)

A UFO MODEL
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For example: SUSY QCD

Interactions Particles

Parameters

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC’12)

A UFO MODEL

Tuesday, November 19, 19
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For example: SUSY QCD

Interactions Particles

Parameters
Propagators

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC’12)

A UFO MODEL
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For example: SUSY QCD

NLO Interactions Particles

Parameters
Propagators

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC’12)

A UFO MODEL
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Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC’12)

A UFO MODEL
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• Particles are in particles.py
• Instances of the particle class
• spin, color, mass, width, PDG etc

84

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC’12)

A UFO MODEL
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• Particles are in particles.py
• Instances of the particle class
• spin, color, mass, width, PDG etc

84

• Parameters are in parameters.py
• External parameters are in LHA-like 
• Python-compliant formula for int. para

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC’12)

A UFO MODEL
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• Interactions are in vertices.py, couplings.py, lorentz.py, coupling_orders,py
• Vertices are decomposed in a spin x color basis, coupling being coordinates
• Example: the quartic gluon vertex can be written as

• vertices.py: define all Feynman rules for vertices in the model

• lorentz.py: define the Lorentz structure in the model

• couplings.py: define the coupling constant in the model

• coupling_orders.py: define the coupling orders in the model

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC’12)

A UFO MODEL

Tuesday, November 19, 19
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• Interactions are in vertices.py, couplings.py, lorentz.py, coupling_orders,py
• Vertices are decomposed in a spin x color basis, coupling being coordinates
• Example: the quartic gluon vertex can be written as

• vertices.py: define all Feynman rules for vertices in the model

• lorentz.py: define the Lorentz structure in the model

• couplings.py: define the coupling constant in the model

• coupling_orders.py: define the coupling orders in the model
Make sure > 0 for NLO QCD

Degrande, Duhr, Fuks, Grellscheid, Mattelaer, Reiter (CPC’12)

A UFO MODEL

Tuesday, November 19, 19
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UFO@NLO
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• Provide renormalization scale in parameters.py

86

UFO@NLO
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• Provide renormalization scale in parameters.py

86

• CT_vertices.py:UV, R2 counter term vertices

UFO@NLO
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• Provide renormalization scale in parameters.py

86

• CT_vertices.py:UV, R2 counter term vertices

UFO@NLO
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• Provide renormalization scale in parameters.py

86

• CT_vertices.py:UV, R2 counter term vertices

• CT_couplings.py: couplings for UV and R2 counter terms

UFO@NLO
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• Provide renormalization scale in parameters.py

86

• CT_vertices.py:UV, R2 counter term vertices

• CT_couplings.py: couplings for UV and R2 counter terms

• CT_parameters.py: parameters for UV and R2

UFO@NLO
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• Provide renormalization scale in parameters.py

86

• CT_vertices.py:UV, R2 counter term vertices

• CT_couplings.py: couplings for UV and R2 counter terms

• CT_parameters.py: parameters for UV and R2

coe�cient of

1

✏

UFO@NLO
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• Provide renormalization scale in parameters.py

86

• CT_vertices.py:UV, R2 counter term vertices

• CT_couplings.py: couplings for UV and R2 counter terms

• CT_parameters.py: parameters for UV and R2

coe�cient of

1

✏
finite piece

UFO@NLO
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• Provide renormalization scale in parameters.py

86

• CT_vertices.py:UV, R2 counter term vertices

• CT_couplings.py: couplings for UV and R2 counter terms

• CT_parameters.py: parameters for UV and R2

coe�cient of

1

✏
finite piece

UFO@NLO
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• Provide renormalization scale in parameters.py

86

• CT_vertices.py:UV, R2 counter term vertices

• CT_couplings.py: couplings for UV and R2 counter terms

• CT_parameters.py: parameters for UV and R2

coe�cient of

1

✏
finite pieceComplicated mass spectrum makes 

the computation heavy !!!

UFO@NLO
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AN ISSUE WITH RICH PARTICLE SPECTRUM
• How to define final states at NLO without spoiling 

perturbative convergence ?
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AN ISSUE WITH RICH PARTICLE SPECTRUM
• How to define final states at NLO without spoiling 

perturbative convergence ?

NLO diagram for gluino-pair

• Let us consider gluino pair production in SUSY
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AN ISSUE WITH RICH PARTICLE SPECTRUM
• How to define final states at NLO without spoiling 

perturbative convergence ?

NLO diagram for gluino-pair LO diagram for gluino-squark
with squark decay

• Let us consider gluino pair production in SUSY
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AN ISSUE WITH RICH PARTICLE SPECTRUM
• How to define final states at NLO without spoiling 

perturbative convergence ?

NLO diagram for gluino-pair LO diagram for gluino-squark
with squark decay

Simplified Treatments of Resonances MadSTR

Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JHEP’19)

• Let us consider gluino pair production in SUSY
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SIMPLIFIED TREATMENTS OF RESONANCES
• The formulation of the problem is:

LO:
NLO(Real): with/without

non-resonance
resonance

• No fully satisfactory solutions but a few proposals:

• DR: remove the resonance diagrams/amplitude
• DRI: remove the resonance amplitude squared

Diagram Removal

Diagram Subtraction

DS subtraction term

• DS-finalresh-runBW:P (FS momenta reshuffling), f  (ratio of  two BWs with running width)
• DS-initresh-runBW:P (IS momenta reshuffling), f  (ratio of  two BWs with running width)

• DS-finalresh-stdBW:P (FS momenta reshuffling), f  (ratio of  two standard BWs)
• DS-initresh-stdBW:P (IS momenta reshuffling), f  (ratio of  two standard BWs)

Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JHEP’19)

istr=1
istr=2

istr=6
istr=4
istr=5
istr=3
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SIMPLIFIED TREATMENTS OF RESONANCES
• The formulation of the problem is:

LO:
NLO(Real): with/without

non-resonance
resonance

• No fully satisfactory solutions but a few proposals:

• DR: remove the resonance diagrams/amplitude
• DRI: remove the resonance amplitude squared

Diagram Removal

Diagram Subtraction

DS subtraction term

• DS-finalresh-runBW:P (FS momenta reshuffling), f  (ratio of  two BWs with running width)
• DS-initresh-runBW:P (IS momenta reshuffling), f  (ratio of  two BWs with running width)

• DS-finalresh-stdBW:P (FS momenta reshuffling), f  (ratio of  two standard BWs)
• DS-initresh-stdBW:P (IS momenta reshuffling), f  (ratio of  two standard BWs)

Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JHEP’19)

Not gauge invariantistr=1
istr=2

istr=6
istr=4
istr=5
istr=3
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SIMPLIFIED TREATMENTS OF RESONANCES
• Jets plus missing Et

Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JHEP’19)
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SIMPLIFIED TREATMENTS OF RESONANCES
• Jets plus missing Et

Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JHEP’19)

https://code.launchpad.net/~maddevelopers/mg5amcnlo/MadSTRPlugin

> generate p p > go go [QCD]

> ./bin/mg5_aMC --mode=MadSTR
> import model MSSMatNLO_UFO 

> output; launch

Tuesday, November 19, 19
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SIMPLIFIED TREATMENTS OF RESONANCES
• Jets plus missing Et

Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JHEP’19)

https://code.launchpad.net/~maddevelopers/mg5amcnlo/MadSTRPlugin

> generate p p > go go [QCD]

> ./bin/mg5_aMC --mode=MadSTR
> import model MSSMatNLO_UFO 

> output; launch

Sensitive to large x PDF due 
to initial momenta 

reshuffling !
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SIMPLIFIED TREATMENTS OF RESONANCES
• Jets plus missing Et

Frixione, Fuks, Hirschi, Mawatari, HSS, Sunder and Zaro (JHEP’19)

Important to check the 
systematic dependences !

https://code.launchpad.net/~maddevelopers/mg5amcnlo/MadSTRPlugin

> generate p p > go go [QCD]

> ./bin/mg5_aMC --mode=MadSTR
> import model MSSMatNLO_UFO 

> output; launch

Sensitive to large x PDF due 
to initial momenta 

reshuffling !
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