Matching and Merging: Combining Matrix Elements and Parton Showers

Leif Gellersen

Lund University

leif.gellersen@thep.lu.se

MadGraph School 2019, Chennai November 19th, 2019

net

Hadron Collisions: QCD, QCD, QCD, ...

Split the problem into many pieces

- Hard Process, resonant decays
- **Parton Shower**
- MPIs
- **•** Hadronisation
- PDFs: Pick a parton from a hadron
- **Hadron Decays**
- Hadronic rescattering
- **•** Beam Remnants/UE

Figure from Stefan Höche

Recap: Parton Showers

Start from hard 2 \rightarrow 2 scattering, dress with extra partons to get exclusive 2 \rightarrow n cross section

$$
\mathrm{d}\sigma_n^{\mathrm{ex}} = \mathcal{F}_0^+ \mathcal{F}_0^- |M_0|^2 \mathrm{d}\phi_0 \times \left[\prod_{i=1}^n \frac{\alpha_{\mathrm{s}}(\rho_i)}{2\pi} \frac{\mathcal{F}_i}{\mathcal{F}_{i-1}} \rho_i \frac{\mathrm{d}\rho_i}{\rho_i} \mathrm{d}z \Pi_{i-1}(\rho_{i-1}, \rho_i) \right] \Pi_n(\rho_n, \rho_{\mathrm{min}})
$$

- $|M_0|^2\mathrm{d}\phi_0$: Born-level ME and phase space
- $\mathcal{F}_i = x_i \mathcal{f}_i(x_i, \rho_i)$: PDF's from both sides of *i*-parton state, \pm for $\pm \rho_z$ beams
- $P_i{\rm d}z{\rm d}\rho_i/\rho_i$: Differential emission rate, correct for soft/collinear splittings
- ρ , z: Splitting variables, ρ jet resolution scale, z energy/momentum fraction
- \bullet Π(ρ_{i-1}, ρ_i): No-emission probabilities
- ρ_{min} : Minimal resolution scale / shower cut-off scale

Recap: No-emission Probabilities

$$
\Pi_i(\rho_i, \rho_{i+1}) = \exp\left(-\int_{\rho_{i+1}}^{\rho_i} \frac{\mathrm{d}\rho}{\rho} \frac{\alpha_{\rm s}(\rho)}{2\pi} \int_{z_{\rm min}}^{z_{\rm max}} \mathrm{d}z \frac{F_{i+1}}{F_i} P_i(z)\right)
$$

- **•** Probability of not having any emissions harder than ρ_{i+1} when starting shower from ρ_i
- Introduces all order corrections in $\alpha_{\rm s} \rightarrow (N)$ LL Resummation
- \bullet F_{i+1}/F_i only included for ISR
- Exclusive description of final state needs no-emission probabilities

Unitarity of Parton Shower: Fixed Order Expansion

Expand to
$$
\mathcal{O}(\alpha_s^2)
$$

\nUse $\frac{1}{2\pi} \frac{F_{i+1}}{F_i} P_i(z) = \bar{P}_i$ for ISR, $\frac{1}{2\pi \rho} P_i(z) = \bar{P}_i$ for FSR to simplify notation

\n
$$
\frac{d\sigma_0^{\text{ex}}}{d\phi_0} = F_0^+ F_0^- |M_0|^2 \left[1 - \alpha_s \int_{\rho_{\text{min}}}^{\rho_0} d\rho dz \bar{P}_1 + \frac{\alpha_s^2}{2} \left(\int_{\rho_{\text{min}}}^{\rho_0} d\rho dz \bar{P}_1 \right)^2 \right]
$$
\n
$$
\frac{d\sigma_1^{\text{ex}}}{d\phi_0} = F_0^+ F_0^- |M_0|^2 \alpha_s d\rho_1 dz_1 \bar{P}_1 \left[1 - \alpha_s \int_{\rho_1}^{\rho_0} d\rho dz \bar{P}_1 - \alpha_s \int_{\rho_{\text{min}}}^{\rho_1} d\rho dz \bar{P}_2 \right]
$$
\n
$$
\frac{d\sigma_2}{d\phi_0} = F_0^+ F_0^- |M_0|^2 \alpha_s^2 d\rho_1 dz_1 \bar{P}_1 d\rho_2 dz_2 \bar{P}_2 \Theta(\rho_1 - \rho_2)
$$

 \Rightarrow Unitarity in every order of $\alpha_{\rm s}$, total cross-section

$$
\frac{\mathrm{d}\sigma_0^{\mathrm{inc}}}{\mathrm{d}\phi_0} = \frac{\mathrm{d}\sigma_0^{\mathrm{ex}}}{\mathrm{d}\phi_0} + \int \frac{\mathrm{d}\sigma_1^{\mathrm{ex}}}{\mathrm{d}\phi_0} + \int \int \frac{\mathrm{d}\sigma_2}{\mathrm{d}\phi_0} = F_0^+ F_0^- |M_0|^2
$$

But 1-jet cross section not correct for hard/wide-angle emissions

Matrix Elements vs. Parton Showers

Matrix Elements

Fixed order good for hard jets

- \bullet + Contains all terms in given order of α_s
- $+$ Valid also for high relative ρ_{\perp}^2
- \bullet Only feasible for a few emissions

Parton Showers

Approx. excl. multi-parton cross section

- \bullet + Always finite
- \bullet + Can produce any number of emissions
- \bullet Is only valid in soft/collinear regions

Combine strengths of Matrix Elements and Parton Showers

Experiments measure both high and low p_{\perp}^2 phenomena

- Describe hard emissions by fixed order predictions
- Add further emissions and include no-emission probabilities from PS

Outline

- Combine Matrix Element calculations and Parton Showers. Improve in different ways:
- Matrix Element Corrections Oldest scheme, correct first emission of parton shower according to full process-dependent real emission calculation
- Multi-jet Merging Improve radiation pattern of parton shower by adding higher-multiplicity matrix elements
- NLO Matching Improve the perturbative precision by one higher order (NLO in α_s) cross section matched to parton showers
- NLO Multi-jet Matching/Merging Combine multiple higher-multiplicity and higher-order cross sections in parton shower

Matrix Element Corrections / Tree-level Matching

Want improved parton shower with full matrix elements for hard emissions ⇒ First step: Use full real-emission matrix element for hardest emission, process-dependent!

$$
\alpha_{\rm s}\bar{P}_i \to \alpha_{\rm s}\bar{P}_i^{\rm ME} \equiv \frac{|M_i|^2 {\rm d}\phi_i}{|M_{i-1}|^2 {\rm d}\phi_{i-1} {\rm d}\rho {\rm d}z}
$$

- Old, but very good! [Bengtsson, Sjöstrand (1987)]
- \bullet + Natural and efficient within PS: Use modified acceptance probability
- Difficult to generalize beyond one emission
- Vincia parton shower exponentiates *n*-parton matrix elements [\[Giele, Kosower, Skands \(2008\)\]](http://inspirehep.net/record/756628)

Matrix Element Corrections Preserve PS Unitarity

$$
\frac{d\sigma_0^{\text{ex}}}{d\phi_0} = F_0^+ F_0^- |M_0|^2 \left[1 - \alpha_s \int_{\rho_{\text{min}}}^{\rho_0} d\rho dz \bar{P}_1^{\text{ME}} + \frac{\alpha_s^2}{2} \left(\int_{\rho_{\text{min}}}^{\rho_0} d\rho dz \bar{P}_1^{\text{ME}} \right)^2 \right]
$$

$$
\frac{d\sigma_1^{\text{ex}}}{d\phi_0} = F_0^+ F_0^- |M_0|^2 \alpha_s d\rho_1 dz_1 \bar{P}_1^{\text{ME}} \left[1 - \alpha_s \int_{\rho_1}^{\rho_0} d\rho dz \bar{P}_1^{\text{ME}} - \alpha_s \int_{\rho_{\text{min}}}^{\rho_1} d\rho dz \bar{P}_2 \right]
$$

$$
\frac{d\sigma_2}{d\phi_0} = F_0^+ F_0^- |M_0|^2 \alpha_s^2 d\rho_1 dz_1 \bar{P}_1^{\text{ME}} d\rho_2 dz_2 \bar{P}_2 \Theta(\rho_1 - \rho_2)
$$

- Still unitary to all orders in α_s
- Valid in whole shower emission phase space, down to scale ρ_{\min}

[Matrix Element Corrections](#page-7-0)

borrwed from Keith Hamilton

[Matrix Element Corrections](#page-7-0)

borrwed from Keith Hamilton

Multi-jet Merging: The Naive (and Wrong) Way

Want to improve PS emissions for more than hardest emission. Naive approach:

- Generate $[X]_{\text{ME}}$ + parton shower
- Generate $[X + 1]$ et $]_{\text{ME}}$ + parton shower
- Generate $[X + 2]$ et $]_{\text{ME}}$ + parton shower

```
\bullet . . .
```
And combine everything into one sample. Does not work, double counting!

- \bullet $[X]_{\text{ME}}$ + parton shower is inclusive
- \bullet $[X + 1]$ et]_{ME} + parton shower is inclusive

Multi-jet Merging: Exclusive Description without Double-counting

Solve double-counting issue by dividing phase space in "hard and soft region":

- Generating inclusive few jet samples according to exact tree-level $F_n^+F_n^-|M_n|^2 \equiv B_n$ in "hard region"
- Using some merging scale ρ_{ms} to cut off divergences
- Making exclusive by reweighting with no-emission probabilities (and α_s and PDF ratios), i.e. how would PS have produced this configuration
- **•** Using normal shower in "soft region" below ρ_{ms}

Remaining issues:

- Merging scale dependence
- Merging scale might not be defined in terms of shower evolution variable
- Might break unitarity of shower

Multi-jet Merging: $e^+e^- \rightarrow q\bar{q} + \text{jets}$ example

How to Reweight: Parton Shower Histories

Want to apply no-emission probabilities and scale dependent ratios \Rightarrow need ρ_i . Two ways:

- Find unique history by applying sequential $2 \rightarrow 1$ jet algorithm
- Find all possible parton shower histories by $3 \rightarrow 2$ clustering, choose one according to product of splitting probabilities
	- Choose one history according to product of splitting probabilities
	- Combine partons according to parton shower kinematics

Multi-jet Merging: Illustration in FSR

Combine MEs with different multiplicities, avoid overlap by reweighting

$$
\langle \mathcal{O} \rangle = \int d\phi_0 \left\{ \mathcal{O}_0 B_0 w_0 + \int d\phi_1 \mathcal{O}_1 B_1 w_1 + \int d\phi_1 \int d\phi_2 \mathcal{O}_2 B_2 w_2 \right\}
$$

with the weights

$$
w_0 = \Pi_0(\rho_0, \rho_{\text{ms}}), w_1 = \Pi_0(\rho_0, \rho_1) \frac{\alpha_s(\rho_1)}{\alpha_s(\mu_R)} \Pi_1(\rho_1, \rho_{\text{ms}}),
$$

$$
w_2 = \Pi_0(\rho_0, \rho_1) \frac{\alpha_s(\rho_1)}{\alpha_s(\mu_R)} \Pi_1(\rho_1, \rho_2) \frac{\alpha_s(\rho_2)}{\alpha_s(\mu_R)}
$$

Multi-jet Merging: Illustration in ISR

Multi-jet Merging: Merging Weight in ISR

$$
w = w_{\alpha_s} w_{\text{pdf}} w_{\text{no-em}}
$$
\n
$$
w_{\alpha_s} = \frac{\alpha_s(\rho_1)}{\alpha_s(\rho_0)} \frac{\alpha_s(\rho_2)}{\alpha_s(\rho_0)}
$$
\n
$$
w_{\text{pdf}} = \frac{f(x'_1, \rho_0) f(x_1, \rho_1)}{f(x'_1, \rho_1) f(x_1, \rho_0)}
$$
\n
$$
w_{\text{no-em}} = \Pi_0(\rho_0, \rho_1) \Pi_1(\rho_1, \rho_2) \Pi_2(\rho_2, \rho_{\text{ms}})
$$
\n
$$
\rho_{\text{ms}}
$$
\n
$$
x_2
$$
\n
$$
w_{\text{no-em}} = \Pi_0(\rho_0, \rho_1) \Pi_1(\rho_1, \rho_2) \Pi_2(\rho_2, \rho_{\text{ms}})
$$

Multi-Jet Merging Algorithm

Summary of general multi-jet merging procedure:

- **O** Calculate inclusive cross sections for $X + n$ partons (with kinematic cut ρ_{ms} to avoid singularities)
- 2 Cluster according to jet algorithm or find parton shower history to find scales for no-emission probabilities and scale dependent ratios
- ³ Multiply with no-emission probability
- ⁴ Multiply with scale dependent ratios
- \bullet If $n < N$, with N highest fixed order multiplicity, multiply no-emission probability towards merging scale $\rho_{\rm ms}$
- Allow further parton shower emissions below $\rho_{\rm ms}$, for $n = N$ also above

CKKW Merging [\[Catani, Krauss, Kuhn, Webber \(2001\)\]](https://inspirehep.net/record/563400)

- Cluster according to k_1 jet algorithm
- Apply analytic Sudakov factors (NLL accuracy) as no-emission probabilities
- Perform "truncated showering", since parton shower evolution variable not exactly identical to merging scale cut: Start shower from ρ_0 , but forbid emissions above $t_{\rm ms}$. Handle hard emissions (in ρ) below $t_{\rm ms}$ with care!
	- \bullet + Best theoretical treatment
	- Requires dedicated PS implementation
	- Mismatch between analytical Sudakov and parton shower
	- Implemented in Sherpa $(v 1.1)$ [\[Krauss \(2002\)\]](https://inspirehep.net/record/587271)

$CKKW-L$ Merging [Lönnblad (2001)]

- Cluster back to parton shower history according to splitting probabilities in PS
- Generate of no-emission probabilities using parton shower
- Perform showering step-by-step for each step in history, starting from respective clustering scale
- Veto event if emission at larger scale than next clustering scale or $\rho_{\rm ms}$ in last step
- Keep PS emissions below $\rho_{\rm ms}$ (and between $\rho_{\rm n}$ and $\rho_{\rm ms}$ at highest multiplicity)
	- \bullet + Agreement between Sudakov and shower by construction \Rightarrow Reduced merging scale dependence
	- \bullet + Use simple veto in shower if $\rho_{\rm ms}$ in terms of PS evolution variable
	- Requires dedicated PS implementation
	- Implemented in Sherpa (≥1.2) [Höche, Krauss, Schumann, Siegert (2009)], Pythia8 [Lönnblad, Prestel (2012)] and Herwig7 [Bellm, Gieseke, Plätzer (2018)]

MLM [\[Mangano \(2002\)\]](http://www-cpd.fnal.gov/personal/mrenna/tuning/nov2002/mlm.pdf.gz) [\[Mangano, Moretti, Piccinini, Treccani \(2007\)\]](https://inspirehep.net/record/731316)

- Simplest way to estimate Sudakov suppression: Run shower on ME state without prior reclustering, starting from ρ_0
- Perform jet clustering, and reject if PS emits any jets harder than original partons or partons that are not clustered to hard partons
- No reconstructed history \Rightarrow Sudakov factor corresponds to final partons only, not taking into account intermediate states
- Approximation turns out to be good enough
	- \bullet + Simplest available scheme
	- \bullet + Matching with any shower algorithm without specific implementation
	- \bullet Sudakov suppression not exact \Rightarrow mismatch with shower

Sudakov Factor: MLM vs. CKKW-L

- **•** First shower from ρ_0 to ρ_{ms}
- Then do jet clustering to veto if hard emissions occured
- Resulting no-emission probability: $\Pi_q^2(\rho_0, \rho_\text{ms})\Pi_q^2(\rho_0, \rho_\text{ms})$

- First construct parton shower history
- \bullet Then do trial shower on reconstructed history, veto event if emission above merging scale
- Resulting no-emission probability: $\Pi_q^2(\rho_0, \rho_2) \Pi_g(\rho_1, \rho_2) \Pi_q^4(\rho_2, \rho_{\text{ms}})$

Unitarity in Multi-jet Merging

$$
\frac{d\sigma_0^{\text{ex}}}{d\phi_0} = F_0^+ F_0^- |M_0|^2 \left[1 - \alpha_s \int_{\rho_{\text{min}}}^{\rho_0} d\rho dz \bar{P}_1 + \frac{\alpha_s^2}{2} \left(\int_{\rho_{\text{min}}}^{\rho_0} d\rho dz \bar{P}_1 \right)^2 \right]
$$

$$
\frac{d\sigma_1^{\text{ex}}}{d\phi_0} = F_0^+ F_0^- |M_0|^2 \alpha_s d\rho_1 dz_1 \bar{P}_1^{\text{ME}} \left[1 - \alpha_s \int_{\rho_1}^{\rho_0} d\rho dz \bar{P}_1 - \alpha_s \int_{\rho_{\text{min}}}^{\rho_1} d\rho dz \bar{P}_2 \right]
$$

$$
\frac{d\sigma_2}{d\phi_0} = F_0^+ F_0^- |M_0|^2 \alpha_s^2 d\rho_1 dz_1 \bar{P}_1^{\text{ME}} d\rho_2 dz_2 \bar{P}_2^{\text{ME}} \Theta(\rho_1 - \rho_2)
$$

- Unitarity of parton shower broken in all multi-jet merging schemes mentioned above
- Inclusive cross-section only preserved if splitting probabilities in no-emission probability identical to full fixed order splitting probabilities

Unitary Merging: UMEPS [Lönnblad, Prestel (2012)]

Start from CKKW-L scheme, want to restore PS unitarity. Use:

$$
\Pi_n(\rho_n, \rho_{\text{ms}}) = 1 - \int_{\rho_{\text{ms}}}^{\rho_n} d\rho dz \alpha_s \bar{P}_{n+1}^{\text{ME}}(\rho, z) \Pi_n(\rho_0, \rho)
$$

i.e. probability of no emission is 1 - probability of at least one emission

$$
\frac{d\sigma_0^{\text{ex}}}{d\phi_0} = F_0^+ F_0^- |M_0|^2 \Pi_0(\rho_0, \rho_{\text{ms}})
$$

$$
\frac{d\sigma_1^{\text{ex}}}{d\phi_0} = F_1^+ F_1^- |M_1|^2 d\rho_1 dz_1 \Pi_0(\rho_0, \rho_1) \Pi_1(\rho_1, \rho_{\text{ms}})
$$

$$
\frac{d\sigma_2}{d\phi_0} = F_2^+ F_2^- |M_2|^2 d\rho_1 dz_1 \Pi_0(\rho_0, \rho_1) d\rho_2 dz_2 \Pi_1(\rho_1, \rho_2)
$$

Unitary Merging: UMEPS [Lönnblad, Prestel (2012)]

Start from CKKW-L scheme, want to restore PS unitarity. Use:

$$
\Pi_n(\rho_n, \rho_{\text{ms}}) = 1 - \int_{\rho_{\text{ms}}}^{\rho_n} d\rho dz \alpha_s \bar{P}_{n+1}^{\text{ME}}(\rho, z) \Pi_n(\rho_0, \rho)
$$

i.e. probability of no emission is 1 - probability of at least one emission

$$
\frac{d\sigma_0^{ex}}{d\phi_0} = F_0^+ F_0^- |M_0|^2 \Pi_0(\rho_0, \rho_{\text{ms}}) - \int F_1^+ F_1^- |M_1|^2 d\rho_1 dz_1 \Pi_0(\rho_0, \rho_1)
$$
\n
$$
\frac{d\sigma_1^{ex}}{d\phi_0} = F_1^+ F_1^- |M_1|^2 d\rho_1 dz_1 \Pi_0(\rho_0, \rho_1) \Pi_1(\rho_1, \rho_{\text{ms}})
$$
\n
$$
- d\rho_1 dz_1 \Pi_0(\rho_0, \rho_1) \int F_2^+ F_2^- |M_2|^2 d\rho_2 dz_2 \Pi_1(\rho_1, \rho_2)
$$
\n
$$
\frac{d\sigma_2}{d\phi_0} = F_2^+ F_2^- |M_2|^2 d\rho_1 dz_1 \Pi_0(\rho_0, \rho_1) d\rho_2 dz_2 \Pi_1(\rho_1, \rho_2)
$$

Unitary Merging: UMEPS [Lönnblad, Prestel (2012)]

- Still add CKKW-L reweighted samples
- \bullet Instead of last Sudakov, subtract $+1$ parton integrated sample
	- \Rightarrow Individual multiplicities still exclusive
- Can still add normal PS below merging scale
- \bullet + Procedure does not change inclusive cross section
- \bullet UMEPS introduces negative weights \Rightarrow less efficient

Matching of NLO Matrix Elements & Parton Showers

We want precision predictions: Combine NLO fixed order calculations with Parton showers.

- Again problem of double counting of emissions by real emission matrix element and emissions generated by parton shower
- Also double counting of virtual terms through virtual corrections and Sudakov factors

Parton Shower $→$ mmm mmm **AAAAAA MMMMMM** mm

Real emission

Finite Numerical NLO Cross Section

NLO prediction for observable $\mathcal O$ given by

$$
\langle \mathcal{O} \rangle = \int \mathrm{d}\phi_n (B_n + V_n) \mathcal{O}_n(\phi_n) + \int \mathrm{d}_{n+1} B_{n+1} \mathcal{O}_{n+1}(\phi_{n+1})
$$

but both V_n and B_{n+1} separately divergent, only sum is finite. Use universal subtraction terms to get finite results: [\[Frixione, Kunszt, Siegner \(1996\)\]](https://inspirehep.net/record/403695) [\[Catani, Seymour \(1997\)\]](http://inspirehep.net/record/418649)

$$
\langle \mathcal{O} \rangle = \int d\phi_n (B_n + V_n + B_n \otimes l_1) \mathcal{O}_n(\phi_n)
$$

$$
+ \int d\phi_{n+1} (B_{n+1} \mathcal{O}_{n+1}(\phi_{n+1}) - B_n \otimes D_1 \mathcal{O}_n(\phi_{n+1}))
$$

Event interpretation not yet possible, \mathcal{O}_n and \mathcal{O}_{n+1} contributions must be finite separately

Shower Subtraction

Want to attach shower (include factor $\alpha_{\rm s}$ in \bar{P})

$$
\mathcal{O}_n(\phi_n) \to \mathcal{F}_n(\mathcal{O}, \phi_n) = \Pi(\rho_n, \rho_{\min})\mathcal{O}_n(\phi_n) + \int d\phi_{+1}\Pi(\rho_n, \rho_{n+1})\bar{P}_{n+1}\mathcal{F}_{n+1}(\mathcal{O}, \phi_{n+1})
$$

$$
\stackrel{\mathcal{O}(\alpha_s)}{\to} 1 - \int d\phi_{+1}\bar{P}_{n+1}\mathcal{O}_n(\phi_{n+1}) + \int d\phi_{+1}\bar{P}_{n+1}\mathcal{O}_{n+1}(\phi_{n+1})
$$

But $B_n\mathcal{F}_n$ contains $\mathcal{O}(\alpha_s)$ terms \Rightarrow subtract shower terms to first order in α_s such that accuracy of NLO not spoiled by shower

MC@NLO [\[Frixione, Webber \(2002\)\]](http://inspirehep.net/record/585687)

With shower subtraction, arrive at MC@NLO prescription

$$
\langle \mathcal{O} \rangle_{\text{MC@NLO}} = \int d\phi_n (B_n + V_n + B_n \otimes I_1) \mathcal{F}_n(\mathcal{O}, \phi_n) \qquad \text{Born } + \text{ subtracted virtual} + \int d\phi_{n+1} (B_n \bar{P}_{n+1} - B_n \otimes D_1) \mathcal{F}_n(\mathcal{O}, \phi_{n+1}) \qquad \text{Shower virtual - subtraction} + \int d\phi_{n+1} (B_{n+1} - B_n \bar{P}_{n+1}) \mathcal{F}_{n+1}(\mathcal{O}, \phi_{n+1}) \qquad \text{Real - shower real}
$$

- Event generation possible since \mathcal{O}_n and \mathcal{O}_{n+1} separately finite
- Sudakov supression agrees with shower prediction
- Distribution correct only if parton shower is attached to cancel MC counterterms
- Can lead to many events with negative weights
- Needs to be implemented for each shower separately
- Automated in aMC@NLO [\[Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli \(2012\)\]](http://inspirehep.net/record/942748)

MC@NLO

- MC@NLO gives smooth transition between real emission pattern at high scales and parton shower at low scales
- Inclusive cross section correct at NLO

Plot form [\[Nason, Webber \(2012\)\]](http://inspirehep.net/record/1087912)

POWHEG [\[Nason \(2004\)\]](https://inspirehep.net/record/659055) [\[Frixione, Nason, Oleari \(2007\)\]](https://inspirehep.net/record/760769)

Positive Weight Hardest Emission Generator

$$
\langle \mathcal{O} \rangle_{\text{POWHEG}} = \int d\phi_n (B_n + V_n + B_n \otimes I_1) \mathcal{F}_n^{\text{HI}}(\mathcal{O}, \phi_n) \qquad \text{Born } + \text{ subtracted virtual} + \int d\phi_{n+1} (B_{n+1} - B_n \otimes D_1) \mathcal{F}_n^{\text{HI}}(\mathcal{O}, \phi_{n+1}) \qquad \text{Shower virtual - subtraction}
$$

Based on MC@NLO, modify shower to get "shower real" $=$ "real" for hardest emission (similar to matrix element corrections)

- Less negative weights \Rightarrow Improved efficiency
- Hardest emission modified ⇒ Differences compared to MC@NLO, but both NLO correct
- Implementation process by process, but independent of attached shower

Combine NLO Matching and Multi-leg Merging

Goal: Combine several NLO matrix elements for same process: NLO for $X, X + 1, X + 2, \ldots$ Mostly based on parton shower unitarity Different methods available:

- UNLOPS, based on UMEPS [Lönnblad, Prestel (2013)]
- MINLO, based on POWHEG [\[Hamilton, Nason, Zanderighi \(2012\)\]](https://inspirehep.net/record/1118569) [\[Frederix, Hamilton \(2016\)\]](https://inspirehep.net/record/1408888)
- **•** FxFx, based on MC@NLO **[Frederix, Frixione** (2012)]
- (Vincia, based on NLO MEC) [\[Hartgring, Laenen, Skands \(2013\)\]](https://inspirehep.net/record/1224557)

 \bullet . . .

Current Developments:

- NNLO for inclusive cross section
- Improved uncertainty estimates
- Matching NNLO ME to NLO PS

Matching and Merging Summary

Goal: Combine matrix elements and parton showers. The Problem:

- Parton showers generate singular terms of higher-order matrix elements
- Same terms present in $X + \text{jet}(s)$ matrix elements
- **Combination must not double count**

ME Corrections

- Oldest scheme, correct PS · Combine multiple LO emissions to match full real emission ME
- Hard to iterate beyond one emission
- **•** Developments: higher multiplicity, NLO in VINCIA

Multi-jet Merging

- ME samples by reweighting
- Separate phase space regions to deal with divergence
- Different schemes available

NLO Matching

- MC subtraction allows for $NLO ME + PS$
- **MC@NLO and POWHEG**
- **o** Can be combined with multi-jet merging