

# First results from CLICTD lab measurements

CERN, August 2<sup>nd</sup> 2019

I. Kremastiotis



# Introduction



- CLICTD chips received: 02 July 2019
- Matrix size: 16 x 128 pixels (4.8 x 3.84 mm<sup>2</sup>)
- Chip size: 5 x 5 mm<sup>2</sup>
- Wire-bonding:
  - 2 samples from "Rev. A" continuous N-implant
  - 1 sample from "Rev. B" gap in N-implant
  - Wire-bonded samples received: 04 July 2019
- Communication established using CaRIBOu









- VPWELL 1<sup>st</sup> process split: continuous N-layer collection electrode nwell pwell deep pwell low dose n-type implant p<sup>-</sup> epitaxial layer p<sup>+</sup> substrate V<sub>SUB</sub> VPWELL 2<sup>nd</sup> process split: gap in N-layer ٠ collection (only in the long dimension) electrode nwell pwell deep pwell low dose n-type implant p<sup>-</sup> epitaxial layer p<sup>+</sup> substrate  $V_{SUB}$
- Sensor I-V measured by scanning the substrate bias, for different values of the deep P-well bias
- Leakage current was measured at both nodes: SUB and PWELL



















## **Slow control**



- Slow control performs as expected
  - Reset issues, probably due to the incorrect clock frequency
  - After successful reset, all registers have their expected values.
  - Successful read / write operation to all registers

| Register             | I <sup>2</sup> C Address | Length | Reset value |
|----------------------|--------------------------|--------|-------------|
| globalConfig         | 0x00                     | 8      | 0x01        |
| internalStrobes      | 0x01                     | 8      | 0x00        |
| externalDACSel       | 0x02                     | 8      | 0x00        |
| monitorDACSel        | 0x03                     | 8      | 0x00        |
| matrixConfig         | 0x04                     | 8      | 0x08        |
| configCtrl           | 0x05                     | 8      | 0x00        |
| configData           | 0x06                     | 16     | 0x0000      |
| readoutCtrl          | 0x08                     | 8      | 0x00        |
| tpulseCtrl           | 0x0A                     | 16     | 0xFFFF      |
| VBIASResetTransistor | 0x10                     | 8      | 0x03        |
| VRESET               | 0x11                     | 8      | 0x68        |
| VBIASLevelShift      | 0x12                     | 6      | 0x09        |
| VANALOG1             | 0x13                     | 9      | 0x000       |
| VANALOG2             | 0x15                     | 8      | 0x00        |
| VBIASPREAMPN         | 0x16                     | 6      | 0x05        |
| VNCASC               | 0x17                     | 8      | 0x5B        |
| VPCASC               | 0x18                     | 8      | 0x82        |
| VFBK                 | 0x19                     | 8      | 0x47        |
| VBIASIKRUM           | 0x1A                     | 6      | 0x04        |
| VBIASDISCN           | 0x1B                     | 6      | 0x08        |
| VBIASDISCP           | 0x1C                     | 6      | 0x09        |
| VBIASDAC             | 0x1D                     | 6      | 0x07        |
| VTHRESHOLD           | 0x1E                     | 9      | 0x09A       |
| VNCASCCOMP           | 0x20                     | 8      | 0x76        |
| VBIASLevelShiftstby  | 0x21                     | 6      | 0x01        |
| VBIASPREAMPNstby     | 0x22                     | 6      | 0x01        |
| VBIASDISCNstby       | 0x23                     | 6      | 0x01        |
| VBIASDISCPstby       | 0x24                     | 6      | 0x01        |
| VBIASDACstby         | 0x25                     | 6      | 0x01        |
| VBIASSlowBuffer      | 0x26                     | 8      | 0x0F        |
| AdjustDACRange       | 0x27                     | 8      | 0x03        |
| VLVDSD               | 0x28                     | 4      | 0x0F        |



#### **DAC** scans



- Current and voltage DACs were scanned, confirming that they operate as expected
- Example current DAC: preamplifier bias current









- Example voltage DAC: threshold voltage
- 'AdjustDACrange': register tuning the DAC range, by a set of current mirrors
- Threshold voltage scanned for different values of 'AdjustDACrange'





## **Power consumption**



- After reset:
  - Analog power consumption: 40 mW (22 mA @ 1.8 V VDDA) for the full chip
  - After applying power pulsing: power reduced to 9 mW (5 mA)
    - Close to the ~8 mW expected for the analog periphery
  - Power consumption of the analog front-end is configurable by periphery DACs
    - Depends on the operating point
    - Can be further studied after matrix readout
  - Digital power consumption: 29 mW (16 mA @ 1.8 V VDDD) for the full chip
    - Expected:
      - 22 mW LVDS drivers (4 mA per LVDS driver, 1.8 V supply, 3 drivers in chip)
      - 5 mW LVDS receivers (1.5 mA per LVDS receiver, 1.8 V supply, 2 receivers in chip)
    - Dynamic power consumption from clock distribution not captured by the monitoring ADC (conversion time  $\rightarrow$  100's of µs)



# Summary and next steps



- Summary:
  - Sensor I-V characteristics indicate that the sensor can be operated at its nominal bias
  - CLICTD chip periphery performs as expected
    - Slow control
    - DAC scans
- Next steps:
  - Firmware for readout in progress
  - Matrix configuration
  - Reading back configuration
  - Threshold scans
  - Measurements with radiation sources
  - Measurements with test pulses





# **Additional slides**















