Key4HEP - The Common
Turnkey Software Stack

Graeme A Stewart, CERN EP-SFT

CE/RW
\

NLS HSF Packaging Meeting, 2019-06-10

N e
Experiment Software Lifecycle | NI
e First ideas and inspiration... DEA

o Coolidea... would that work?

e Concepts
o Very fast approximate methods, e.g. Delphes (smeared
tracks, etc.)
e Design
o Still need to be flexible to decide between alternatives
o Ultimately need to pay a lot of attention to details for
accurate performance evaluation
m Accurate geometry, full simulation, realistic
digitisation, ...

Experiment Software Lifecycle I

e Production
o Dealing with the real world - calibration, alignments, dead
and noisy elements
o Learn about the detector, need stability but also continual
improvements
e Upgrade

o Design better sub-detectors for the next version

® Preservation
o How can | make sure we can look at the data in the future?

For new experiments not everything needs to, or should be, solved
up-front, but forgetting about the next step entirely will cause problems
down the line (technical debt!)

Reconstruction time per event [s]

\ Hit Map of clusters with E_clus> 2.5 GeV]

<

_— f" ;

;

701-RDO to ESD

E ATLAS Simulation Preliminary

T

Vs=14TeV E
<>=40 1
25 ns bunch spacing
Run 1 Geometry

pp — tt

HS06 = 13.08

~e— Full reconstruction
=&~ Inner Detector only

!
17.2, 32bit 19.0, 64bit 19.1, 64bit 20.1, 64bit

Software release

HL-LHC Challenge

- ttevent in ATLAS ITk
* <p> =200
- p,(tracks) > 1 GeV

TOFGN=TOFG*1.E+9

T "

12 cm

i& 10°
.

WRITECCHMAIL,100@)ITRA, ISTAK,NTMULT, (NAPART(I),I=1,5),TOFGN

CALL GMAIL(O,®)
WRITECCHMAIL ,1100)
CALL GMAIL(O,@)
TEVOLD=IEVENT
NTMOLD=NTMULT

Snippet from
B

Most General = Most Specific

HEP Application Software

Application layer of modules/algorithms/processors

Applications

that perform physics tasks (some generic examples
— like FastJet and PandoraPFA)

W

EDM Database
Interfaces

Usually experiment specific libraries for data
representation and access: XAOD (but LCIO!); also
detector specific conditions data

- Experiment Framework

~——_ __ Experiment core orchestration layer, where

everything else plugs in: Gaudi, CMSSW, Marlin

~— __ Specific components used by many
experiments: Geant4, DELPHES, Pythia, ...

Provide core functionality widely used: ROOT,
HepMC, HepPDT, DD4hep, ...

——__ Many widely used non-HEP libraries: Boost,
Python, Zlib, CMake, ...

Building HEP Applications

Applications

EDM Database
Interfaces

- g periment Framework

Each piece of software does not live in
isolation

There is an ecosystem of interacting
pieces

Compatibility between the elements

doesn’t usually come for free

o Common standards do help a lot
Building a consistent set of software for
an experiment is a task in itself

o We are in the Packaging Group, so we know

this f
_/

Key4HEP Motivation

e Future detector studies critically rely on well-maintained software stacks to
model detector concepts and to understand a detector’s limitations and
physics reach

e We have a scattered landscape of specific software tools on the one hand and
integrated frameworks tailored for a specific experiment on the other hand

e Aim at a low-maintenance common stack for FCC, ILC/CLIC, CEPC with ready
to use “plug-ins” to develop detector concepts

e |dentified as an important project in the CERN EP R&D initiative

e Reached consensus among all communities for future colliders to develop a
common turnkey software stack at recent Future Collider Software Workshop

https://cds.cern.ch/record/2649646
https://agenda.infn.it/event/19047/

Key4HEP Goals

e Puttogether a stack of the software packages covering the different domains
o most commonly used, avoiding as much as possible functionality overlaps

e The turnkey stack connects and extends the individual packages to enable a

complete data processing framework
o converting a set of disconnected packages into a ‘turnkey’ system

e and should be
o easy to use: for librarians, developers, users
o easytosetup
o easy to deploy (CVMFS and containers)
o easy to extend
o full of functionality

e Plenty of examples for simulation and reconstruction of detectors

Interoperability |

e Level O- Common Data Formats
o Allows interoperability between different programs, even running on different hardware
o E.g., HepMC event records, LCIO, GDML, ALFA messages

e Level1- Callable Interfaces
o Basic calling interfaces defined by the programming language
m Cross language calls are, of course, possible
o Can be dependent on the compiler and language version (C++ in particular)
o Details are important
m how to handle errors and exceptions, is it thread safe, are objects const, dependent
libraries and runtime setup
o E.g., FastJet, Eigen, Boost

Interoperability I

® Level 2 - Introspection Capabilities
o Software elements to facilitate the interaction of objects in a generic manner such as
Dictionaries and Scripting interfaces
o Example: PyROOT, which is a Python extension module that allows the user to interact with any
ROOT (C++) class from the Python interpreter

e Level 3-Component Model
o Software components of a “common framework” offers maximum re-use
o ‘standard’ way to configure its parameters, to log and report errors, manage object lifetime and
ownership rules, ‘standard’ plug-in management, etc.
o Unfortunately, no single Framework has been generally adopted

The right interoperability point between packages varies, but fixing it correctly
eases life a lot for other developers and users

HSF Project Template

e To enable interoperability and long

term maintainability
o Build system

Common HSF Tools

This is a collection of tools used within the context of the HEP Software Foundation (HSF).

create_project

The tool create_project creates a template CMake project. The created project contains the standard use patterns for
small CMake projects, plus support for Doxygen and CPack. Further documentation is provided within the created
package itself inside the README.md.

1 # - Define the minimum CMake version

[Share bU||d results but a|SO knowledge Of 2 # HSF recommends 3.3 to support C/C++ compile features for C/C++11 across all

how to build

platforms
4 cmake_minimum_required(VERSION 3.3)
- Call project() to setup system
From CMake 3, we can set the project version easily in one go

m HSF Packaging working group studying BB gemon VERSHNI 1.5}

various options
o Testing
o Licensing and Copyright
o Documentation

#-—— Define basic build settings
— Use GNU-style hierarchy for installing build products
include(GNUInstallDirs)

13 # Add some build option variables, for static builds and profiling
14 if (NOT BUILD_STATIC)

15 set(BUILD_STATIC OFF)

16 endif()

m Ifitis not documented, does it exist? 17 set(BUILD_STATIC “${BUILD_STATIC}H"

e Ensure as much uniformity as reasonable

o https://qgithub.com/HSF/tools

CACHE BOOL "Build a static version of the prmon binary" FORCE)
if (NOT PROFILE_GPROF)

21 set(PROFILE_GPROF OFF)
22 endif()

10

https://github.com/HSF/tools

EDM4HEP

e To achieve the highest levels of interoperability components should directly
talk the same language
o For HEP this is the Event Data Model, EDM
e The experience of the ILC/CLIC community in sharing an EDM has been a very

positive one

o Defining it may not be easy
o But once achieved it pays off handsomely

e As an outcome of the Future Collider Software Workshop a small working
group is being setup (ILC/CLIC/FCC/CECP) to discuss this
o Our baseline is the highly successful LCIO from the linear collider community

e First meeting yesterday with presentations on LCIO and FCC-EDM

o Aiming for first early release in 3-6 months

1

https://indico.cern.ch/event/832559/

100,000

._Y.’H.

10,000

- /T/
Processor
Processor-Memory
/ Performance Gap
10

e Original HEP C++ Event Data Models were heavily
inspired by the Object Oriented paradigm W e e o me s w0

o Deep levels of inheritance
o Access to data through various indirections
o Scattered objects in memory
® In practice access to the data in this way can be very slow
o LHC experiments needed to optimise this a lot during Run 2

e Challenges in this area are only growing
o As well as increasing memory latency, we look more and more towards accelerated computing devices

e Use PODIO EDM generator
o Data model described at a high level in YAML
o Code is then generated for target languages and different persistency backends
o Insulates users from implementation details and allows for common optimisation

Implementing the EDM

Performance
2
3

12

Experiment Framework

e Data processing frameworks are the skeleton on
which HEP applications are built
e To get software to ‘click’ in the best way possible it's a huge advantage to share a
software framework
o In HEP we have traditionally not done so well here - many frameworks and a lot of duplication of effort
e Marlin was used by the LC community and was very successful as a common
project
o Unfortunately very far behind in conversion to modern concurrency needs
o It does have a lot of well liked features (e.g. configuration)

e Gaudiis another shared framework, used by LHCb and ATLAS, as well as smaller
experiments
o Supports concurrency and has all hooks needed for data taking
e We will base Key4HEP on Gaudi and contribute to development where needed

13
D

Gaudi Modernisation Project

e A lot of the very
hard things are
done

e Improved
documentation
coming

e CMake build system
being rewritten this
summer

Gaudi

Docs » Welcome to the Gaudi Project documentation View page source

Welcome to the Gaudi Project documentation

Gaudi is a framework software package that is used to build data processing applications for High-
Energy Physics experiments. It contains all of the components and interfaces to allow you to build
event data processing frameworks for your experiment.

Gaudi scales to the needs of the most demanding experiments at the LHC, but is simple enough to
get started quickly and have an application running in just a short time.

Gaudi has been in production for the ATLAS and LHCb experiments and others for many years and
is also the framework used by the Future Circular Collider (hh).

14

Practical Progress

e To help integrate ILCsoft algorithms into Key4HEP a Marlin»=Gaudi wrapper has

been developed (André Sailer)
o https://github.com/andresailer/GMP
o Prototype for now, but proves that framework transition is quite practical to achieve

e As part of the AIDA2020 project LCIO has been re-implemented using PODIO
(Frank Gaede)

o This demonstrates, as expected, that PODIO can implement a generic data model like LCIO
o Some interface changes, e.g. shift from pointer to member semantics
m These can probably be temporarily masked

15

https://github.com/andresailer/GMP

Spack Building

e Summer student project (Hobbs Willett) working with
Javier and Graeme

e Currently building a minimal stack with ROOT and all dependencies
o Checked binary cache function
o Working on using module files to distribute runtime environment setup
o Checked relocation of packages

e [urther Plans

o Move to using EOS/Web based binary cache
o Distribute to CVMFS for testing

16

Next Steps and Conclusions

e General agreement on moving to a common HEP software

stack from future experiments

o Alotto be learned from ILC/CLIC experiments in how to do this and
the benefits

e Move build infrastructure to Spack
o Progressing on this now

e Started on EDM4HEP

o Working group now active
e Provide common and popular HEP package sets

e Gaudi framework to bind elements together

e Shims to form a plugin system of software that really works coherently
o This is the critical point to make this a turnkey stack

17

