
Key4HEP - The Common
Turnkey Software Stack

Graeme A Stewart, CERN EP-SFT

HSF Packaging Meeting, 2019-06-10

Experiment Software Lifecycle I
● First ideas and inspiration…

○ Cool idea... would that work?

● Concepts
○ Very fast approximate methods, e.g. Delphes (smeared

tracks, etc.)

● Design
○ Still need to be flexible to decide between alternatives
○ Ultimately need to pay a lot of attention to details for

accurate performance evaluation
■ Accurate geometry, full simulation, realistic

digitisation, ...

2

Experiment Software Lifecycle II
● Production

○ Dealing with the real world - calibration, alignments, dead
and noisy elements

○ Learn about the detector, need stability but also continual
improvements

● Upgrade
○ Design better sub-detectors for the next version

● Preservation
○ How can I make sure we can look at the data in the future?

For new experiments not everything needs to, or should be, solved
up-front, but forgetting about the next step entirely will cause problems

down the line (technical debt!)

Snippet from
CERNLIB 3

HEP Application Software

4

Many widely used non-HEP libraries: Boost,
Python, Zlib, CMake, …

Provide core functionality widely used: ROOT,
HepMC, HepPDT, DD4hep, ...

Specific components used by many
experiments: Geant4, DELPHES, Pythia, ...

Experiment core orchestration layer, where
everything else plugs in: Gaudi, CMSSW, Marlin

Usually experiment specific libraries for data
representation and access: xAOD (but LCIO!); also
detector specific conditions data

Application layer of modules/algorithms/processors
that perform physics tasks (some generic examples
like FastJet and PandoraPFA)

M
os

t G
en

er
al

 →
 M

os
t S

pe
ci

fic

Building HEP Applications

5

● Each piece of software does not live in
isolation

● There is an ecosystem of interacting
pieces

● Compatibility between the elements
doesn’t usually come for free
○ Common standards do help a lot

● Building a consistent set of software for
an experiment is a task in itself
○ We are in the Packaging Group, so we know

this

Key4HEP Motivation

● Future detector studies critically rely on well-maintained software stacks to
model detector concepts and to understand a detector’s limitations and
physics reach

● We have a scattered landscape of specific software tools on the one hand and
integrated frameworks tailored for a specific experiment on the other hand

● Aim at a low-maintenance common stack for FCC, ILC/CLIC, CEPC with ready
to use “plug-ins” to develop detector concepts

● Identified as an important project in the CERN EP R&D initiative
● Reached consensus among all communities for future colliders to develop a

common turnkey software stack at recent Future Collider Software Workshop

6

https://cds.cern.ch/record/2649646
https://agenda.infn.it/event/19047/

Key4HEP Goals

● Put together a stack of the software packages covering the different domains
○ most commonly used, avoiding as much as possible functionality overlaps

● The turnkey stack connects and extends the individual packages to enable a
complete data processing framework
○ converting a set of disconnected packages into a ‘turnkey’ system

● and should be
○ easy to use: for librarians, developers, users
○ easy to set up
○ easy to deploy (CVMFS and containers)
○ easy to extend
○ full of functionality

● Plenty of examples for simulation and reconstruction of detectors

7

Interoperability I

● Level 0 - Common Data Formats
○ Allows interoperability between different programs, even running on different hardware
○ E.g., HepMC event records, LCIO, GDML, ALFA messages

● Level 1 - Callable Interfaces
○ Basic calling interfaces defined by the programming language

■ Cross language calls are, of course, possible
○ Can be dependent on the compiler and language version (C++ in particular)
○ Details are important

■ how to handle errors and exceptions, is it thread safe, are objects const, dependent
libraries and runtime setup

○ E.g., FastJet, Eigen, Boost

8

Interoperability II

● Level 2 - Introspection Capabilities
○ Software elements to facilitate the interaction of objects in a generic manner such as

Dictionaries and Scripting interfaces
○ Example: PyROOT, which is a Python extension module that allows the user to interact with any

ROOT (C++) class from the Python interpreter

● Level 3 - Component Model
○ Software components of a “common framework” offers maximum re-use
○ ‘standard’ way to configure its parameters, to log and report errors, manage object lifetime and

ownership rules, ‘standard’ plug-in management, etc.
○ Unfortunately, no single Framework has been generally adopted

The right interoperability point between packages varies, but fixing it correctly
eases life a lot for other developers and users

9

HSF Project Template

● To enable interoperability and long
term maintainability
○ Build system

■ Share build results, but also knowledge of
how to build

■ HSF Packaging working group studying
various options

○ Testing
○ Licensing and Copyright
○ Documentation

■ If it is not documented, does it exist?

● Ensure as much uniformity as reasonable
○ https://github.com/HSF/tools

10

https://github.com/HSF/tools

EDM4HEP

● To achieve the highest levels of interoperability components should directly
talk the same language
○ For HEP this is the Event Data Model, EDM

● The experience of the ILC/CLIC community in sharing an EDM has been a very
positive one
○ Defining it may not be easy
○ But once achieved it pays off handsomely

● As an outcome of the Future Collider Software Workshop a small working
group is being setup (ILC/CLIC/FCC/CECP) to discuss this
○ Our baseline is the highly successful LCIO from the linear collider community

● First meeting yesterday with presentations on LCIO and FCC-EDM
○ Aiming for first early release in 3-6 months

11

https://indico.cern.ch/event/832559/

Implementing the EDM

● Original HEP C++ Event Data Models were heavily
inspired by the Object Oriented paradigm
○ Deep levels of inheritance
○ Access to data through various indirections
○ Scattered objects in memory

● In practice access to the data in this way can be very slow
○ LHC experiments needed to optimise this a lot during Run 2

● Challenges in this area are only growing
○ As well as increasing memory latency, we look more and more towards accelerated computing devices

● Use PODIO EDM generator
○ Data model described at a high level in YAML
○ Code is then generated for target languages and different persistency backends
○ Insulates users from implementation details and allows for common optimisation

12

Experiment Framework

● Data processing frameworks are the skeleton on
which HEP applications are built

● To get software to ‘click’ in the best way possible it’s a huge advantage to share a
software framework
○ In HEP we have traditionally not done so well here - many frameworks and a lot of duplication of effort

● Marlin was used by the LC community and was very successful as a common
project
○ Unfortunately very far behind in conversion to modern concurrency needs
○ It does have a lot of well liked features (e.g. configuration)

● Gaudi is another shared framework, used by LHCb and ATLAS, as well as smaller
experiments
○ Supports concurrency and has all hooks needed for data taking

● We will base Key4HEP on Gaudi and contribute to development where needed
13

Gaudi Modernisation Project

● A lot of the very
hard things are
done

● Improved
documentation
coming

● CMake build system
being rewritten this
summer

14

Practical Progress

● To help integrate ILCsoft algorithms into Key4HEP a Marlin→Gaudi wrapper has
been developed (André Sailer)
○ https://github.com/andresailer/GMP
○ Prototype for now, but proves that framework transition is quite practical to achieve

● As part of the AIDA2020 project LCIO has been re-implemented using PODIO
(Frank Gaede)
○ This demonstrates, as expected, that PODIO can implement a generic data model like LCIO
○ Some interface changes, e.g. shift from pointer to member semantics

■ These can probably be temporarily masked

15

https://github.com/andresailer/GMP

Spack Building

● Summer student project (Hobbs Willett) working with
Javier and Graeme

● Currently building a minimal stack with ROOT and all dependencies
○ Checked binary cache function
○ Working on using module files to distribute runtime environment setup
○ Checked relocation of packages

● Further Plans
○ Move to using EOS/Web based binary cache
○ Distribute to CVMFS for testing

16

Next Steps and Conclusions
● General agreement on moving to a common HEP software

stack from future experiments
○ A lot to be learned from ILC/CLIC experiments in how to do this and

the benefits

● Move build infrastructure to Spack
○ Progressing on this now

● Started on EDM4HEP
○ Working group now active

● Provide common and popular HEP package sets
● Gaudi framework to bind elements together
● Shims to form a plugin system of software that really works coherently

○ This is the critical point to make this a turnkey stack

17

