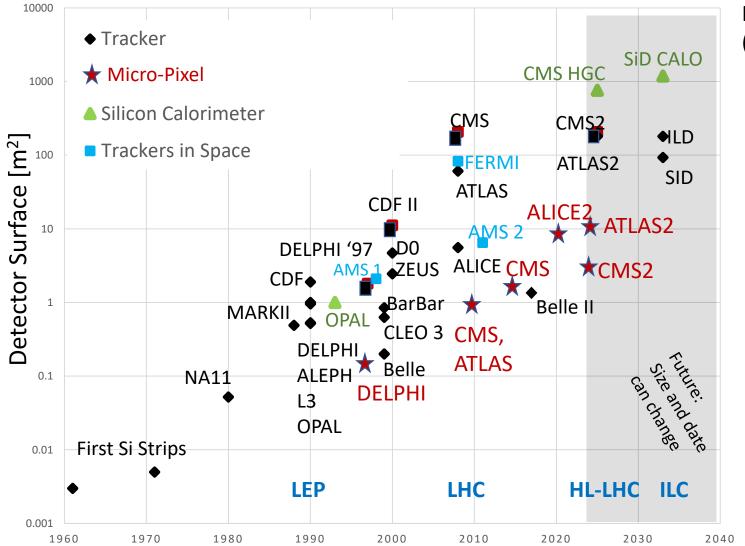


Novel Detectors for Tracking and Timing "satellite view" Pixel 2022

Frank Hartmann


I prepared an introduction talk - a bit of everything

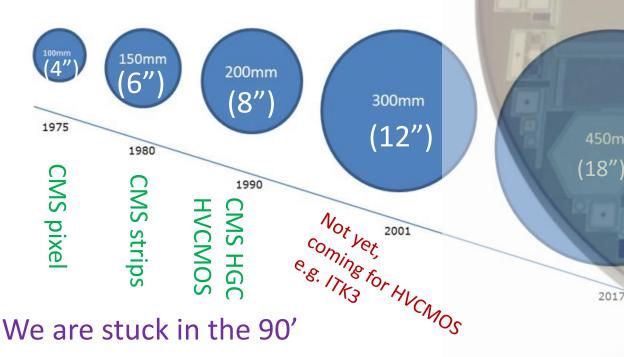
- Full credits go to the people doing the real work, i.e. not me
- I am personally very curious to get the real news in the next days

+ synchrotron photon counting (HCPDs)

Size matter! Does it?

FCC-h (no number)

Cell size **goes down significantly** Cell count **goes up significantly**


We are counting in GIGA these days

Planar Silicon Sensors - wafer sizes

SILICON DÉTECTORS WITH 5 µm SPATIAL RESOLUTION FOR HIGH ENERGY PARTICLES

1983! The detectors [2] are made of high-ohmic n-doped silicon single crystal wafers of 2" diameter and 280 μ m thickness (fig. 1). Using the planar process [1], p-doped strip diodes, covered by aluminium contacts, are implanted into one side of the wafer. On the other side a

Wafer Areas in Chip industries:

8" AC coupled strip sensor prototype -HEPHY-IFX

Not ye

4

Brown

sero 0 18

cocore.

I discuss some items, that I consider novel but do not fully fit into the "Pixel" theme and/or are not discussed in later talks this week

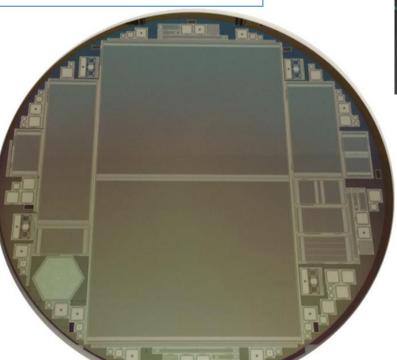
Starters

- First 8" sensors for HEP (for tracking inside a calorimeter and proof of concept for tracker)
- Passive CMOS is this a path?
- Level-1 Track and Vertex Trigger a concept not a sensor, but needs macro-pixel!

Main

- Timing detectors and their evolution
 - Planar and 3D with and without gain
- 3D pixels and their evolution
- HV-CMOS/DMAPS is this the future?

Dessert


neasa

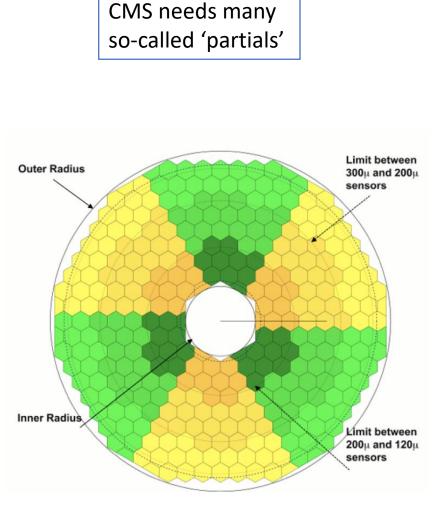
Coffee Break

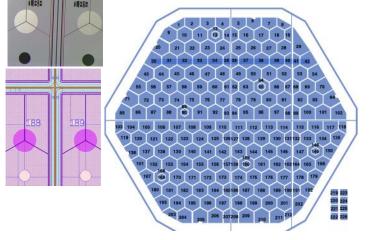
Appetizers

8" wafers – a big and novel step, but not for all!?!?!

8" n-in-p **strips** AC-coupled

8" is a **game changer** for 'really-large-area' detectors, like the CMS forward imaging calorimeters. And, the hexagonal shape pad sensor uses the circular area in an optimal way - ratio of sensor/wafer

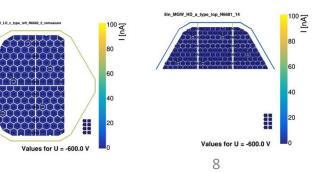

8" not for strip tracker as ratio of sensor/wafer not ideal;
and 6" still more mature. Both ATLAS and CMS are using 6"!
Hybrid pixels would strongly benefit on real estate, and
especially on flip-chipping effort/cost.


I am also aware of 8" wafers for active* & passive CMOS sensors and LGADs! At coffee you tell me where else!

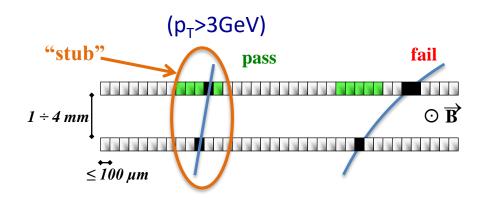
* e.g. ALPIDE 8" and ITS targets 12"

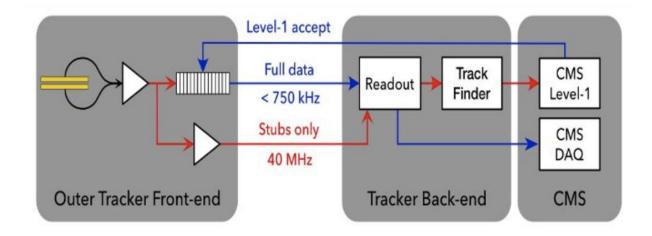
Another cost saving, novel idea – Multi-Geometry Wafer

Use one mask and cut to different geometries



LD partial sensor layout names Full=0
Top=1
Bottom=2
Left Right
=3
Five=5
Five

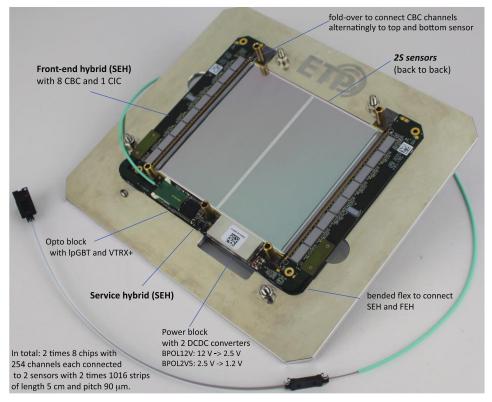

Pay attention to the cutlines, guard and bias lines. **Et Voila it works!**



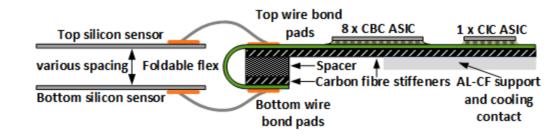
Courtesy of the CMS HGCAL team

Triggering on tracks at 40 MHz – CMS Phase-2

- Traditionally, Trackers cannot be be read out at full speed
 - too complex, too much data, not enough bandwidth
 - 'a track' as a trigger object needs information of several layers but they are not connected
- Can we connect internally? Yes we can a bit, very local, on parts of the track!

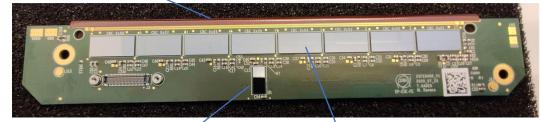

But what about the z coordinate?

Stub data being sent out at 40 MHz (data reduction factor 10, still ~ 80% of bandwidth) Full track reconstruction in backend FPGA (~4μs) as trigger objects

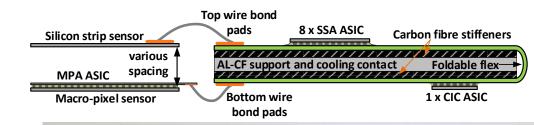

9

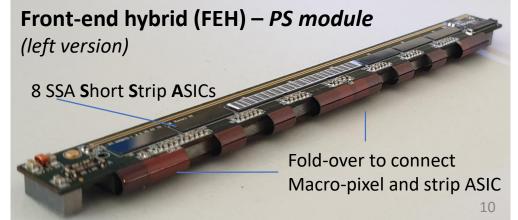
CERN-LHCC-2017-009 CMS-TDR-17-001

How does it work locally? Is there a drawback? Stereo angle? Z-resolution?



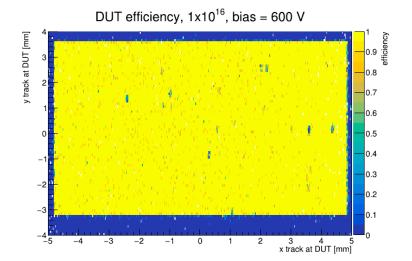
- Bottom and top strips connected to same ASIC via flex fold-over, doing the correlation
 - Strips parallel stereo angle not possible no z-resolution only p_T
- 2nd module version with 1.5 mm macro-pixels (and 2.5 cm strips)
 - Strip ASICs provide info to pixel ASIC doing the correlation
 - Unambiguous z-resolution at trigger level (~1mm vertexing possible) @trigger
 - Results in a 25 m² macro-pixel detector (bump bonded)


Front-end hybrid (FEH) - 2S module


Fold-over to connect CBCs to both sensors

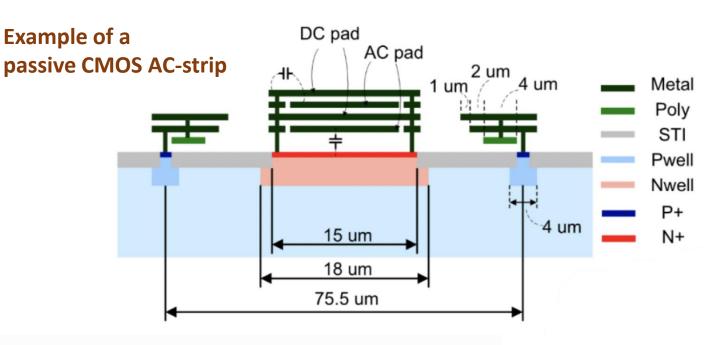
1 CIC Concentrator Chip

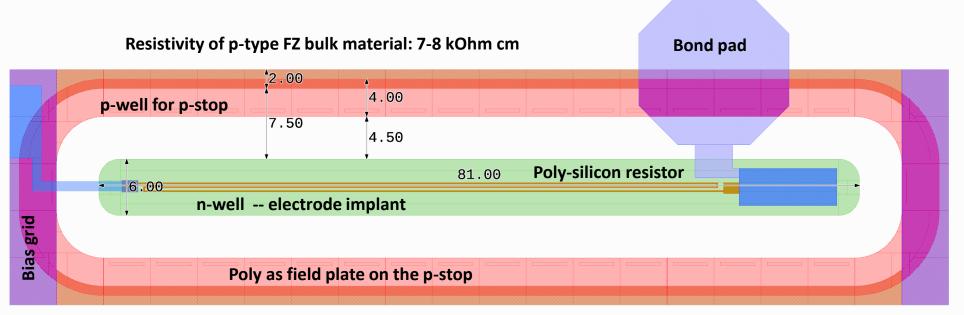
8 CBC CMS Binary Chips



Passive CMOS sensors – a cost effective alternative?

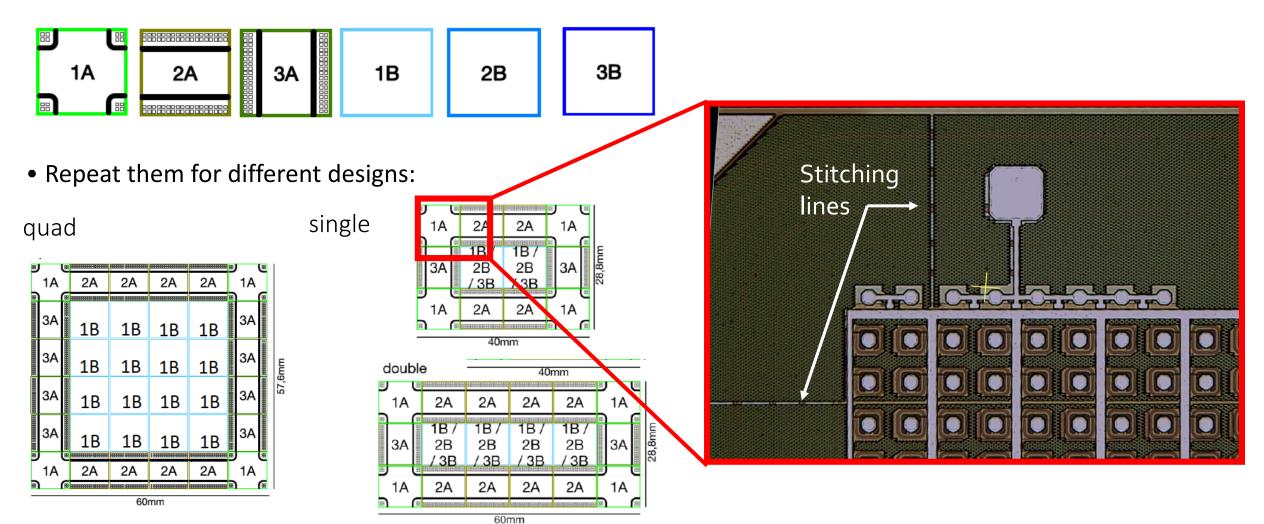
- In search of more sensor producers, several groups are evaluating strip and pixel sensors from CMOS companies!
 - Use n-well/p-well/metal/polysilicon layers for sensor implantations, biasing, field shaping
- The process is distinctively different to 'our' standard, mature planar process! Different = new complications and new opportunities. Mask sizes are limited to so-called reticles – same limits as for ASICs
 - Large sensors can only be realised by stitching
 - Multiple metal layers allow interesting redistributing schemes, e.g. disentangle electrode implant from readout connection
 - MIM (Metal-Insulator-Metal Capacitance) allows AC coupling for small structures (pixels) with decent coupling
 - HIGH and LOW resistivity **polysilicon layers** allow for bias resistors on small real estate or field shaping structures


• In a nut-shell it works!



Not our usual Planar Process

Example of a passive CMOS DC-pixel



Courtesy CMS Pixel

Reticle stitching

Sensor size > reticle size 26 mm x 32 mm \rightarrow reticle stitching needed

• Different sub-reticles (~ 1 cm x 1 cm) for edge and active areas:

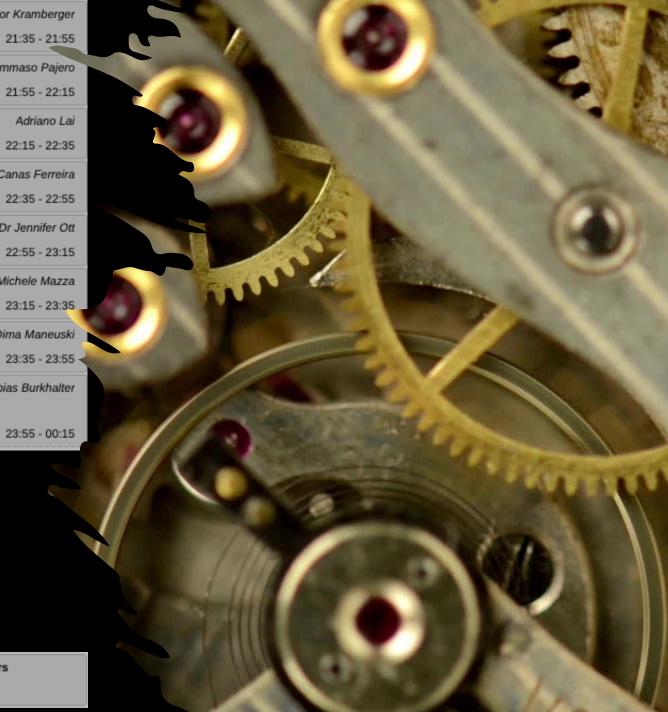
Slide from A. Macchiolo (CMS)

Onto the three main courses

Timing

... 3D

... HV-CMOS


Precision timing with silicon detectors	Gregor Kramberger					
North Baliroom, La Fonda Hotel	21:35 - 21:55					
VELO Upgrade II- the LHCb 4D Pixel Detector	Tommaso Pajero					
North Baliroom, La Fonda Hotel	21:55 - 22:15					
10-ps timing with 3D-trench silicon sensors at extreme rates	Adriano Lai					
North Baliroom, La Fonda Hotel	22:15 - 22:35					
A High Granularity Timing Detector for the ATLAS Phase-II Upgrade	Afonso Soares Canas Ferreira					
North Baliroom, La Fonda Hotel	22:35 - 22:55					
AC-coupled Low Gain Avalanche Diodes for 4D tracking: impact of electrode geometry on charge sharing Dr Jennifer Ott						
North Baliroom, La Fonda Hotel	22:55 - 23:15					
An LGAD-based full active target for the PIONEER experiment	Dr Simone Michele Mazza					
North Baliroom, La Fonda Hotel	23:15 - 23:35					
Performance studies of Inverse Low Gain Avalanche Detectors (i-LGAD) coupled to the Timepix3 ASIC Dr Dima Maneuski						
North Ballroom, La Fonda Hotel	23:35 - 23:55 -					
MoTiC: Prototype of a Monolithic Particle Tracking Detector with Timing	Stephan Tobias Burkhalter					

North Ballroom, La Fonda Hotel

Precision timing

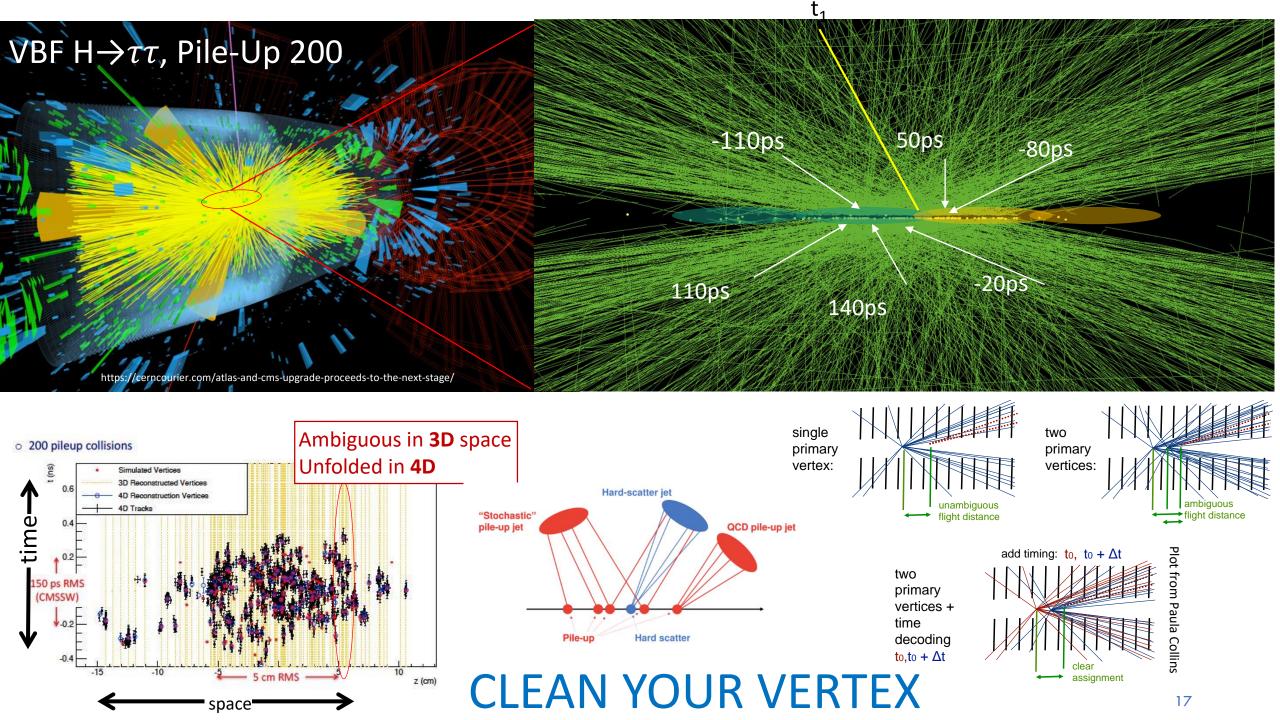
Goal: σ_{T} = 0,000 000 000 005 s

MONOLITH - picosecond time stamping capabilities in fully monolithic highly granular silicon pixel detectors Lorenzo Paolozzi

Precision timing

– WHY, do we need it and WHAT and WHERE?

It is new! Why? Probably by consensus as we all like it :-)

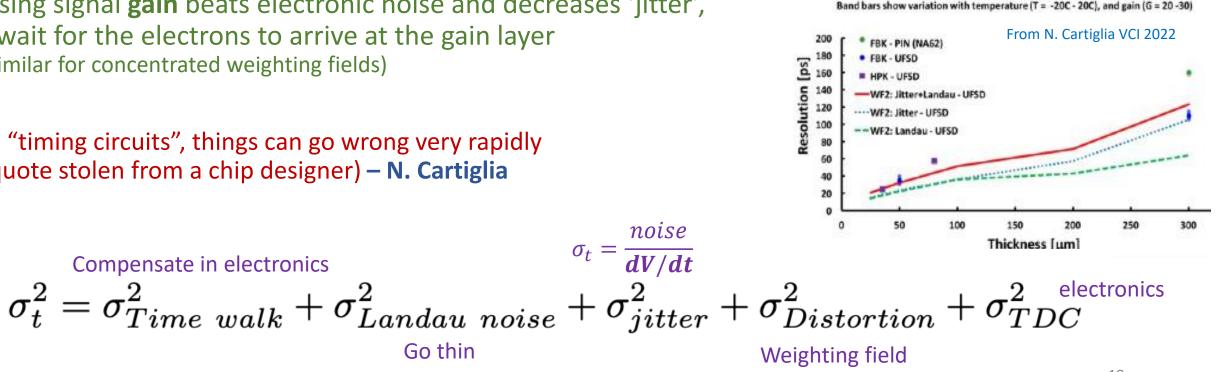

- Precise timing information of 'a track' 1.
 - mitigate pile-up, PID in Heavy Ion, increase reach to measure LLP
 - Here modest spatial information is OK, good fill factor is a plus LGADs and scintillator can do the job LHCb 4D Pixel Detector
- 2. Precise timing information of 'track points', or of 'each track point'
 - all the above plus reduce combinatorics for track finding
 - Superb spatial information & 100% fill factor is mandatory standard LGADs are probably NOT good enough!

Ok, we want superb timing and spatial precision with 100% fill factor, (all in power budget) in general it must be radiation tolerant and best full-monolithic and with volume suppliers

LLP: Long lived Stable Particle

I am looking forward to "Precision timing with silicon detectors" – **by Gregor**

– by Tommaso



A bit of random wisdom (no no, not from me)


- Intrinsic timing capability of sensors is basically infinite* (sub ps) W. Riegler
- Landau noise (non-uniform ionization *spatial*) and electronic noise is the issue everybody says this
 - Decreasing electronic noise 'costs' power', which is 'limited' I say this but I heard it from somewhere
 - Decreasing sensor thickness decreases drift length and Landau noise from the experts ٠
- Using signal gain beats electronic noise and decreases 'jitter', - wait for the electrons to arrive at the gain layer (similar for concentrated weighting fields)
- In "timing circuits", things can go wrong very rapidly (quote stolen from a chip designer) – N. Cartiglia

Comparison WF2 Simulation - Data

* acceleration of electrons to 10⁷ cm/s in vacuum is 0.14ps & passage of the particle through a 50um sensor takes 0.16ps

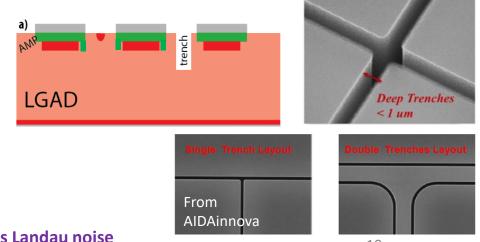
Low Gain Avalanche Detector - LGAD aka the working horse for HL-LHC aka the mature but already obsolete technology??

• Timing precision $\sigma_t = <30 \text{ ps}$

- Fill factor mediocre (~80%) as inter-pad region = no gain
- Spatial precision ~mm

Al pixel (DC) Al pix

Numerous iterations, testbeams, market survey


- several vendors, radiation studies

→ Mature technology ~ 2*10¹⁵_{MeV_n}/cm²

- E.g. adding of C in gain layer
- Understood single event burnout!
- Lots of effort to increase fill factor,
 a. The CADe Trench legistic of CAD

- e.g. TI-LGADs Trench Isolation LGADs
 - ~50 \rightarrow 5 μ m dead zone

Function: Signal from electron avalanche – arrival time starts avalanche – gain beats noise/jitter – limit is Landau noise Thinner sensor decreases Landau Noise - shorter drift time (shorter path and higher field) (& no weighting field effect as pads >> thickness)

IEEE TRANSACTIONS ON ELECTRON DEVICES, JUNE 1972

And, the LGAD concept is not brand new

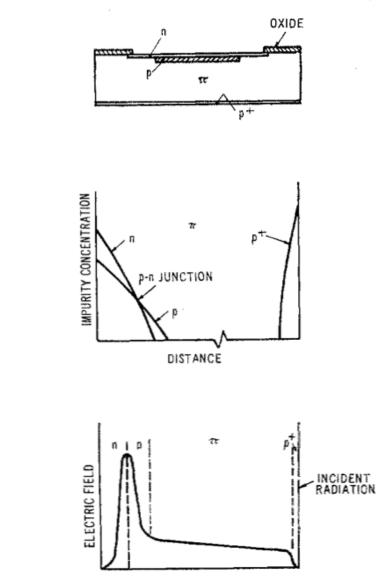


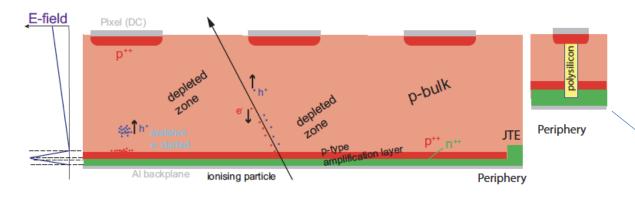
Fig. 1. Sketeches of reach-through avalanche-diode structure, impurity-concentration profile, and electric-field distribution.

From Abe Seiden, Hartmut Sadrozinski and Nicolo Cartiglia pioneers on LGADs:

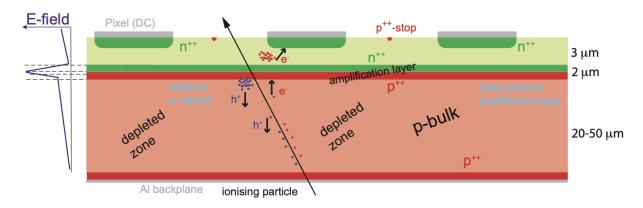
I'm wondering if we can do both measurements (space and time) in one object, a silicon detector with very good timing resolution.

We thought it was a dumb question...but over lunch, we jotted down some numbers.

... The main question is understanding the gain in silicon sensors



Ok, we achieved precision timing


Now let's think about fill factor and spatial resolution!

MOVE the amplification layer - Disentangle amplification and readout electrodes

• Inverse LGADs

• Deep Junction LGADs – DJ-LGADs

• Fill factor 100%

- Spatial resolution good
- Timing limited to ~100 ps
 - Thickness ~ 300 μm
 - JTE at back ask for **double** sided process
 - hole collection
- New version using 3D technology
 - Thin and slim edge & single sided process

Performance studies of Inverse Low Gain Avalanche Detectors (i-LGAD) coupled to the Timepix3 ASIC – by Dima

• Fill factor 100%

- Spatial resolution good
- Timing good < 30 ps
- How easy to build?? Finetuning??

Same function, advantages and limitation of standard LGADs on timing (signal starts at arrival)

Timing, *same* reason for everybody??

(see DOE Basic Research Needs for High Energy Physics Detector Research and Development Report, ECFA roadmap, Snowmass)

- HL-LHC (mitigate pile-up, PID in Heavy Ion, increase reach to measure LLP) 30 ps DONI
- Future e+e- colliders (Higgs Factories):
 - Spatial Resolution ~3 μm
 - Time resolution would enhance **particle identification** and reconstruction
- Future Hadron collider Pileup (~1000; 4THz of tracks) and radiation levels up to 8 x 10¹⁷ n/cm²
 - Track resolution < **10 μm** per layer
 - Time resolution 5 10 ps
- Muon Collider for **BIB background** rejection
 - Track and time resolution 20 30 ps
- Electron-Ion Collider (EIC) Time of Flight (ToF):
 - fine time and space resolution needed for PID $\pi/K/p$ separation at low/medium momentum
 - 20 30 ps timing per hit
- Very Forward Physics *PPS* at the (HL-)LHC and future hadron colliders:
 - fine time and space resolution needed for precise proton momentum reconstruction and association to correct vertex
 - 5 ps timing to suppress pileup (needs many timing layers), 5 μ m tracker resolution
 - Greatly reduced to 20 ps in case 4π timing detector in the central region

			Partia Canado Martin Ban Pics Ban Martin	**************************************	LHCA ATAS (LSA1) EIC & OHSE	14°C 13°	CLC FC C, II FC C, II Mucrosoftee
		DRDT	< 2030		2030-2035	2035- 2040 2040-2	
	Position precision	3.1,3.4	•				
	Low X/X	3.1.3.4		ăă	ă i ă		i i i i i
	Low power	3.1,3.4		ăă	ă ă ă		
Vertex	High rates	3.1.3.4					
detector ²⁾	Large area wafers3)	3.1,3.4			- -		
	Ultrafast timing4)	3.2			• • •		
	Radiation tolerance NIEL	3.3					
	Radiation tolerance TID	3.3					
	Position precision	3.1,3.4			- T 📥		
	Low X/X _o	3.1,3.4			<u> </u>		
	Low power	3.1.3.4			X X		
	High rates	3.1,3.4			- -		
Tracker ⁵⁾	Large area wafers ³⁾	3.1,3.4			X		
	Ultrafast timing4)	3.2			I II		
	Radiation tolerance NIEL	3.3			• • •		
	Radiation tolerance TID	3.3			I		
	Position precision	3.1.3.4			• • •		
	Low X/Xo	3.1.3.4					
	Low power	3.1.3.4					
Calorimeter ⁶⁾	High rates	3.1.3.4		•			
	Large area wafers ³⁾	3.1.3.4					
	Ultrafast timing ⁴⁾	3.2					
	Radiation tolerance NIEL	3.3					
	Radiation tolerance TID	3.3					
Time of flight ⁷⁾	Position precision	3.1,3.4					
	Low X/X _p	3.1,3.4					
	Low x/X _o Low power	5.1, 5.4 3.1, 3.4					
		5.1, 5.4 3.1, 3.4	-	-		-	
	High rates	3.1, 3.4 3.1, 3.4					
	Large area wafers ³⁾						
	Ultrafast timing ⁴⁾	3.2				-	
	Radiation tolerance NIEL Radiation tolerance TID	3.3 3.3			-		

🛑 Must happen or main physics goals cannot be met 😑 Important to meet several physics goals 😑 Desirable to enhance physics reach 🔵 R&D needs being met

Evolving further

Al pixel (AC)

depletet

AI backplane

electrode

D⁺⁺

Em

Monolith

contains electronics

deep n-well

E-field

zone

- and apologies for all developments I overlooked

AC-LGADs or Resisitive Silicon Sensors RSD

MONOLITH - picosecond time stamping capabilities in fully

monolithic highly granular silicon pixel detectors - by Lorenzo

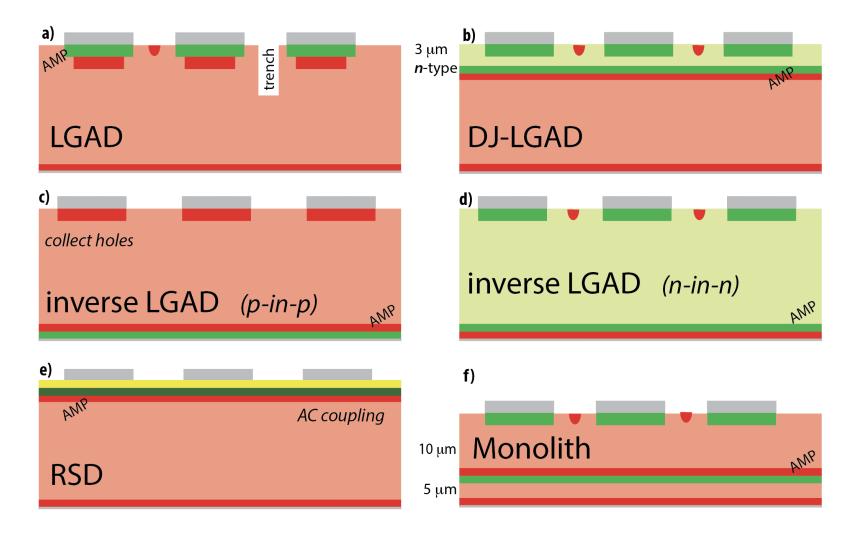
100% fill factor

• Timing ~30 ps

 \sim 5 µm spatial resolution with 150 µm pitch Excellent ratio Due to charge distribution and sharing in Al pixel (AC) Al pixel (AC) DC-Contact intrinsic low resistivity n++ layer with ~4 AC pads as smallest impedance to ground amplifica \rightarrow 11m² TOF for EiC? depleted p-bulk Fresh idea; do DC-RSD zone • AC-coupled Low Gain Avalanche Diodes for 4D tracking: impact of electrode geometry on charge sharing – by Jennifer ionising particle M. Tornago et al., RD50 Workshop (2020) • Timing goal <10ps Beats Landau Noise due to ultra-thin 2.5 μm p⁺ stop 50 μm amplification zone p-we deep n-well deep n-well deep n-we 5 µm 100% fill factor, epitaxial drift zone • ~ 10 μ m spatial resolution (small pixel) epitaxial drift zone Ш • Fully monolithic device avalanche zone (electons from backside epi) Radiation tolerance? ionising particle initial proposal

MONOLITH

Btw. with this THIN thickness, one could also think about 3D connections??


p++

24

In summary, I present THE ZOO

Anybody up for a bet?

And, not to forget HV-CMOS achieving $\sigma_T = 100 - 200$ ps

or the new DC-RSD

ollecting trench

WD: 11.59 mm

Det: SE

Date(m/d/y): 10/29/19

50 µm

SEM HV: 10.0 kV

View field: 176 um

precision timing without gain layer – 3D trenches • Simply great concept - 'box' signals (perpendicular track) from electrons and holes (induction) - good amount of charge ('thick') - no weightfield distortion - 'no' landau noise For sure radiation tolerant $\sigma_t^2 = \sigma_{Time \ walk}^2 + \sigma_{Landas \ noise}^2 + \sigma_{jitter}^2 + \sigma_{Distortion}^2 + \sigma_{TDC}^2$ Compensate in electronics = 25 - 50 µm track • 3D-trench Read-out electrode Adrinao will probably • 5x40x135µm₃trench tell us more on • 150 µm pixel depth

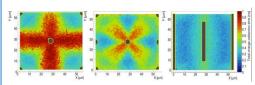
VEGA3 TESCAN

FBK Micro-nano Facili

Biasing

electrode(s)

trenches


 \approx 10 ps & 10 μ m at sensor

level at 99% efficiency

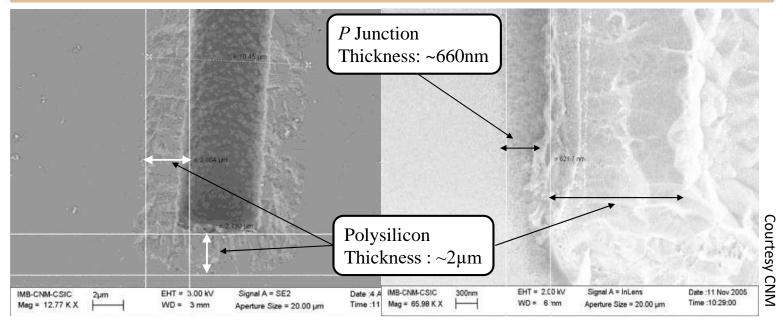
>> 10¹⁶ n_{eq}/cm²

how tilting helps

other 3D geometries

- 3D diamond
- 28nm TIMESPOT ASIC
- power and cooling challenges

electronics



Last words on timing detectors

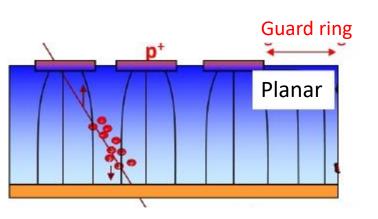
- Many thought, the development of silicon sensors will not see many surprises anymore
- Well, it is so good to see all these innovatitive ideas and their incrediby fast implementations into real devices
- Homework:
 - < 5 μ m spatial
 - < 20 ps (eventually 5ps) timing
 - Monolithic
 - Low power 🦛
 - Even more for gas cooled systems
 - Radiation tolerant
 - (low cost)

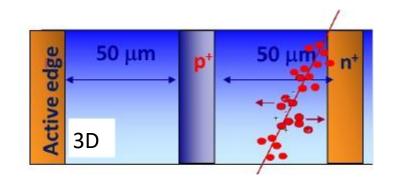
3D Only small number of dedicated talks in this conference! *Is it a done deal?*

Qualification of the first preproduction 3D FBK sensors with ITkPixV1	Martina Ressegotti
North Ballroom, La Fonda Hotel	09:10 - 09:30
Results on 3D pixel sensors for the CMS upgrade at the HL-LHC	Rudy Ceccarelli
North Ballroom, La Fonda Hotel	17:50 - 18:10

28

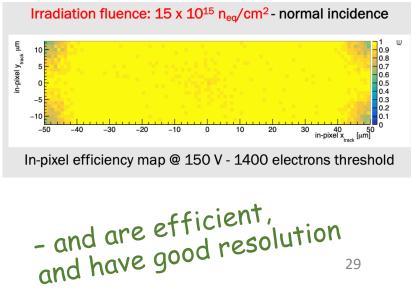
preach to the choir

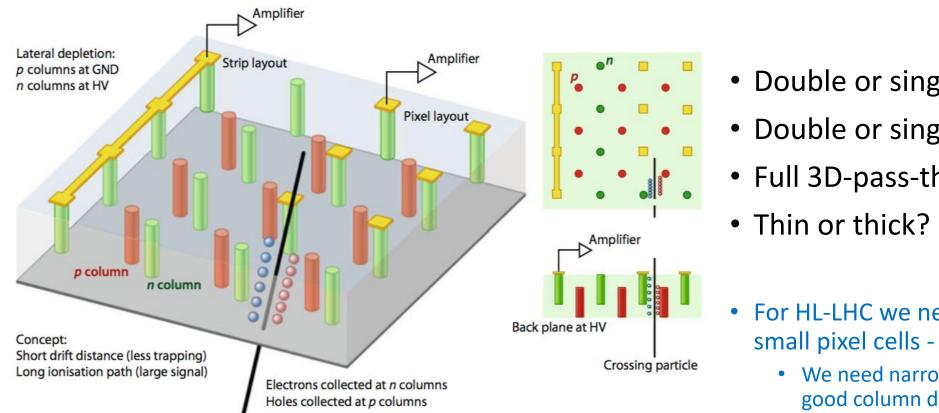

to speak for or against something to people who already agree with one's opinions

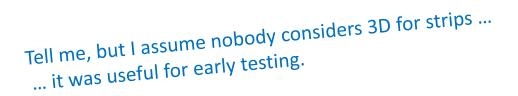

www.merriam-webster.com/

Preaching to the Choir 3D - facts we all know

3D sensors are radiation tolerant!


- Short drift path less trapping Full thickness for signal
- Lower depletion voltage lower power
- Can do slim (active) edge
- Higher Capacity
- Lower yield

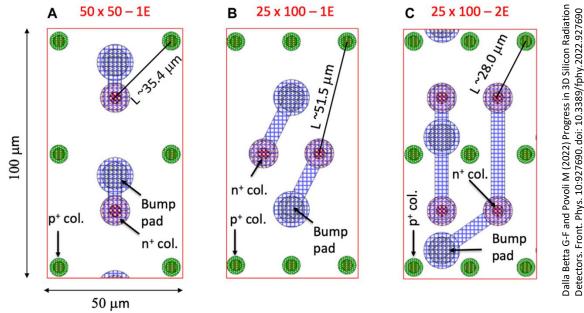


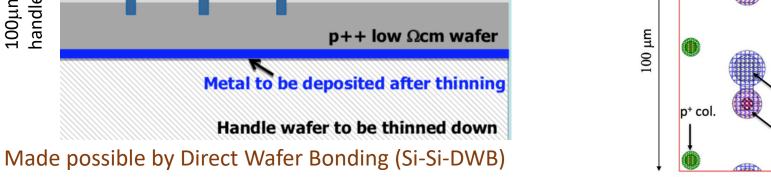

Technology works after 3*10¹⁶ n_{eg}/cm²

The evolution of 3D sensors

Example double sided, double type

- Double or single type?
 - Double or single sided?
 - Full 3D-pass-through?


- For HL-LHC we need small pixel cells - 25x100 μm²
 - We need narrow columns, thus good column depth/width
 - & **medium** thickness ٠
- What do we want later??



Courtesy CNM

3D Silicon Sensors for HL-LHC – yes, we chose

P- high Ωcm wafer

Al pad missing in this test structucture barrier 6.5µm -5.6um n⁺-type n⁺-type column column p⁺-type p-bulk column 10um BOX

Al pad on n-type column

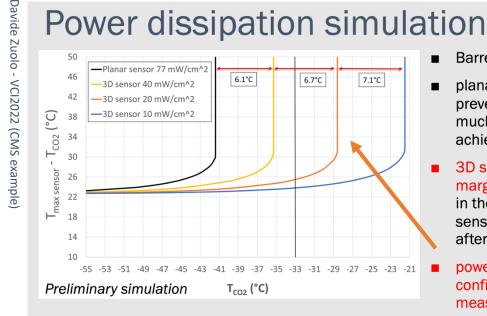
150µm Active

100µm handle

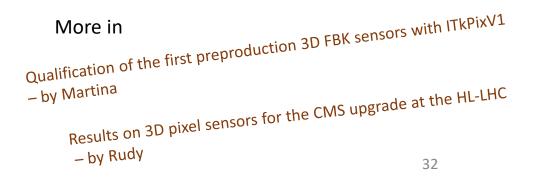
Courtesy CNM

FIGURE 2 | Layouts of two adjacent small-pitch 3D pixels of different geometry for the ATLAS and CMS upgrades at HL-LHC: 50 µm × 50 µm-1E (A), 25 µm × 100 μ m-1E (B) and 25 μ m × 100 μ m-2E (C)

Technology, thickness and cells chosen!


We are quarrelling a bit with noise these days at Φ >E16 and higher voltages

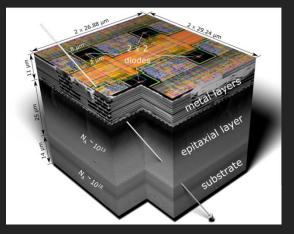
Close to this one... For the future we might like smaller cell sizes (e.g. 25x25 mm²):


- Even shorter drift pathes even more radiation tolerant?
- **Higher occupancy**
- Tune charge multiplication, already at lower voltages?

3D, in the end, do we do it for the radiation tolerance? (used in ATLAS IBL, AFP, CMS PPS; to be used Phase-2 ATLAS & CMS inner layer)

- The goal of radiation tolerance is around $1-2*10^{16}_{1MeV eq}$ /cm²
- In principle planar pixels can do this ...
 - Resolutions ~5 μm and efficiencies (98-99%) are very similar (probably equal)
- I guess, we do it due to power and to prevent corresponding thermal runaway (at minimal cooling contact)
 - Depletes at much lower voltage

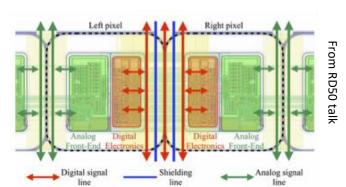
- Barrel Layer 1
- planar sensors: T_{CO2} required to prevent thermal runaway is much lower than -33 °C achievable
- 3D sensors: at least 4 °C margin if the power dissipated in the active volume of the sensor is less than 20 mW/cm² after 2 x 10¹⁶ n_{eo}/cm²
- power dissipation <20 mW/cm²
 confirmed by lab
 measurements


CMOS Sensors for the Subaru Telescope	Satoshi Miyazaki
North Ballroom, La Fonda Hotel	17:15 - 17:35
X-ray polarization measurements with CMOS for satellites	Hirokazu Odaka
North Ballroom, La Fonda Hotel	17:35 - 17:55
CMOS pixel sensors for ULTRASAT	Steven Worm
North Ballroom, La Fonda Hotel	17:55 - 18:15
AstropPix: Status and Outlook of Monolithic Active Pixel Sensors for Future Gamma-ray Telescopes	Dr Regina Caputo
North Ballroom, La Fonda Hotel	18:15 - 18:35
xtremely high density and position resolution digital pixel sensors	Gianluigi Casse
lorth Ballroom, La Fonda Hotel	15:50 - 16:10
ixel detector developments for future lepton colliders	Dominik Dannheim
lorth Ballroom, La Fonda Hotel	- 16:10 + 16:30
TLASPIX3 modules for experiments at electron-positron colliders Pro	of Amilio Andreazza
Iorth Ballroom, La Fonda Hotel	16:30 - 16:50
J-MALTA	Valerio Dao
torth Ballroom, La Fonda Hotel	16:50 - 17:10
F-Monopix2	Patrick Breugnon
forth Ballroom, La Fonda Hotel	17:10 - 17:30
Depleted monolithic active pixels sensor in 180nm TowerJazz CMDS technology with column drain rea Arristian Bespin	dout architecture
derivation of the electric field inside MAPS detectors from beam-test data and limited TCAD simulation	ons Arka Santra
lorth Ballroom, La Fonda Hotel	14:10 - 14:30
rom vertex detectors to applications in ion detection and spectrometry: a glimpse of MAPS R&D in St erome Baudot	trasbourg
Dptimization of a 65 nm CMOS imaging technology for monolithic sensors for high energy physics	Walter Snoeys
ionth Ballroom, La Fonda Hotel	14:50 - 15:10

Monolithic CMOS

some call it HV-CMOS or HR-CMOS some call it DMAPS I call it exciting!

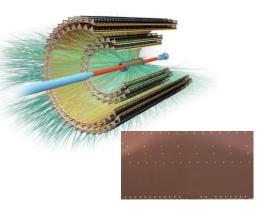
And in my very **personal** humble opinion it must be fully **monolithic***


And getting all logic in and cope with high rates will be a challenge -experiencing the struggle to get all ATLAS and CMS needs into the 65nm pure pixel ASIC (RD53)

33

Stating the Obvious What we all know – **Advantages** of HV-CMOS

- Thin
 - Low material budget: X/X0 ~ 0.05%
 - Radiation tolerant (also 'collects' electrons): $\Phi > 10^{15}_{MeV eq}/cm^2$
- Low power
- No bump bonding cost saving, easier logistics
- In-cell processing monolithic
- Small cells (10x10 μ m²) high resolution ~3 μ m
- Challenges:
 - Stitching
 - How much digital parts features fit in a pixel (and how much in chip periphery)?
 - timing, buffering, L1, data handling state machine


Stock.adobe.cor

MAPS Monolithic Active Pixel Sensors

ULTIMATE in **STAR** First HEP MAPS system

ALPIDE in ALICE First MAPS with sparse readout similar to hybrid sensors

Chip-to-chip

communication for data aggregation

Recent developments (ATLAS, ALICE, MU3e, etc.) **Depleted** radiation hard MAPS with:

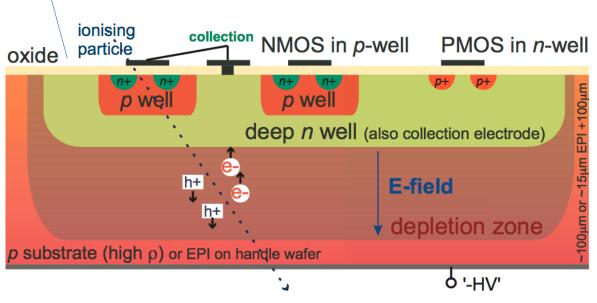
'high' voltage Sparse readout Chip-to-chip communication

Serial power

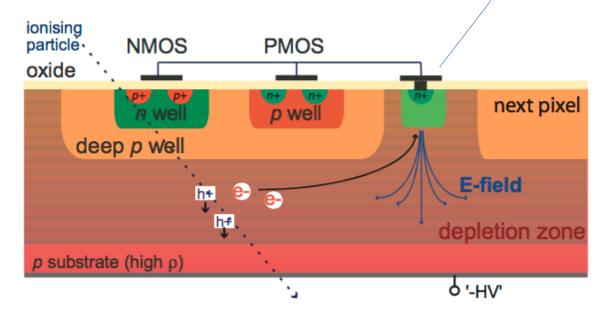
week discussed this be to some in betwen, Many more

FCC, e⁺e⁻ collider, ... Large stitched fast radiation hard MAPS with: Sparse readout Chip-to-chip communication Serial power, timing ... many more 12", <65nm?, new read-out schemes?

35


Many uses: STAR, ALICE, CBM, NICA MPD, sPHENIX, Mu3e, CSES – HEPD2, Medical, ... candidates for LHCb, PANDA, BELLE-2, EiC, ILC ... ~ well everybody

Nodes being used: 180, 150 and 65 nm technology and 130 nm SiGe BiCMOS


Important steps in every iteration

LARGE or SMALL electrode??

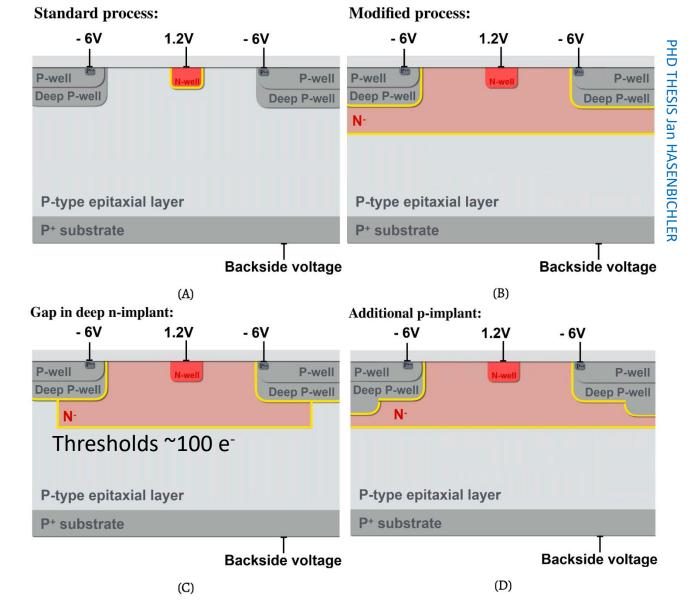
e.g. 50-60 μm (for RD50)

- Short drift path (faster 'collection')
- High C higher noise O(100 e⁻)
- Homogeneous weighting field
- High homogeneous electrical field
- E.g. MUPIX, RD50, MONOLITH, LF-MONOPIX, ATLASPIX

- Long drift path
- Very low C reduced noise (~10 e⁻ & low power)
- δ weighting field arrival
- Some adaptions help further
- E.g. ALPIDE, MALTA, TJ-MONOPIX. CLICTD, FASTPIX

LF-Monopix2 – by Patrick

Where can we have more real estate for CMOS circuitry? Radiation tolerance – we are around > $10^{15}_{MeV_eq}/cm^2$ — is *LARGE* better? e.g. 3 µm (for Malta)


SMALL CELL HV-CMOS EVOLUTION

To overcome:

- Lateral depletion
- Direct drift to to small electrode
 - Mind δ weigthing field

Achievements

- Thresholds ~100 e⁻
- ~ 10 e⁻ Noise

TJ-MALTA - by Valerio

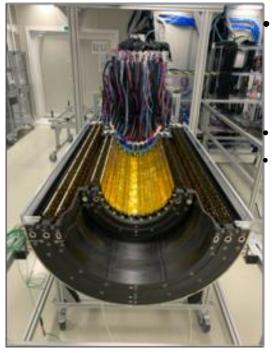

E.g. ALPIDE, MALTA, MONOPIX, CLICTD, FASTPIX

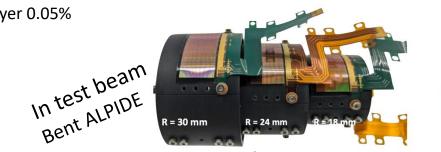
FIGURE 9.1: Four different pixel flavours are shown [119]. (A) shows the standard flavour which was used in ALPIDE. (B) shows the modified flavour which features a blanket deep n-implant. (C) shows the gap flavour which leaves a gap in the deep n-implant. (D) shows the extra-p flavour which features an extra deep p-implant. The junction is represented in yellow. The voltages are the ones used in this chapter. All the drawings are not to scale. 37

The 'big' Small Cell example of MAPS - ALICE

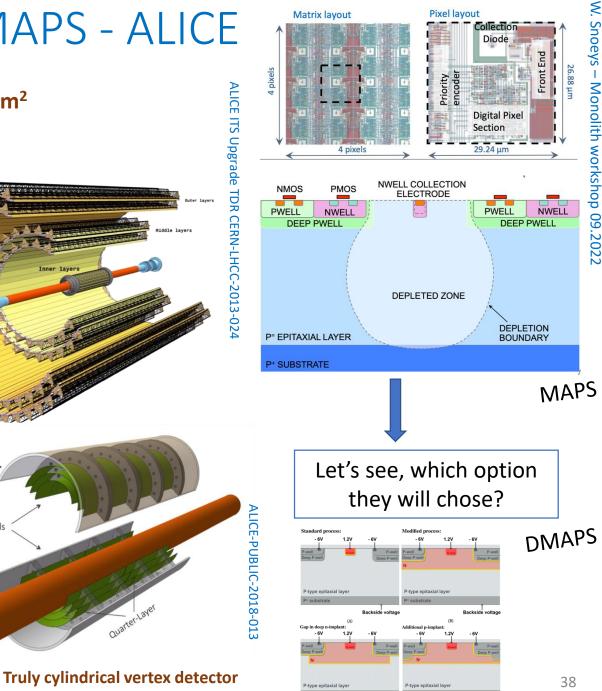
27x29 μm² pixels - **12.5 G-pixels**

LS2: 3+4 layers of MAPS (CMOS) ~10m²

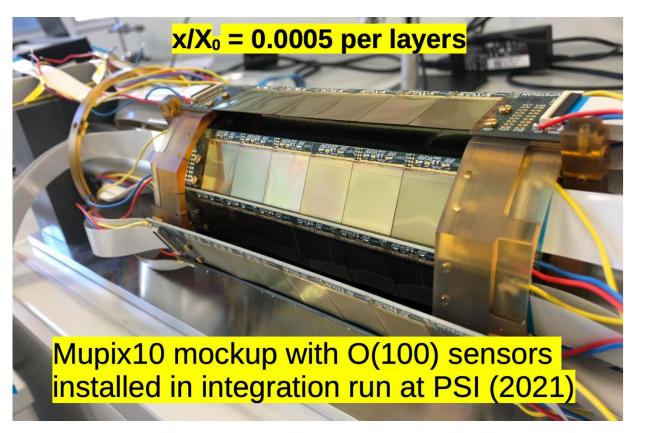
MAPS thinned to 50 μ m • $\sim 0.3 \% X_0$ per layer Radial coverage R= 21 - 400 mm Limited voltage ~3V Beam pipe Cylindrical Structural Shell

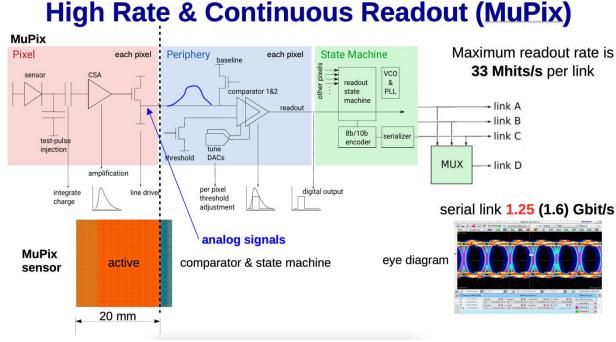

Half Barrels

Future: ALICE upgrade (ITS3) – **HR/HV CMOS** ٠


Push technology further: **thinner**, large sensors through stitching ٠

٠


- Faster signal, more radiation hard ٠
- Pixel sizes $10 \times 10 \mu m^2 \rightarrow 3 \mu m$ position resolution
- X/X0 per layer 0.05%
- CURVED

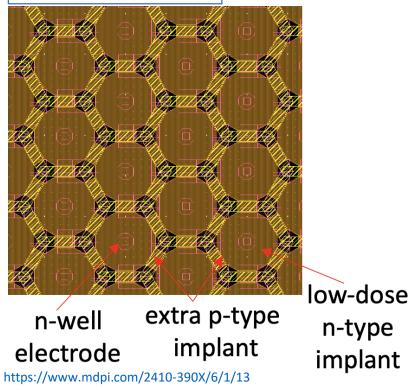


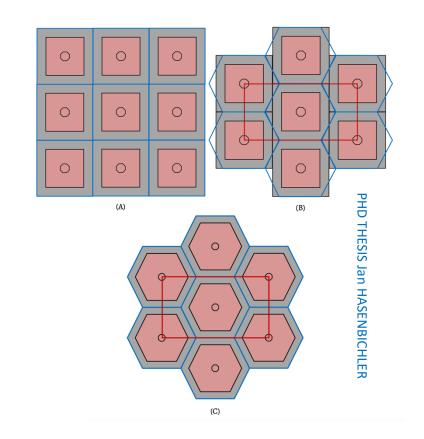
Vertex 2022 Lukas Lautner

Mu3e – Another wonderful example on HV-CMOS *Big Cell* approach - MUPIX

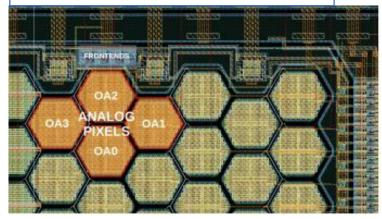
Full monolithic – great example!

• Phase-1: 6 layers (50mm thin and cooled by **gaseous helium** (up to 400 mW/cm2)


HEP starts to like hexagonal structures – approximate circle!


- Collection electrodes on hexagonal grid
- Charge sharing in the corners between 3 pixels instead of 4

n-type


- Smaller cluster sizes, increase of seed signal -> more margin
- Electrode distance to edges similar boarder improves time resolution Homogeneous drift field ٠
- Reduce breakdown (minimise edge effects) ٠

FASTPIX (small cell)


PICOAD/MONOLITH (large cell)

MONOLITH

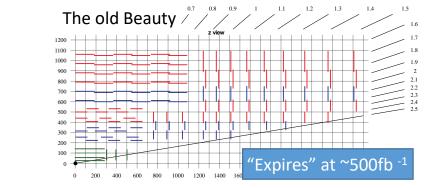
That's it

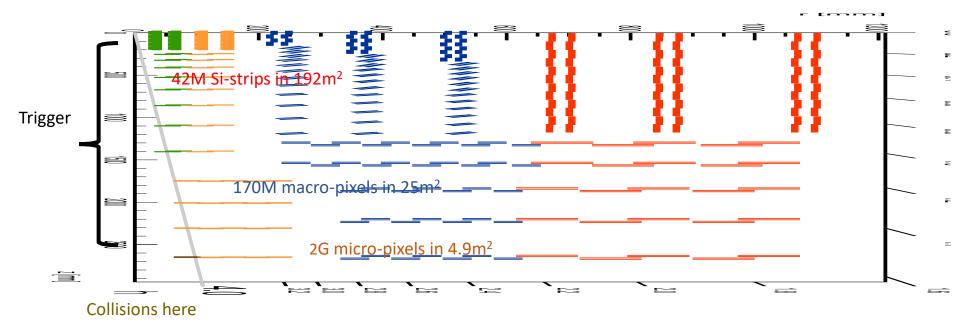
Soon, we also 'track' inside calorimeters


→ ALICE FOCAL & CMS HGCAL

I love this incredibly lively field of sensor and detector system development.

And, it will be a great pleasure to talk to you later


Only problem, such meetings animate me to stop doing managerial work and to go back having fun in the lab.


BACKUP

The new Beauty

- Outer Tracker design driven by ability to provide tracks at 40 MHz to L1-trigger (p_T>3GeV)
 - World's first
- Tilted modules in three OT layers
- Inner Tracker (pixel) extend coverage to $\eta \simeq 3.8$

CERN-LHCC-2017-009 CMS-TDR-17-001