
Novel Detectors for 
Tracking and Timing

”satellite view”
Pixel 2022

Frank Hartmann

I prepared an introduction talk – a bit of everything
– Full credits go to the people doing the real work, i.e. not me
- I am personally very curious to get the real news in the next days
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We are all using Silicon in various configurations
Some of us are also using Germanium, Tellurium, Diamonds

MAPS/CMOS – NuPECC; ECFA, ApPEC
LHC, STAR, PSI satellite, CBM, medical – position, imaging

Diamonds – NuPECC; ECFA
LHC, GSI, KEK – BCM, Lumi, Spectroscopy, timing (ToF)

Germanium – NuPECC, ApPEC
g Tracking
0n2b decay

Si-Hybrid Pixel – NuPECC; ECFA, ApPEC
LHC, GSI, ISS, Satellite – position 

3D silicon – ECFA
Innermost layers - Radiation hard – position
ATLAS, CMS, timing

Si-Strips – NuPECC; ECFA, ApPEC
LHC, KEK, GSI, ISS, Satellite – position

LGADs – ECFA
ATLAS & CMS – timing, position

+ synchrotron photon counting (HCPDs) 

ALPIDE - proton radiography of a pen

SiPM – NuPECC, ECFA, ApPEC
LHC, GSI, ISS, Satellite, medical (PET, X-ray) – photons, energy, timing
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Size matter! Does it?
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Cell size goes down significantly
Cell count goes up significantly

We are counting in GIGA these days
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Planar Silicon Sensors - wafer sizes

(12”)
(8”)

(6”)

(18”)

(4”)

1983!

Wafer Areas in Chip industries: 
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We are stuck in the 90’

8” AC coupled 
strip sensor prototype
-HEPHY-IFX
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Starters
• First 8” sensors for HEP (for tracking inside a 

calorimeter and proof of concept for tracker)

• Passive CMOS – is this a path?
• Level-1 Track and Vertex Trigger – a concept 

not a sensor, but needs macro-pixel!

Main
• Timing detectors and their evolution 

• Planar and 3D – with and without gain 
• 3D pixels and their evolution 
• HV-CMOS/DMAPS – is this the future?

Dessert
• Coffee Break 
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Appetizers
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8” wafers –
a big and novel step, 
but not for all!?!?! 

8” not for strip tracker as ratio of sensor/wafer not ideal; 
and 6” still more mature. Both ATLAS and CMS are using 6”!

Hybrid pixels would strongly benefit on real estate, and 
especially on flip-chipping effort/cost.

I am also aware of 8” wafers for active*
& passive CMOS sensors and LGADs!
At coffee you tell me where else!         

* e.g. ALPIDE 8” and ITS targets 12”

8” is a game changer for ‘really-large-area’ detectors, 
like the CMS forward imaging calorimeters. 
And, the hexagonal shape pad sensor uses the 
circular area in an optimal way - ratio of sensor/wafer

8” n-in-p strips AC-coupled

8” n-in-p pads DC-coupled
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Another cost saving, novel idea – Multi-Geometry Wafer
Use one mask and cut to different geometries

CMS needs many 
so-called ‘partials’

Pay attention to the cutlines, 
guard and bias lines. 
Et Voila it works!

Courtesy of the CMS HGCAL team
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Triggering on tracks at 40 MHz – CMS Phase-2
• Traditionally, Trackers cannot be be read out at full speed 

• too complex, too much data, not enough bandwidth

• ‘a track' as a trigger object needs information of several layers but they are not connected

• Can we connect internally? Yes we can – a bit, very local, on parts of the track!

• But what about the z coordinate?

“stub” pass fail

1 ÷ 4 mm

≤ 100 μm

 B
→.

CERN-LHCC-2017-009  CMS-TDR-17-001 

(pT>3GeV)

Stub data being sent out at 40 MHz 
(data reduction factor 10, still ~ 80% of bandwidth)
Full track reconstruction in backend FPGA (~4ms) as trigger objects
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How does it work locally? Is there a 
drawback? Stereo angle? Z-resolution?

  

 

C a on F iber

Bottom wire 
bond pads

Top wire bond 
pads 8 x SSA ASIC

various 
spacing

Silicon strip sensor

Macro-pixel sensor

Carbon fibre stiffeners

1 x CIC ASIC

Foldable flexAL-CF support and cooling contact
MPA ASIC

Front-end hybrid (FEH) - 2S module

8 CBC CMS Binary Chips 1 CIC Concentrator Chip

Fold-over to connect CBCs to both sensors

Front-end hybrid (FEH) – PS module
(left version)

Fold-over to connect 
Macro-pixel and strip ASIC

8 SSA Short Strip ASICs

• Bottom and top strips connected to same ASIC via flex fold-over, 
doing the correlation

• Strips parallel - stereo angle not possible – no z-resolution only pT

• 2nd module version with 1.5 mm macro-pixels (and 2.5 cm strips)
• Strip ASICs provide info to pixel ASIC doing the correlation

• Unambiguous z-resolution at trigger level (~1mm vertexing possible) - @trigger

• Results in a 25 m2 macro-pixel detector (bump bonded)
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Passive CMOS sensors – a cost effective alternative?
• In search of more sensor producers, several groups 

are evaluating strip and pixel sensors from CMOS companies!
• Use n-well/p-well/metal/polysilicon layers for sensor implantations, biasing, field shaping

• The process is distinctively different to ‘our’ standard, mature planar process! 
Different = new complications and new opportunities. 
Mask sizes are limited to so-called reticles – same limits as for ASICs
• Large sensors can only be realised by stitching

• Multiple metal layers allow interesting redistributing schemes, 
e.g. disentangle electrode implant from readout connection

• MIM (Metal-Insulator-Metal Capacitance) allows AC coupling for small structures (pixels) with decent coupling
• HIGH and LOW resistivity polysilicon layers allow for bias resistors on small real estate or field shaping structures

• In a nut-shell it works! 

11
Obviously many features are common to active CMOS sensors.



Not our usual 
Planar Process
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Bond pad

n-well  -- electrode implant 

Poly-silicon resistor 

p-well for p-stop 

Poly as field plate on the p-stop B
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s 
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id

Resistivity of p-type FZ bulk material: 7-8 kOhm cm

Example of a passive CMOS DC-pixel  

Example of a 
passive CMOS AC-strip
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Courtesy CMS Pixel

https://arxiv.org/abs/2203.11376
https://arxiv.org/abs/2111.07797
https://arxiv.org/abs/1702.04953


Reticle  stitching
Sensor size > reticle size 26 mm x 32 mm→ reticle stitching needed
•   Different sub-reticles (~ 1 cm x 1 cm) for edge and active areas:

• Repeat them for different designs:

quad single

Stitching 
lines 

Slide from A. Macchiolo (CMS)



Onto the three main courses
Timing 

… 3D 

… HV-CMOS
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Precision timing

Goal: sT= 0,000 000 000 005 s

15



Precision timing
– WHY, do we need it and WHAT and WHERE?

Why? Probably by consensus as we all like it :-) It is new!

1. Precise timing information of ‘a track’ 
– mitigate pile-up, PID in Heavy Ion, increase reach to measure LLP 

• Here modest spatial information is OK, good fill factor is a plus – LGADs and scintillator can do the job

2. Precise timing information of ‘track points’, or of ‘each track point’ 
– all the above plus reduce combinatorics for track finding 

• Superb spatial information & 100% fill factor is mandatory – standard LGADs are probably NOT good enough!

➔ Ok, we want superb timing and spatial precision with 100% fill factor, (all in power budget)
in general it must be radiation tolerant and best full-monolithic and with volume suppliers

LLP: Long lived Stable Particle 16



VBF H→𝜏𝜏, Pile-Up 200 

https://cerncourier.com/atlas-and-cms-upgrade-proceeds-to-the-next-stage/

~10’000 tracks
per collision bunch

Ambiguous in 3D space
Unfolded in 4D

space
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A bit of random wisdom (no no, not from me)

• Intrinsic timing capability of sensors is basically infinite* (sub ps) – W. Riegler

• Landau noise (non-uniform ionization - spatial) and electronic noise is the issue – everybody says this

• Decreasing electronic noise ‘costs’ power’, which is ‘limited’ – I say this but I heard it from somewhere

• Decreasing sensor thickness decreases drift length and Landau noise – from the experts

• Using signal gain beats electronic noise and decreases ‘jitter’, 
- wait for the electrons to arrive at the gain layer 
(similar for concentrated weighting fields)

• In “timing circuits”, things can go wrong very rapidly 
(quote stolen from a chip designer) – N. Cartiglia

* acceleration of electrons to 107cm/s in vacuum is 0.14ps & passage of the particle through a 50um sensor takes 0.16ps

From N. Cartiglia VCI 2022

Landau noise = physical limit of timing precision

Weighting fieldGo thin

Compensate in electronics
electronics

𝜎𝑡 =
𝑛𝑜𝑖𝑠𝑒

𝒅𝑽/𝒅𝒕
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• Timing precision st = <30 ps

• Fill factor mediocre (~80%) 
as inter-pad region = no gain

• Spatial precision ~mm  

LGADs
LGADs
And SiPM-on-LYSO (barrel)

Numerous iterations, testbeams, market survey 
– several vendors, radiation studies

➔Mature technology ~ 2*1015
MeV_n/cm2

• E.g. adding of C in gain layer
• Understood single event burnout!
• Lots of effort to increase fill factor, 

e.g. TI-LGADs Trench Isolation LGADs
• ~50 → 5 mm dead zone

Function: Signal from electron avalanche – arrival time starts avalanche – gain beats noise/jitter – limit is Landau noise
Thinner sensor decreases Landau Noise - shorter drift time (shorter path and higher field) (& no weighting field effect as pads >> thickness)

From
AIDAinnova

JTE Junction Termination

Low Gain Avalanche Detector - LGAD
aka the working horse for HL-LHC
aka the mature but already obsolete technology??
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And, the LGAD concept 
is not brand new

20



From Abe Seiden, 
Hartmut Sadrozinski
and Nicolo Cartiglia
pioneers on LGADs:

I'm wondering if we can do both 
measurements (space and time) 
in one object, a silicon detector 
with very good timing resolution.

We thought it was a dumb 
question...but over lunch, 
we jotted down some numbers.

... The main question is understanding 
the gain in silicon sensors
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Ok, we achieved precision timing
Now let’s think about fill factor and spatial resolution! 
MOVE the amplification layer - Disentangle amplification and readout electrodes

• Inverse LGADs 

• Deep Junction LGADs – DJ-LGADs

• Fill factor 100% 

• Spatial resolution – good

• Timing limited to ~100 ps
• Thickness ~ 300 mm

• JTE at back ask for double sided process

• hole collection

• New version using 3D technology
• Thin and slim edge & single sided process

• Fill factor 100% 

• Spatial resolution – good

• Timing good < 30 ps

• How easy to build?? Finetuning??

Same function, advantages and limitation of standard LGADs on timing (signal starts at arrival)

Performance studies of Inverse Low Gain Avalanche 
Detectors (i-LGAD) coupled to the Timepix3 ASIC – by Dima

– limit is Landau noise
22



Timing, same reason for everybody??
(see DOE Basic Research Needs for High Energy Physics Detector Research and 
Development Report, ECFA roadmap, Snowmass)

• HL-LHC (mitigate pile-up, PID in Heavy Ion, increase reach to measure LLP ) - 30 ps – DONE

• Future e+e- colliders (Higgs Factories):
• Spatial Resolution ~3 mm
• Time resolution - would enhance particle identification and reconstruction

• Future Hadron collider Pileup (~1000; 4THz of tracks) and radiation levels up to 8 x 1017 n/cm2

• Track resolution < 10 μm per layer
• Time resolution 5 – 10 ps

• Muon Collider - for BIB background rejection
• Track and time resolution 20 – 30 ps

• Electron-Ion Collider (EIC) Time of Flight (ToF):
fine time and space resolution needed for PID p/K/p separation at low/medium momentum

• 20 – 30 ps timing per hit 

• Very Forward Physics PPS at the (HL-)LHC and future hadron colliders: 
fine time and space resolution needed for precise proton momentum reconstruction and association to correct vertex

• 5 ps timing to suppress pileup (needs many timing layers), 5 μm tracker resolution 
• Greatly reduced to 20 ps in case 4p timing detector in the central region

➔ 20 – 30 ps seem OK but for FCC-hh

LLP: Long Lived Stable Particle 23



Evolving further 
– and apologies for all developments I overlooked

MONOLITH - picosecond time stamping capabilities in fully 
monolithic highly granular silicon pixel detectors – by Lorenzo

• Timing ~30 ps 

• 100% fill factor 

• ~5 mm spatial resolution with 150 mm pitch
• Excellent ratio
• Due to charge distribution and sharing in 

intrinsic low resistivity n++ layer with 
~4 AC pads as smallest impedance to ground

• Fresh idea; do DC-RSD

• Timing goal <10ps
• Beats Landau Noise due to ultra-thin 

amplification zone

• 100% fill factor, 

• ~ 10 mm spatial resolution (small pixel)

• Fully monolithic device

• Radiation tolerance?

First resu
lts very en
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Btw. with this THIN thickness, one could also think about 3D connections?? 

AC-coupled Low Gain Avalanche Diodes for 4D tracking: 
impact of electrode geometry on charge sharing – by Jennifer

M. Tornago et al.,
RD50 Workshop (2020) 

• AC-LGADs or Resisitive Silicon Sensors RSD

• Monolith

24



In summary, I present THE ZOO

Anybody up for 
a bet?

And, not to forget HV-CMOS 
achieving sT = 100 - 200 ps

or the new DC-RSD 25



Or the other ‘working’ philosophy 
– precision timing without gain layer – 3D trenches

TimeSPOT ASIC developments for 4D-pixel readout – by Adriano

10-ps timing with 3D-trench silicon sensors at extreme rates – by Adriano

Compensate 
in electronics

electronics

• Simply great concept - ‘box’ signals (perpendicular track) from electrons and holes (induction)
– good amount of charge (‘thick’) – no weightfield distortion – ‘no’ landau noise

• For sure radiation tolerant 
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• 3D-trench 
• 5x40x135μm3 trench 
• 150 μm pixel depth 

≈ 10 ps & 10 mm at sensor 
level at 99% efficiency 
>> 1016 neq/cm2

Adrinao will probably 
tell us more on
• how tilting helps
• other 3D geometries

•

• 3D diamond 
• 28nm TIMESPOT ASIC
• power and cooling     
challenges 
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Last words on timing 
detectors

• Many thought, the development of silicon sensors will 
not see many surprises anymore

• Well, it is so good to see all these innovatitive ideas and 
their incrediby fast implementations into real devices

• Homework:
• < 5 mm spatial

• < 20 ps (eventually 5ps) timing

• Monolithic

• Low power

• Even more for gas cooled systems

• Radiation tolerant

• (low cost)

Math from Werner R. here: https://indico.cern.ch/event/1083146/
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Polysilicon

Thickness : ~2µm

P Junction 

Thickness: ~660nm
3D

Only small number 
of dedicated talks 
in this conference! 
Is it a done deal?
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Preaching to the Choir 

3D – facts we all know

• 3D sensors are radiation tolerant!
• Short drift path – less trapping

Full thickness for signal
• Lower depletion voltage – lower power
• Can do slim (active) edge 

• Higher Capacity
• Lower yield

Guard ring

Planar

3D

preach to the choir
to speak for or against something to people who 

already agree with one's opinions

www.merriam-webster.com/

Technology works after 3*1016 neq/cm2
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The evolution of 3D sensors

• Double or single type?

• Double or single sided?

• Full 3D-pass-through?

• Thin or thick?

• For HL-LHC we need 
small pixel cells - 25x100 mm2

• We need narrow columns, thus 
good column depth/width

• & medium thickness

• What do we want later??

Courtesy CNM
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Example double sided, double type

http://all-free-download.com/free-vector/free-clipart-of-zoo-animals.html


3D Silicon Sensors for HL-LHC – yes, we chose

Close 
to this one…
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Technology, thickness and cells chosen!

For the future we might like smaller cell sizes (e.g. 25x25 mm2):
• Even shorter drift pathes – even more radiation tolerant?
• Higher occupancy
• Tune charge multiplication, already at lower voltages?
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We are quarrelling a bit with noise these days at F>E16 and higher voltages
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3D, in the end, do we do it for the radiation tolerance?
(used in ATLAS IBL, AFP, CMS PPS; to be used Phase-2 ATLAS & CMS inner layer)

• The goal of radiation tolerance is around 1-2*1016
1MeV_eq /cm2

• In principle planar pixels can do this …

• Resolutions ~5 mm and efficiencies (98-99%) are very similar (probably equal)

• I guess, we do it due to power and to prevent corresponding thermal runaway (at minimal cooling contact)
• Depletes at much lower voltage 
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Monolithic CMOS

some call it 
HV-CMOS or HR-CMOS

some call it DMAPS
I call it exciting!

And in my very personal humble 
opinion it must be fully monolithic*

And getting all logic in and cope 
with high rates will be a challenge --
experiencing the struggle to get all 

ATLAS and CMS needs into the 
65nm pure pixel ASIC (RD53)

* I believe we all know why

33



Stating the Obvious

What we all know – Advantages of HV-CMOS

• Thin
• Low material budget: X/X0 ~ 0.05%
• Radiation tolerant (also ‘collects’ electrons): F> 1015

MeV_eq/cm2 

• Low power
• No bump bonding – cost saving, easier logistics
• In-cell processing – monolithic 
• Small cells (10x10mm2) – high resolution ~3mm

• Challenges:
• Stitching
• How much digital parts features fit in a pixel (and how much in chip periphery)?

• timing, buffering, L1, data handling - state machine

Stock.adobe.com
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MAPS Monolithic Active Pixel Sensors

ULTIMATE in STAR

First HEP MAPS 

system

ALPIDE in ALICE

First MAPS with sparse 

readout similar to hybrid 

sensors

Chip-to-chip 

communication for data 

aggregation

Recent developments 
(ATLAS, ALICE, MU3e, etc.)

Depleted radiation hard 

MAPS with:

Sparse readout 

Chip-to-chip communication 

Serial power

…

FCC, e+e- collider, …

Large stitched fast

radiation hard MAPS with:

Sparse readout

Chip-to-chip communication 

Serial power, timing

… many more

12”, <65nm?, 

new read-out schemes?

…
Many uses: STAR, ALICE, CBM, NICA MPD, sPHENIX, Mu3e, CSES – HEPD2, Medical, … 
candidates for LHCb, PANDA, BELLE-2, EiC, ILC …  ~ well everybody

'high’ voltage
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Nodes being used: 180, 150 and 65 nm technology and 130 nm SiGe BiCMOS
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LARGE or SMALL electrode??

Where can we have more real estate for CMOS circuitry?
Radiation tolerance – we are around > 1015

MeV_eq/cm2 — is LARGE better?

• Short drift path (faster ‘collection’)

• High C  - higher noise O(100 e-)

• Homogeneous weighting field

• High homogeneous electrical field

• E.g. MUPIX, RD50, MONOLITH, LF-MONOPIX, ATLASPIX

• Long drift path 

• Very low C - reduced noise (~10 e- & low power)

• d weighting field – arrival 

• Some adaptions help further

• E.g. ALPIDE, MALTA, TJ-MONOPIX. CLICTD, FASTPIX

e.g. 3 mm (for Malta)e.g. 50-60 mm (for RD50)
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SMALL CELL HV-CMOS 
EVOLUTION

P
H

D
 TH

ESIS Jan
 H

A
SEN

B
IC

H
LER

 

To overcome:
• Lateral depletion

• Direct drift to to small electrode
• Mind d weigthing field

Achievements
• Thresholds ~100 e-

• Noise ~  10 e-
Thresholds ~100 e-

E.g. ALPIDE, MALTA, MONOPIX, CLICTD, FASTPIX 37



• LS2: 3+4 layers of MAPS (CMOS) ~10m2

• 27x29 mm2 pixels - 12.5 G-pixels

• MAPS thinned to 50 mm

• ~0.3 % X0 per layer

• Radial coverage R= 21 - 400 mm 

• Limited voltage ~3V

• Future: ALICE upgrade (ITS3) – HR/HV CMOS
• Push technology further: thinner, large sensors through stitching 

• Faster signal, more radiation hard 

• Pixel sizes 10x10mm2 
→ 3mm position resolution

• X/X0 per layer 0.05%

• CURVED
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The ‘big’ Small Cell example of MAPS - ALICE

Let’s see, which option 
they will chose?
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Vertex 2022 Lukas Lautner
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Mu3e – Another wonderful example on HV-CMOS 
Big Cell approach - MUPIX

• Phase-1: 6 layers (50mm thin and cooled by gaseous helium (up to 400 mW/cm2)

Material from Andre Schoening - Monolith Workshop, Sep. 2022 

Full monolithic – great example!
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HEP starts to like hexagonal structures – approximate circle! 

https://www.mdpi.com/2410-390X/6/1/13 

FASTPIX (small cell)
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PICOAD/MONOLITH (large cell)

Walter 
Hexagonal pixels 
-
-
-

• Collection electrodes on hexagonal grid

• Charge sharing in the corners between 3 pixels instead of 4
• Smaller cluster sizes, increase of seed signal -> more margin

• Electrode distance to edges similar boarder improves time resolution - Homogeneous drift field

• Reduce breakdown (minimise edge effects)
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That’s it

Soon, we also ‘track’ inside 
calorimeters

➔ ALICE FOCAL & CMS HGCAL
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I love this incredibly lively field of sensor 
and detector system development.

And, it will be a great pleasure to talk to 
you later
Only problem, such meetings animate me to stop doing managerial work 
and to go back having fun in the lab. 
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BACKUP
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The new Beauty
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Collisions here

▪ Outer Tracker design driven by ability to provide 
tracks at 40 MHz to L1-trigger (pT>3GeV)

▪ World’s first

▪ Tilted modules in three OT layers

▪ Inner Tracker (pixel) extend coverage to η ≃ 3.8

“Expires” at ~500fb -1

CERN-LHCC-2017-009  CMS-TDR-17-001 

Trigger

pT transverse momentum 45


