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I prepared an introduction talk - a bit of everything
- Full credits go to the people doing the real work, i.e. not me
- I am personally very curious to get the real news in the next days



We are all using Silicon in various configurations
Some of us are also using Germanium, Tellurium, Diamonds
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CSES — HEPD2

7’ Diamonds — NuPECC; ECFA
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LHC, STAR, PSI satellite, CBM, medical — position, imaging

Si-Strips — NUPECC; ECFA, ApPEC
LHC, KEK, GSI, ISS, Satellite — posmon

e N - ' 3D silicon — ECFA
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Innermost layers - Radiation hard — position |
ATLAS, CMS, timing
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SiPM — NuPECC, ECFA, ApPEC
LHC, GSI, ISS, Satellite, medical (PET, X-ray)

— photons, energy, timing

Si-Hybrid Pixel — NuPECC; ECFA, ApPEC .
LHC, GSI, ISS, Satellite — position - LGADs — ECFA

ATLAS & CMS - timing, position

e Thin layer between tracker and calorimeters
olution of 30-50 ps
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Size matter! Does it?
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Cell size goes down significantly
Cell count goes up significantly

We are counting in GIGA these days
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Planar Silicon Sensors - wa

SILICON DETECTORS WITH 5 pm SPATIAL RESE

1983! The detectors [2] are made of high-ohmic n-doped
silicon single crystal wafers of 2" diameter and 280 pm
thickness (fig. 1). Using the planar process [1], p-doped
strip diodes, covered by aluminium contacts, are im-
planted into one side of the wafer. On the other side a

Wafer Areas in Chip industries:
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We are stuck in the 90’




| discuss some items,
but do not fully fit into
and/or are not discusse

Adobe Stock | #112423402

that | consider novel
the “Pixel” theme

din later talks this week
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Starters

e First 8” sensors for HEP (for tracking inside a
calorimeter and proof of concept for tracker)

* Passive CMOS —is this a path?
* Level-1 Track and Vertex Trigger — a concept
not a sensor, but needs macro-pixel!

\YETlY
* Timing detectors and their evolution
* Planar and 3D — with and without gain
e 3D pixels and their evolution
e HV-CMOS/DMAPS —is this the future?

Dessert
* Coffee Break
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8” wafers —

a big and novel step,
but not for alll?!?!

8” n-in-p strips AC-coupled

8” n-in-p pads DC-coupled

Picture — Courtesy of HEPHY

8” is a game changer for ‘really-large-area’ detectors,
like the CMS forward imaging calorimeters.

And, the hexagonal shape pad sensor uses the
circular area in an optimal way - ratio of sensor/wafer

| am also aware of 8” wafers for active®

8” not for strip tracker as ratio of sensor/wafer not ideal;

and 6” still more mature. Both ATLAS and CMS are using 6”!

Hybrid pixels would strongly benefit on real estate, and
especially on flip-chipping effort/cost.

& passive CMOS sensors and LGADs!
At coffee you tell me where else!
* e.g. ALPIDE 8” and ITS targets 12”
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Another cost saving, novel idea — Multi-Geometry Wafer

Use one mask and cut to different geometries

CMS needs many
so-called ‘partials’

Outer Radius

Limit between

300y and 200y

3 200u and 120p

Courtesy of the CMS HGCAL team

4 ’é“’z &
“._sensors
\\

LD partial sensor layout names

HD partial sensor layout names

- @S

Pay attention to the cutlines,

guard and bias lines.
Et Voila it works!

Values for U = -600.0 V 0

8in_MGW_HD_a_type_top_N6681_14
I
m

Values for U = -600.0 V
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Triggering on tracks at 40 MHz — CMS Phase-2

* Traditionally, Trackers cannot be be read out at full speed
e too complex, too much data, not enough bandwidth
e ‘atrack’ as a trigger object needs information of several layers but they are not connected

* Can we connect internally? Yes we can — a bit, very local, on parts of the track!

Level-1 accept

(pr>3GeV)
“stub” pass fail Full data d Tack I -
< 750 kHz oot Finder Level-1
L=4mm OF Stubs only CMS
40 MHz DAQ
<100 um

e But what about the z coordinate?

Stub data being sent out at 40 MHz
(data reduction factor 10, still ¥~ 80% of bandwidth)
Full track reconstruction in backend FPGA (~4us) as trigger objects

CERN-LHCC-2017-009 CMS-TDR-17-001




How does it work locally? Is there a
drawback? Stereo angle? Z-resolution?

fold-over to connect CBC channels
alternatingly to top and bottom sensor

2S sensors

Front-end hybrid (SEH) (back to back)

with 8 CBC and 1 CIC

Opto block .
with IpGBT and VTRX+\

" bended flex to connect
- SEH and FEH

Power block
with 2 DCDC converters
BPOL12V:12V->2.5V
BPOL2V5:2.5V->1.2V

In total: 2 times 8 chips with

254 channels each connected

to 2 sensors with 2 times 1016 strips
of length 5 cm and pitch 90 um.

Top wire bond
8 x CBC ASIC

1 x CIC ASIC

Top silicon sensor

-«—Carbon fibre stiffeners .n:I:EI-:‘-S‘UpP[H't
and cooling
contact

Bottom silicon sensor Bottom wire

bond pads

Front-end hybrid (FEH) - 25 module

Fold-over to connect CBCs to both sensors

1 CIC Concentrator Chip 8 CBC CMS Binary Chips

Top wire bond

Silicon strip sensor 8 x SSA ASIC

Carbon fibre stiffeners

various
spacing

MPA ASIC

Bottom wire
bond pads

Macro-pixel sensor

e Bottom and top strips connected to same ASIC via flex fold-over,
doing the correlation

* Strips parallel - stereo angle not possible — no z-resolution only p;

e 2nd module version with 1.5 mm macro-pixels (and 2.5 cm strips)
* Strip ASICs provide info to pixel ASIC doing the correlation
* Unambiguous z-resolution at trigger level (~1mm vertexing possible) - @trigger
* Resultsin a 25 m? macro-pixel detector (bump bonded)

Front-end hybrid (FEH) — PS module
(left version)

Fold-over to connect

Macro-pixel and strip ASIC
10




Passive CMQOS sensors — a cost effective alternative?

* |n search of more sensor producers, several groups
are evaluating strip and pixel sensors from CMOS companies!

* Use n-well/p-well/metal/polysilicon layers for sensor implantations, biasing, field shaping

* The process is distinctively different to ‘our’ standard, mature planar process!
Different = new complications and new opportunities.
Mask sizes are limited to so-called reticles — same limits as for ASICs

e Large sensors can only be realised by stitching

* Multiple metal layers allow interesting redistributing schemes,
e.g. disentangle electrode implant from readout connection

 MIM (Metal-Insulator-Metal Capacitance) allows AC coupling for small structures (pixels) with decent coupling
* HIGH and LOW resistivity polysilicon layers allow for bias resistors on small real estate or field shaping structures

DUT efficiency, 1x10'®, bias = 600 V

L

ck at DUT [mm]

° |In a nut-shell it works!

y tfra
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Obviously many features are common to active CMOS sensors.

3 4 5
¥ track at DUT [mm)]



Example of a

N Ot our usua | passive CMOS AC-strip

=—m Metal

mmm Poly

Planar Process =
Pwell
S~ Nwell

:‘“.: - P+

15 um 4 um m— N+

. 18 um >
75.5 um
-« »
Example of a passive CMOS DC-pixel
Resistivity of p-type FZ bulk material: 7-8 kOhm cm Bond pad
81.00 Poly-silicon resistor
n-well -- electrode implant
Pa iy as field p ate on the p -‘stop‘ |
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https://arxiv.org/abs/2203.11376
https://arxiv.org/abs/2111.07797
https://arxiv.org/abs/1702.04953

Reticle stitching

Sensor size > reticle size 26 mm x 32 mm—> reticle stitching needed
e Different sub-reticles (~ 1 cm x 1 cm) for edge and active areas:

1B

e Repeat them for different designs

quad single

57,6mm

EJ

1A

2B

3B

3a] B

==

-,

1A

double

E rﬂiu:l 159] e !
40mm
40mm
G HE HEEE

2A

2A

N

2B

1A

Stitching
lines

Slide from A. Macchiolo (CMS)



Onto the three main courses

Timing
.. 3D
... HV-CMOQOS

14
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Precision timing with silicon detectors Gregor Kramberger

Maorth Ballroom, La Fonda Hatel 21:35 - 21:55
VELO Upgrade lI- the LHCb 4D Pixel Detector Tommaso Pajero
Morth Ballroom, La Fonda Hotel 21:85 - 22015
10-ps timing with 3D-trench silicon sensors at extreme rates Adriano Lai
MNorth Ballroom, La Fonda Hotel 22:15 - 22235
A High Granularity Timing Detector for the ATLAS Phase-ll Upgrade Afonso Soares Canas Femreira
Maorth Ballroom, La Fonda Hatel 22:35 - 2265

AC-coupled Low Gain Avalanche Diodes for 4D tracking: impact of electrode geometry on charge sharing Dr Jenmifer Off

MNorth Ballroom, La Fonda Hotel 22:85- 2315
An LGAD-based full active target for the PIONEER experiment Dr Simone Michele Mazza
Morth Ballroom, La Fonda Hotel 23:15 - 23:36

Performance studies of Inverse Low Gain Avalanche Detectors (i-LGAD) coupled to the Timepix3 ASIC Dr Dima Maneuski

MNorth Ballroom, La Fonda Hotel 23:35 - 23:55

MoTiC: Prototype of a Monolithic Particle Tracking Detector with Timing Stephan Tobias Burkhalter

MNorth Ballroom, La Fonda Hotel 23:85 - 00:15

Precision timing

Goal: o;= 0,000 000 000 005 s

MOMNOLITH - picosecond time stamping capabilities in fully monolithic highly granular silicon pixel detectors
Lorenzo Paoclozzi



Precision timing
— WHY, do we need it and WHAT and WHERE?

Why? Probably by consensus as we all like it :-) It IS hew!

1. Precise timing information of ‘a track’
— mitigate pile-up, PID in Heavy lon, increase reach to measure LLP
* Here modest spatial information is OK, good fill factor is a plus — LGADs and scintillator can do the job

2. Precise timing information of ‘track points’, or of ‘each track point’ LHCbTADP\xe‘D
— all the above plus reduce combinatorics for track finding -

* Superb spatial information & 100% fill factor is mandatory — standard LGADs are probably NOT good enough!

=» Ok, we want superb timing and spatial precision with 100% fill factor, (all in power budget)
in general it must be radiation tolerant and best full-monolithic and with volume suppliers

17 r
th silicon detectors” — by Grego

«precision iming Wi
rward to Precision timing 16

LLP: Long lived Stable Particle | am looking fo



VBF H->7T, PiletUp 200

https://eerncourier.com/atlas-and-cms-upgrade-proceeds-to-the-next-stage/

o 200 pileup collisions AmbigUOUS in 3D space
+ Simulated Verticss -~ 1Unfolded in 4D

3D Reconstructed Vertices
——&— 4D Reconatruction Verticee Hard-scatter jet

“Stochastic”
pile-up jet

150 ps RMS
(CMSSW)

Hard scatter

single
primary
vertex:

QCD pile-up jet

unambiguous
<+« f{light distance

two
primary
vertices +
time
decoding
fo,to + At

two

primary
vertices: ,

——

assignment

ambiguous
<+«—>flight distance
>
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A bit of random wisdom (no no, not from me) | "e,;
KNOW ¢ 7 /4

ON AVERAGE . _‘

Intrinsic timing capability of sensors is basically infinite* (sub ps) — W. Riegler

e Landau noise (non-uniform ionization - spatial) and electronic noise is the issue — everybody says this
e Decreasing electronic noise ‘costs’ power’, which is ‘limited” — I say this but | heard it from somewhere
* Decreasing sensor thickness decreases drift length and Landau noise — from the experts

Landau noise = physical limit of timing precision

Comparison WE2 Simulation - Data

* Using signal gain beats electronic noise and decreases jitter’, Band bacsshow varlation with temperature (T = -20C - 20C),and gain (6 =20-30)

- wait for the electrons to arrive at the gain layer From N. Cartiglia V/CI 2022
(similar for concentrated weighting fields)

[ " FBK - PIN (NAB2)
[ ® FBK- UFSD

[ = HPK - UFSD
[ —WF2; JittersLandau - UFSD
[ <<~ WF2: Jitter - UFSD
[~ ~WF2: Landau - UFSD
L

-

N
ot
o

* In “timing circuits”, things can go wrong very rapidly
(quote stolen from a chip designer) — N. Cartiglia

. -
.....
casuee -
__________
eantrt -

Resolution [ps]
o383888888E

w02'2q0ope-y201S

100 150 200 250 300

noise g o i
O, = Thickness [um]
Compensate in electronics 1T
2 2 2 2 2 92 electronics
0t = OTime walk + O Landau noise + intter + O Distortion + OTDC
Go thin Weighting field
18

* acceleration of electrons to 10’cm/s in vacuum is 0.14ps & passage of the particle through a 50um sensor takes 0.16ps



Low Gain Avalanche Detector - LGAD

aka the working horse for HL-LHC
aka the mature but already obsolete technology??

* Timing precision Oy = <30 ps E Numerous iterations, testbeams, market survey
. i ~OMo — several vendors, radiation studies
* Fill factor mediocre (~80%) > Mature technology ~ 2*10%5,,,, /cm?
as inter-pad region = no gain * E.g.adding of Cin gain layer

Understood single event burnout!
* Lots of effort to increase fill factor,
e.g. TI-LGADs Trench Isolation LGADs

* Spatial precision Ymm

___________ p-§top : _p* stop ‘ * ~50 - 5 um dead zone
'::::::::_T:_-_ w (i ) e

walanche ® - 'lr.]H P i i JTE L

- nign E-fiel I i Other cell variant:

- 1. amplification zone 1 1 b1 Ll controlsthe g "

s oo Ng e 1 Edfield i} e .

2 N bié‘e B o X ' olto p’r backple

|11 Vpias

JTE Junction Termination

From
AIDAinnova

Function: Signal from electron avalanche — arrival time starts avalanche — gain beats noise/jitter — limit is Landau noise
Thinner sensor decreases Landau Noise - shorter drift time (shorter path and higher field) (& no weighting field effect as pads >> thickness)



ITEEE TRANSACTIONS ON ELECTRON DEVICES, JUNE 1972

And, the LGAD concept
Is not brand new aE

Ep-i—
=
[—
= -
A\ Pr
=
=
§ p-n JUNCTION
=
=
z p
DISTANCE
N n] = B
i
INCIDENT
! ~" RADIATION
i
i

e i s o oy 8 gy P

ELECTRIC FIELD

Fig. 1. Sketeches of reach-through avalanche-diede structure,
impurity-concentration profile, and electric-field distribution.
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From Abe Seiden,

Hartmut Sadrozinski
and Nicolo Cartiglia
pioneers on LGADSs:

I'm wondering if we can do both

measurements (space and time) ) i T—
In one object, a silicon detector -
with very good timing resolution.

We thought it was a dumb
guestion...but over lunch,
we jotted down some numbers. RO B O T R B T O B T T T

4 5 6 7 8 9

(ot

Stock.adobe.com

... The main question is understanding 2 3
the gain in silicon sensors

H!

4 £ 4 L
aiglupmmiselspgepelspaspaaiepssislsispbaspa il sl

21



Ok, we achieved precision timin

g

Now let’s think about fill factor and spatial resolution!
MOVE the amplification layer - Disentangle amplification and readout electrodes

* [nverse LGADs

E-field Pixel (DC)

Al backplane

ionising particle Periphery

* Deep Junction LGADs — DJ-LGADs

Albackplane  jonising particle

Same function, advantages and limitation of standard LGADs on timing (signal starts at arrival)

Periphery \

3um
2um

20-50 um

Fill factor 100%

Spatial resolution — good

&

Timing limited to ~100 ps
* Thickness ~ 300 um
e JTE at back ask for double sided process
* hole collection

New version using 3D technology
* Thin and slim edge & single sided process

Performance studies of Inverse Low Gain Avalanche
Detectors (i-LGAD) coupled to the Timepix3 ASIC — by Dima

oL

Fill factor 100%

Spatial resolution — good
Timing good < 30 ps
How easy to build?? Finetuning??

22
— limit is Landau noise



Timing, same reason for everybody??

(see DOE Basic Research Needs for High Energy Physics Detector Research and
Development Report, ECFA roadmap, Snowmass)

b9 ids. 38 5
E5 878885858888
e HL-LHC (mitigate pile-up, PID in Heavy lon, increase reach to measure LLP ) - 30 ps — DONI IR AR
Position precision 3134 ® (X X ] 9200000
i34 @ @ 2000 0°0000°0
- i e@evse o088 8
. . o . detectord 3134 [ X ] [ O N N [ ]
* Future e+e- colliders (Higgs Factories): S =
* Spatial Resolution ~3 um = $s $::833:3
e Time resolution - would enhance particle identification and reconstruction - siss o o °.
3.2 ._.
e Future Hadron collider Pileup (~1000; 4THz of tracks) and radiation levels up to 8 x 1017 n/cm? e 9 ?
* Track resolution < 10 um per layer s IROOL; Do
* Time resolution 5—10 ps ; § e
* Muon Collider - for BIB background rejection
* Track and time resolution 20 — 30 ps ' e e ‘ee o e

e Electron-lon Collider (EIC) Time of Flight (ToF): o

fine time and space resolution needed for PID ©t/K/p separation at low/medium momentum
e 20 -30 ps timing per hit
e Very Forward Physics PPS at the (HL-)LHC and future hadron colliders:
fine time and space resolution needed for precise proton momentum reconstruction and association to correct vertex

* 5 pstiming to suppress pileup (needs many timing layers), 5 um tracker resolution
* Greatly reduced to 20 ps in case 47 timing detector in the central region

@ RED needs being met

=>» 20 — 30 ps seem OK but for FCC-hh

LLP: Long Lived Stable Particle

23




Evolving further

—and apologies for all developments | overlooked

e AC-LGADs or Resisitive Silicon Sensors RSD

Al pixel (AC) Al pixel (AC) DC-Contact
[ [

coupling oxide

* Timing ~30 ps

* 100% fill factor
e ~5 um spatial resolution with 150 um pitch

s==* Excellent ratio
=

="+ Dueto charge distribution and sharing in

Al backplane

M. Tornago et al.,
. RD50 Workshop (2020)
* Monolith

electrode p* stop 50 um 2.5 um
contains electronics

5um

1T um

avalanche zone
(electons from backside epi)

++ . . . . . oy
p ionising particle linitial proposal

Btw. with this THIN thickness, one could also think about 3D connections??

intrinsic low resistivity n++ layer with
~4 AC pads as smallest impedance to ground

>11m? TOF for EiC?

* Fresh idea; do DC-RSD

AC-coupled Low Gain Avalanche Diodes for 4D tracking:
impact of electrode geometry on charge sharing — by Jennifer

e Timing goal <10ps
* Beats Landau Noise due to ultra-thin

amplification zone
e 100% fill factor,

e ~ 10 um spatial resolution (small pixel)

 Fully monolithic device
e Radiation tolerance? .

Ml:lNl::l.lTH[@

MONOLITH - picosecond time stamping capabilities in fully
monolithic highly granular silicon pixel detectors — by Lorenzo

(32348 OHINII) SuiSeanodua AJaA s3nsad 1si4
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In summary, | present THE ZOO

a)

sum v — v —

n-type

Anybody up for
a bet?

"o v = v

inverse LGAD

(n-in-n)

And, not to forget HV-CMOS
achieving 6; =100 - 200 ps

or the new DC-RSD 75



* For sure radiation tolerant ;2 _

TimeSPOT results — A. Lai — Vertex 2022

Or the other ‘working” philosophy

TIME and SPace real-time Operating Tracker

10-ps timing with 3D-trench silicon sensors at extreme rates — by Adriano

TimeSPOT ASIC developments for 4D-pixel readout — by Adriano

precision timing without gain layer — 3D trenches

* Simply great concept - ‘box’ signals (perpendicular track) from electrons and holes (induction)
— good amount of charge (‘thick’) — no weightfield distortion — ‘no’ landau noise

bias trench
[eyaw dwiay

collecting trench

SEM HV: 10.0 kV WD: 11.59 mm
View field: 176 pm Det: SE
SEM MAG: 1.57 kx | Date(m/dl/y): 10/29/19

VEGA3 TESCAN

50 ym

FBK Micro-nano Facility

in electronics

m
55 ¥ track

-Read-out

e 3D-trench =

* 5x40x135umstrench
e 150 um pixel depth

C—— U 00T - 5] —

= 10 ps & 10 um at sensor
level at 99% efficiency

trenches

>> 1016 neq/cm?

~

2 2
t OTime walk + O.La,'nEa; ﬂozse + ngtter + nghoctzon + JTDC
Compensate -~ o~ electronics

Adrinao will probably
tell us more on

* how tilting helps

e other 3D geometries

F‘l!‘"‘i

xxxxx

* 3D dlamond

e 28nm TIMESPOT ASIC
e power and cooling
challenges

26




\ / Last words on timing

\ / detectors

S—— * Many thought, the development of silicon sensors will
not see many surprises anymore

* Well, it is so good to see all these innovatitive ideas and
their incrediby fast implementations into real devices

e Homework:
* <5 um spatial

e <20 ps (eventually 5ps) timing
* Monolithic
* Low power <=
* Even more for gas cooled systems
* Radiation tolerant

* (low cost)
27

Math from Werner R. here: https://indico.cern.ch/event/1083146/



Qualification of the first preproduction 3D FEK sensors with ITkPixV1 Martina Ressegoiti
North Ballroom, La Fonda Hotel

09:10 - 09:30
Results on 3D pixel sensors for the CMS upgrade at the HL-LHC Rudy Ceccareil
MNorth Ballroom, La Fonda Hotel 1750 - 18:10
3 D P Junction
Thickness: ~660nm
Only small number
of dedicated talks
in this conference!
Isitadonedeal? /S
Polysilicon
Thickness : ~2um
IMB-CNM-CSIC 2um EHT = 3,00 kV Signal A = SE2 Date ‘4 Al IMB-CNM-CSIC 300nm EHT = 200kV Signal A= InLens Date -11 Nov 2005
Mag= 1277KX |— WD= 3mm Aperture Size = 20.00 ym Time :11| Mag= 6598KX |—] WD= 6mm Aperture Size = 20,00 pm Time :10:29:00

INND Asa1uno)
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preach to the choir

‘ ¢ to speak for or against something to people who
v
already agree with one's opinions

www.merriam-webster.com/

3D — facts we all know SO0 o s 101500
AR IR

Efficiency

3D sensors are radiation tolerant! “
* Short drift path — less trapping oof

L 1912100 ngem®
|} —e—o=0,w3E
@ ®= 5, W3-C1, KIT1]

60060d €T LSNIr 810 /0 12 d8ueT [

Full thickness for signal - i/ Rt
* Lower depletion voltage — lower power }( e
* Can do slim (active) edge TR i |
Voltage [V]
. . * 16 2
* Higher Capacity Technology works after 3*10%¢ n_./cm
* Lower yleld Irradiation fluence: 15 x 101 ny,/cm?- normal incidence g,
Eg " ) éig ) g
Guard ring £ | §§ é




The evolution of 3D sensors

Amplifier

Wwod ' PeojuUMOop-aall-||IV

Lateral depletion:
p columns at GND
n columns at HV

Amplifier

| [ oo e e Double or single type?

Pixel layout

Strip layout

e o o * Double or single sided?

(] [e) O O
| J|§° . * Full 3D-pass-through?
s | * Thin or thick?
mplifier
I [| l EE ﬁ e For HL-LHC we need
Back plane at HV .
Concept: small plxel cells - 25x100 Mmz

Short drift distance (less trapping)

Long ionisation path (large signal) Crossing particle

Electrons collected at n columns * We need narrow columns, thUS

Holes collected at p columns good column depth/width -

: * & medium thickness Courtesy CNM
Example double sided, double type

D for strips - What do we want later??

ssume nobody considers 3

,butla :
Tell me | for early testing. i,

it was usefu


http://all-free-download.com/free-vector/free-clipart-of-zoo-animals.html

3D Silicon Sensors for HL-LHC — yes, we chose

A 50x50-1E B 25x100-1E C 25x100-2E

® @

3g
B ©
c &
S8
g
- on X
P- high Qcm wafer - £8
n g™
v
- i ]
5
S 52
— S a
Metal to be deposited after thinning n* col. 59
o wn
p*col. & % £
- 2o o
Handle wafer to be thinned down BUL“P £ 5
pa sy
Made possible by Direct Wafer Bonding (Si-Si-DWB) @ 8
©
Al pad on n-type column
Al pad missing in this test structucture FIGURE 2 | Layouts of two adjacent small-pitch 3D pixels of different geometry for the ATLAS and CMS upgrades at HL-LHC: 50 um x 50 um-1E (A), 25 um x
N 100 um-1E (B) and 25 pm x 100 ym-2E (C).

Technology, thickness and cells chosenl!
We are quarrelling a bit with noise these days at ®>E16 and higher voltages

o
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é’ For the future we might like smaller cell sizes (e.g. 25x25 mm?):

é* cl * Even shorter drift pathes — even more radiation tolerant?
P Ose, e Higher occupancy

2 to this one...

* Tune charge multiplication, already at lower voltages? .



* The goal of radiation tolerance is around 1-2*10',,,., o,/cm?

3D, in the end, do we do it for the radiation tolerance?
(used in ATLAS IBL, AFP, CMS PPS; to be used Phase-2 ATLAS & CMS inner layer)

* In principle planar pixels can do this ...
* Resolutions ~5 um and efficiencies (98-99%) are very similar (probably equal)

* | guess, we do it due to power and to prevent corresponding thermal runaway (at minimal cooling contact)

(a1dwexa SIAD) ZZOZIDA - ojonz apineq

* Depletes at much lower voltage

Power dissipation simu

50

—Planar sensor 77 mW/cm*2
46 |6.1°c|
3D sensor 40 mW/cm*"2

42 | —3D sensor 20 mW/cm?2

[67¢] [7.10¢]

38 |[—3D sensor 10 mW/cm"2

34

30

N ENEEED

22

|

Tmax sensor TCOZ (OC)

18

14

10

-55 -53 51 -49 -47 -45 -43 -41 -39 -37 -35 -33 -31 29 -27 -25 23 21 M

Preliminary simulation Teoz (°C)

ation

m Barrel Layer 1

m planar sensors: Tgo, required to
prevent thermal runaway is
much lower than -33 °C
achievable

m 3D sensors: at least 4 °C
margin if the power dissipated
in the active volume of the
sensor is less than 20 mW/cm?
after 2 x 10'® n.,/cm?

power dissipation <20 mW/cm?2
confirmed by lab
measurements

More in

[ e
Qua\'\ﬂcat'\on of the first PF

_ py Martina
MS upgr
\ts on 3D pixel sensors for the C
Resu

— by Rudy 32



Monolithic CMQOS

As Maonolithic Active Pixel Sensors for Future Gamma-ray Telescopes D F ‘1 yna X S O m e C a | | i t
e ——— = HV-CMOS or HR-CMOS

Norh Badvoom, La Fonda Hooe! 1650 - 16:10

R R some call it DMAPS

North Baftroom, La Fonda Hotel 16:10 - 16:30

ATLASPIXI modules for experiments at electron-positron colliders Prof. Amo Andreazza

e ——— | call it exciting!

TI-MALTA Vislerio Doo
Novih Badroom, La Fonda Hooel 165017110

LF-Monopix2 Patrick Breugnon

Noath Balroom, La Forda Hotel 17:10-17:30

Depleted monolithic active pixels sensor in 180nm TowerJazz CMOS technology with column drain readout architecture
Christian Bespin

A derivation of the electric field inside MAPS detectors from beam-test data and limited TCAD simulations  Arka Sanira
North Bairoom, La Fonda Hotel 14:10 - 1430

From vertex detectors 1o applications in lon detection and spectrometry: a glimpse of MAPS RAD in Strasbourg
Jerome Baudot

A ——— And in my ver\() personal humble
o opinion it must be fully monolithic*

And getting all logic in and cope
with high rates will be a challenge --
experiencing the strug{gle to get all
ATLAS and CMS needs into the
65nm pure pixel ASIC (RD53)

33

*| believe we all know why



Stating the Obvious
What we all know — Advantages of HV-CMQOS

* Thin
* Low material budget: X/X0 ~ 0.05%
* Radiation tolerant (also ‘collects’ electrons): ®> 101>, ../cm?

* Low power

* No bump bonding — cost saving, easier logistics
* In-cell processing — monolithic

* Small cells (10x10um?) — high resolution ~3um |

3|81 09dY wol4

* Challenges: 9 Broomn ) 1
* Stitching D

 How much digital parts features fit in a pixel (and how much in chip periphery)?
* timing, buffering, L1, data handling - state machine

34



MAPS Monolithic Active Pixel Sensors

ULTIMATE in STAR
First HEP MAPS
system

Important steps I
every iteration

ALPIDE in ALICE

First MAPS with sparse
readout similar to hybrid
sensors

Chip-to-chip
communication for data
aggregation

Recent developments
(ATLAS, ALICE, MU3e, etc.)

Depleted radiation hard
MAPS with:

'high” voltage
Sparse readout
Chip-to-chip communication
Serial power

Many uses: STAR, ALICE, CBM, NICA MPD, sPHENIX, Mu3e, CSES — HEPD2, Medical, ...
candidates for LHCb, PANDA, BELLE-2, EiC, ILC ... ~ well everybody

Nodes being used: 180, 150 and 65 nm technology and 130 nm SiGe BiCMOS

Many more in betwen, some to be discussed this week

FCC, e*e collider, ...

Large stitched fast

radiation hard MAPS with:
Sparse readout

Chip-to-chip communication
Serial power, timing

... many more
12”, <65nm?,
new read-out schemes?

35



LARGE or SMALL electrode??

e.g. 50-60 um (for RD50) e.g. 3 um (for Malta)
ionisin lonising /
oxide) paricie °_q°“"°"°“ NMOS in p-well  PMOS in n-well ~ Perioe. - NMOS PMOS

-
-

deep n well (also collection electrode)

Short drift path (faster ‘collection’)
High C - higher noise O(100 e’)

« Homogeneous weighting field

Long drift path

Very low C - reduced noise (~¥10 e~ & low power)

0 weighting field — arrival

Some adaptions help further
E.g. ALPIDE, MALTA, TI-MONOPIX. CLICTD, FASTPIX

High homogeneous electrical field
E.g. MUPIX, RD50, MONOLITH, LF-MONOPIX, ATLASPIX

| E-Monopix2 — by Patrick Where can we have more real estate for CMOS circuitry? TJ-MALTA - by Valerio
Radiation tolerance — we are around > 10%>, ., .,/cm? — is LARGE better? 36




SMALL CELL HV-CMOS
EVOLUTION

To overcome:
* Lateral depletion

e Direct drift to to small electrode
* Mind o0 weigthing field

Achievements
* Thresholds ~100 e
* Noise ~ 10 e

TJ-MALTA - by Valerio

E.g. ALPIDE, MALTA, MONOPIX, CLICTD, FASTPIX

Standard process' Modified process'

-6V .2 -6V
P-type epitaxial layer P-type epitaxial layer
Backside voltage Backside voltage
(:Y) (B)
Gap in deep n-implant: Additional p-implant
-6V 1.2V - -6V
Thresholds ~100 e
P-type epitaxial layer P-type epitaxial layer
Backside voltage Backside voltage
© (D)

FIGURE 9.1: Four different pixel flavours are shown [119]. (A) shows the standard flavour which was
used in ALPIDE. (B) shows the modified flavour which features a blanket deep n-implant. (C) shows
the gap flavour which leaves a gap in the deep n-implant. (D) shows the extra-p flavour which features
an extra deep p-implant. The junction is represented in yellow. The voltages are the ones used in this

chapter. All the drawings are not to scale. 37
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The ‘big” Small Cell example of MAPS - ALICE

LS2: 3+4 layers of MAPS (CMOS) ~10m?
s 27x29 um? pixels - 12.5 G-pixels

*  MAPS thinned to 50 um

e ~0.3 % X, per layer

Radial coverage R=21-400 mm 3
Limited voltage ~3V 5

¥20-€T0Z-D0H1-NY3D YAl dpessdn s11 3011V

Beam pipe

.
-

* Future: ALICE upgrade (ITS3) — HR/HV CMOS

Cylindrical
Push technology further: thinner, large sensors through stitching Structursl he

Faster signal, more radiation hard
Pixel sizes 10x10um?2 = 3um position resolution Half Barrels
X/XO0 per layer 0.05%

CURVED

Truly cylindrical vertex detector

€T10-8T0¢-2119Nd-321NV

Matrix layout Pixel layout E
e T | ma  TEETT v
\ = Y
= o)
- 5
a5 [ <
3 & _co S
= o 23 8
- ;| S8 t <
&5 )
- S
§ 5 BEE S
-5 =
7 = M e e . =
—
< pixels > < g
Q
723
NWELL COLLECTION
NMOS PMOS >
= AT _E!-_ECTRQQ[E _____ == == (@]
; ] °
PWELL NWELL || || PWELL NWELL | o
DEEP PWELL DEEP PWELL )
)
o
N
N
DEPLETED ZONE /|
/" DEPLETION
P= EPITAXIAL LAYER BOUNDARY

MAPS

Let’s see, which option

they will chose?

Standard process: Modified process:

DMAPS
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Mu3e — Another wonderful example on HV-CMOS

Big Cell approach - MUPIX

,——" ‘T' xIXo=00005 ver layers

] Y etk 1 2 e Y O s

Mupix10 mockup with 0(100) Sensors

Installed in integration run at PSI 32021h

High Rate & Continuous Readout (MuPix)

MuPix :
Pixel eachpixel ; Periphery

eeeeee

CSA : = vCo 33 Mhitsl/s per link

sensor
: 23 readout || &
) /\ comparator 182 £ H PLL
' machine .
l 4 readout — link A
. ——I— —~link B
8b/10b | i
B e

MUX {——link D

eachpixel  State Machine Maximum readout rate is

senal I|nk 1. 25 (1 6) Gbltls

analog signals
MuPix

eye diagram
sensor yediad ..,

comparator & state machine

20mm

-

Full monolithic — great example!

* Phase-1: 6 layers (50mm thin and cooled by gaseous helium (up to 400 mW/cm?2)

Material from Andre Schoening - Monolith Workshop, Sep. 2022
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HEP starts to like hexagonal structures — approximate circle!

e Collection electrodes on hexagonal grid

* Charge sharing in the corners between 3 pixels instead of 4
* Smaller cluster sizes, increase of seed signal -> more margin

* Electrode distance to edges similar boarder improves time resolution - Homogeneous drift field

e Reduce breakdown (minimise edge effects)

FASTPIX (small cell)

7

AR low-dose
electrode  implant 0ot

https://www.mdpi.com/2410-390X/6/1/13

A)

@)

(B)

YITHOIGNISVH uef SISIHL AHd

PICOAD/MONOLITH (large cell)

FRONTENDS

523 oz

ANALOG

=2 Vo, I ST

MONOILIT - @
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That's it

Soon, we also ‘track’ inside
calorimeters

=> ALICE FOCAL & CMS HGCAL

i . ) J?LJ_"‘ ' ,;«z('




I love this incredibly lively field of sensor
and detector system development.

And, it will be a great pleasure to talk to
you later

Only problem, such meetings animate me to stop doing managerial work
and to go back having fun in the lab.
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Weighting field (1/cm)
2.000e+03
1.667e+03
1.333e+03
1.000e+03
6.667e+02
3.333e+02
0.000e+00

Electric field (V/cm)

l 1.000e+05

8.333e+04

6.667e+04

5.000e+04

3.333e+04
1.667e+04

0.000e+00
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) o T
tracks at 40 MHz to L1-trigger (p;>3GeV) e o
) e 0 “Expires” at ~500fb !
™ Worl d s fl rst 0 200 400 600 800 1000 1200 1400 160
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Collisions here
CERN-LHCC-2017-009 CMS-TDR-17-001

p; transverse momentum 45



