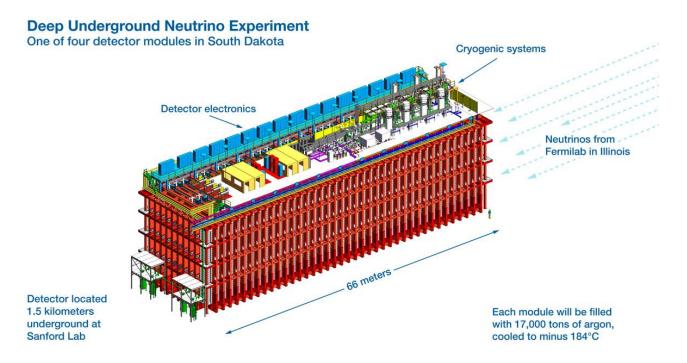
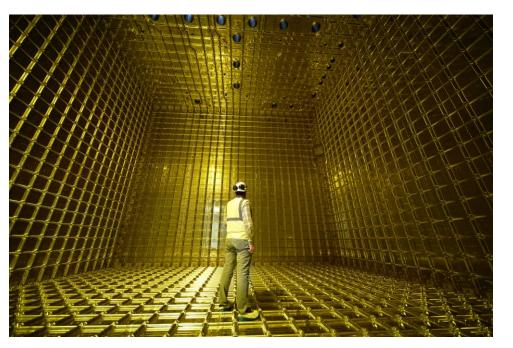


Pixel Readout for Large Cryogenic Detectors

Dan Dwyer (LBNL) Pixel 2022 (Santa Fe, NM) 12 Dec 2022




Neutrino Instrumentation Challenge

Deliver mm-scale spatial granularity for stadium-sized detectors.

Example: DUNE

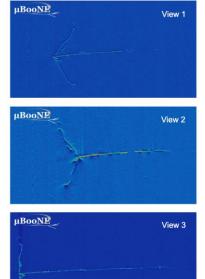
- DUNE consists of four Far Detector modules, with a total volume on the order of **50,000 cubic meters**.
- To achieve the required precision, a **spatial granularity of ~4mm** is required over this volume.
- Corresponds to a detector with a total of ~1 trillion spatial voxels.

DUNE prototype cyrostat (~1/200th of a DUNE Module)

2D vs. 3D LArTPCs

2D Wire Plane TPC:

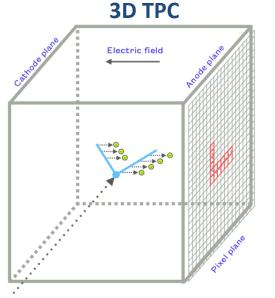
- Established technology, demonstrated in ProtoDUNE-HD
- Multiple 2D views used to estimate 3D signal
- Baseline technology for Far Detector #1 (& Strip variant planned for FD #2)


2D Projective TPC

Electric field

DUNE prototype anode plane on winding machine

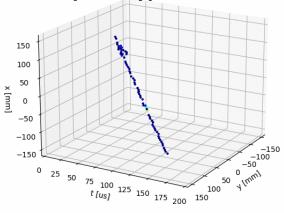
2D Projections in MicroBooNE



3D Pixel TPC:

- True 3D imaging
- Continuous readout, ~100% uptime
- Intrinsically sparse data, low data volume

Science Gains:


- Improved signal fidelity, S/B
- Enhanced low-energy program <u>JINST 15 P04009</u> <u>arXiv:2203.12109</u>

6.4k-channel LArPix

prototype pixel anode tile

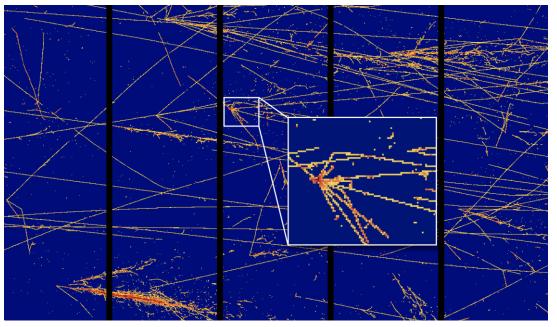
Raw 3D Cosmic Ray images in LArPix prototype LArTPC

True 3D Readout Technical Targets

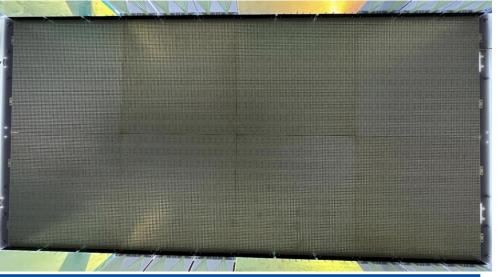
For the upcoming large cryogenic detectors (e.g. DUNE)

Resolution and noise

- A granularity of **O(mm)** in space and **O(µs)** in time
- Triggering and charge resolution of signals of O(1000 electrons)


Cryogenic compatibility

- Long-term reliable operation at 87 K (in liquid argon)
- Total power dissipation of O(100 µW) per pixel, O(10 W/m²) of sensitive anode


Scalability

- Low-power reliable digital multiplexing of O(10,000 pixels)
- Viable production path for anodes of O(1000 m²)
- Full system production cost of O(\$10k / m²) at detector scale

Prototype LArPix 50k-pixel (0.8 m²) anode

Simulation of one neutrino beam spill in the DUNE LArTPC Near Detector

R&D on Feasibility: LArPix-v1 System

LArPix-v1: 2016-2018

Complete 3D Pixel System for LArTPCs:

- Custom ASIC with amplifier, digitizer, multiplexer
- Integrated Pixelated Anode w/ASICs
- Control electronics and software (outside cryo)

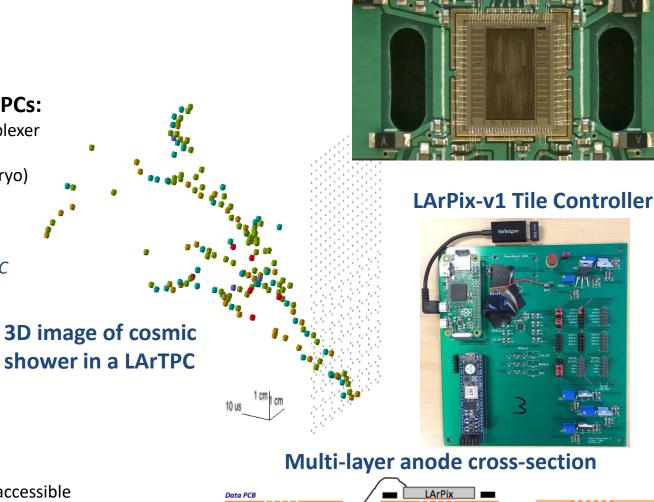
Key R&D Achievement:

Demonstrated technical feasibility

- -> Successfully imaged cosmic rays in LArTPC ASIC:
- Cryogenic-compatible
- Low-power: 62 uW/channel
- Low-noise: 275 e- ENC @ 87K

Pixel Anode:

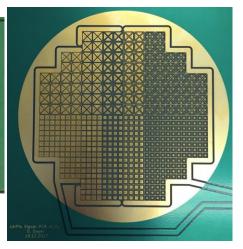
- Cryogenic-compatible
- Low Digital-Analog cross-talk
- O(1k) channel readout via 2 wires

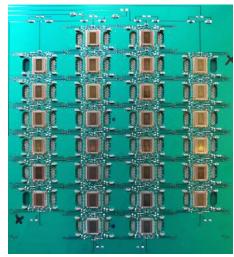

Control electronics:

- Fieldable system: noise-isolated and wifi accessible

Main drawback:

Difficult to scale above O(1k) pixels


- Anode requires manual assembly, bare chip wirebonding


Signal PCB

LArPix-v1 ASIC

v1 Pixel Anode, Front

v1 Pixel Anode, Back

JINST 13 (2018) P10007

R&D on Scalability: LArPix-v2 System

LArPix-v2: 2019-2021

Substantial Design Evolution:

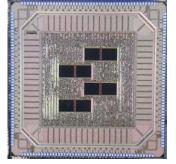
ASIC Improvements:

- 64 channels/ASIC (twice channel density of v1)
- Hydra-I/O: Dynamic routing, robust to chip failure
- Cryogenic-compatible custom SRAM memory
- Improved tunability, testability
- Packaged to facilitate commercial mass production

Pixel Anode Design Overhaul:

- 'Tileable' design to cover anodes of arbitrary scale
- 32cm by 32cm pixel anode PCB tile
- Frontside: 4900 square pixels, 4.4 mm spacing
- Backside: 10x10 grid of ASICs
- Enable fully-commercial mass production and assembly

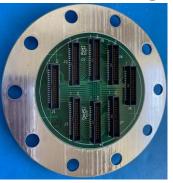
Warm Controller (PACMAN) Redesign:

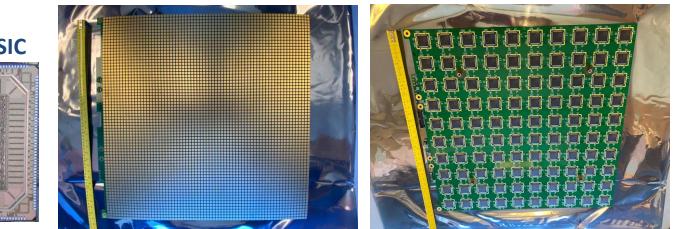

- Noise-isolated, compact, flange-mounted

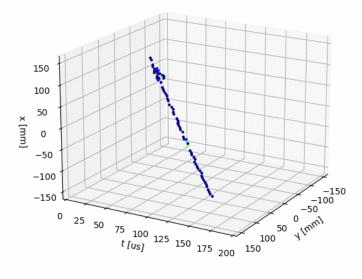
Key R&D Achievement:

Demonstrated robust and scalable pixel anode

- Fast (~few weeks) fully-commercial production/assembly
- Robust to repeated cryogenic cycling
- Successfully imaged cosmic rays in LArTPC on first try


LArPix-v2 ASIC

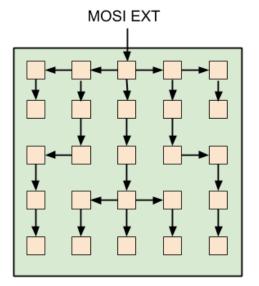

PACMAN Tile Controller


8-Tile Feedthrough

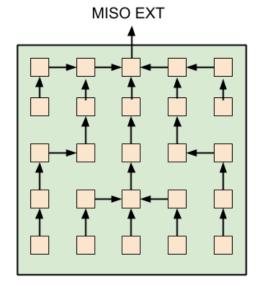
Production-scale LArPix-v2 Pixel Anode

Raw 3D images of cosmic rays from initial single-tile test

"LArPix-v2: a commercially scalable large-format 3D charge-readout scheme for LArTPCs" publication in preparation

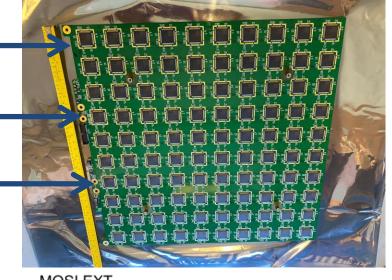

R&D on Robustness: Hydra-I/O

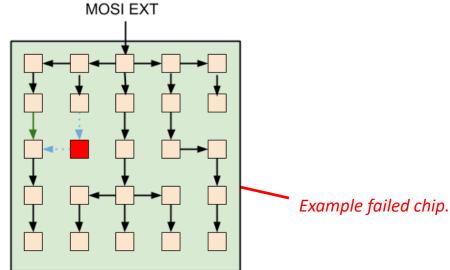
New design for robust I/O and control architecture


Repurpose existing LArPix-v1 low-power data I/O circuit Very slight change enables richer, dynamic I/O architecture

- I/O can occur between any neighboring chips on pixel tile
- Network is built by explicitly connecting neighboring ASICs in a determined fashion Successfully exercised with LArPix-v2 chip

Example: 5 x 5 Pixel Tile

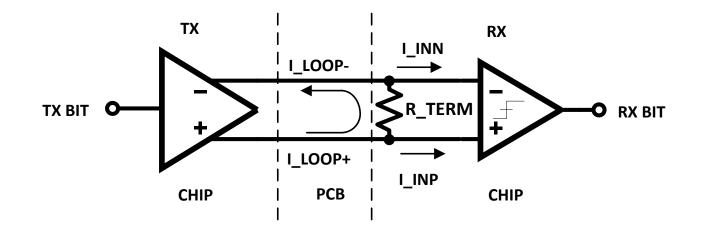


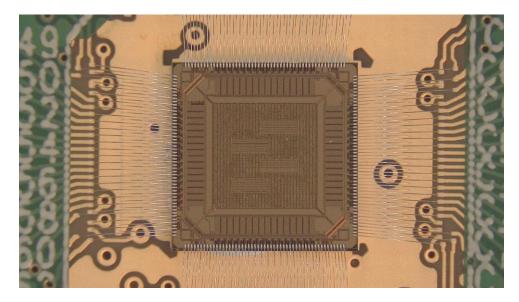

Upstream configuration commands

Downstream data flow

Four chips have direct off-tile I/O channels (10 MHz, < 4 m)

Network reconfigured to avoid failed ASIC

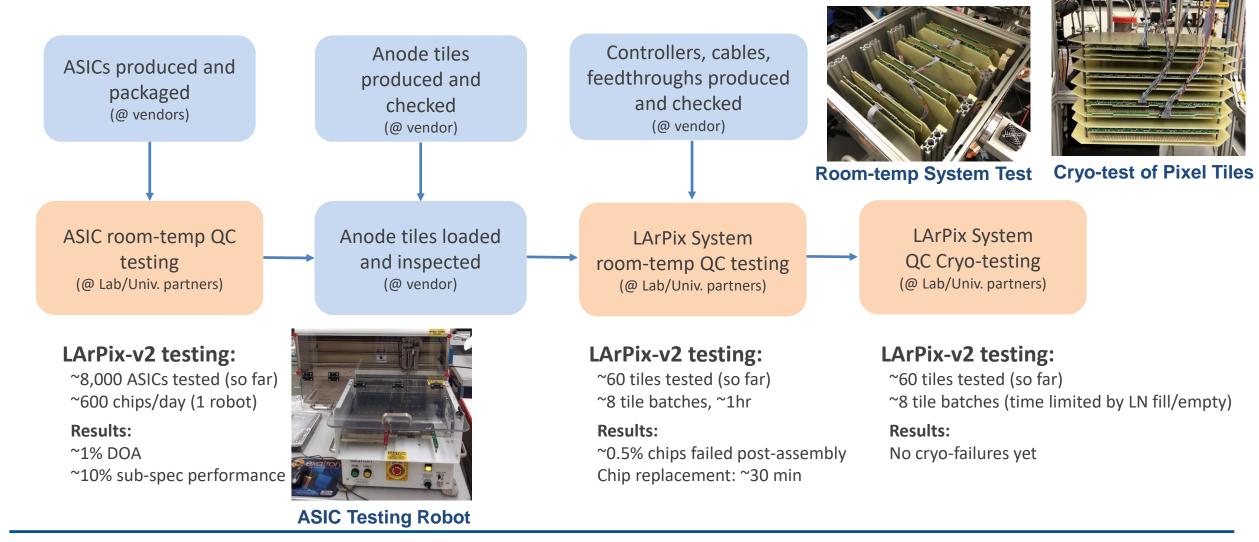

AD-HOC NETWORK OF READOUT APPLICATION-SPECIFIC INTEGRATED CIRCUITS FOR RELIABLE DETECTOR INSTRUMENTATION U.S. Patent Application Ser. No: 63/140,434


2022 R&D 100 Award

LArPix-v2b: Very low-voltage low-power digital I/O

Custom tunable low-voltage digital transmitter and receiver

- Similar to LVDS in concept, but much lower power: O(10 uW) per transmitter & receiver
- Highly-tunable loop current and termination resistance supports multiple modes of operation (chip-to-chip, multi-drop, etc.)
- Optional mode for automatic transmitter power-down when no data



- LArPix-v2b ASICs received Aug. 2021
- Low-voltage I/O working as designed
- Prototype v2b-based pixel tiles now in production

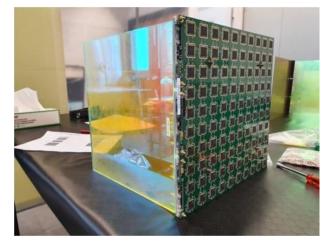
LArPix-v2: Scalable Production and Testing Process

All production/assembly done via commercial vendors; QC testing performed by scientific staff

Prototyping: ArgonCube 2x2 LArTPCs

Four ton-scale Prototype TPC Modules to validate DUNE Near Detector Design

Each TPC Module:


- Active Size: 0.7m x 0.7m x 1.25m
- 16 pixel tiles, with ~80k pixel channels total
- 16 light collection modules, with 96 light sensors (SiPMs)
- Resistive-film-on-fiberglass field cage

Progress @ Univ. of Bern:

- TPC Module 0: Run 1 (Demonstration): *Apr. 1-10, 2021* Run 2 (Extra Cryo-test): *Jun. 21-26, 2021*
- TPC Module 1 Operation: Feb. 5-13, 2022

Achievements:

Demonstrated fully-integrated prototype detector module at a scale relevant to the DUNE Near Detector Single pixel tile & light module assembly

Two anodes, installed inside field cage

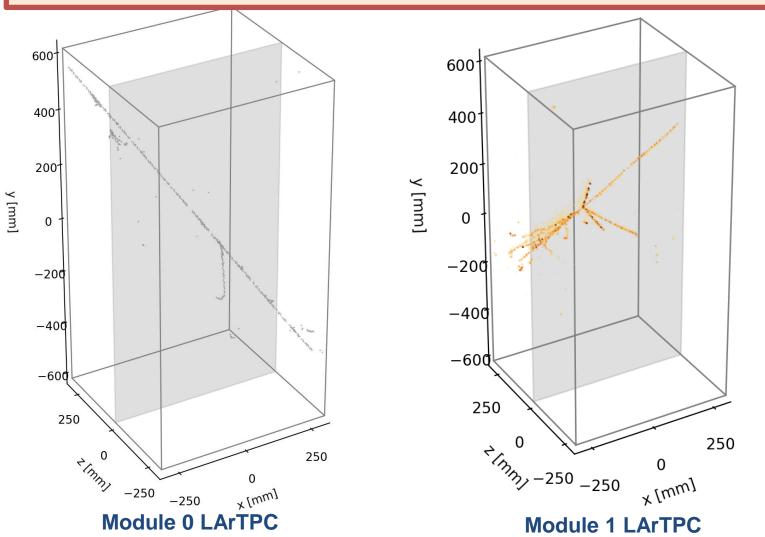
LArTPC module attached to cryostat lid

Single Module Cryostat

LArTPC inside cryostat

Prototyping: ArgonCube 2x2 LArTPCs

Verified design meets technical requirements:

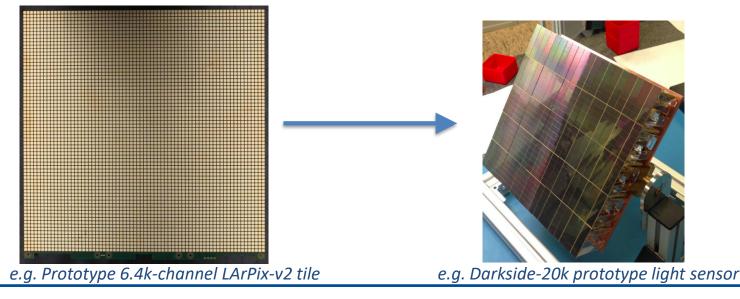

- Collected >10⁷ cosmic ray events
- Stable **HV** at ~30kV (~1 kV/cm drift, 2x target)
- Stable Purity at >2ms (>4x target)
- MIP Charge Signal-to-Noise >20:1 (at target)

Continuous readout:

~100% live, independent of light system Low data rate due to self-triggered design

Arguably the most performant ton-scale LArTPC to date.

Feb 2023: Four ton-scale TPC modules ready **Mid 2023:** Operation in NuMI Neutrino Beam *Prototype for the DUNE Near Detector* *Typical raw data from cosmic ray interactions imaged in 3D prototype detectors*



LightPix: Scalable Cryogenic SiPM Readout Electronics

Readout Electronics Needs:

- Low-power cryogenic-compatible scalable SiPM readout electronics at very low system cost
- R&D Plan:
 - LightPix:
 - Adapt existing LArPix ASIC to provide scalable readout for many (e.g. >10⁶) Silicon Photomultipliers
 - Reuse all of LArPix system architecture (low-power, cryo-compatible, scalable, O(\$0.10)/channel system cost)
 - Provide a path for highly-granular photodetection systems for very large detectors

Rough concept: Replace LArPix charge-collection pixels with SiPMs

Why LightPix:

Existing readout electronics are either too high power or too high cost for our cryogenic detector needs.

Looking ahead:

Personally, I think LightPix fits some specific near-term HEP needs (next 5yrs). In the longterm (5-10yrs), my guess is that digitally-integrated SiPMs may eventually provide better performance at lower cost.

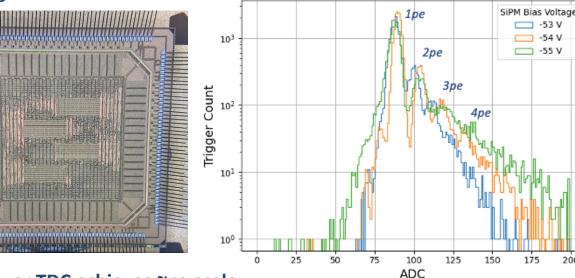
LightPix ASIC

LightPix-v1:

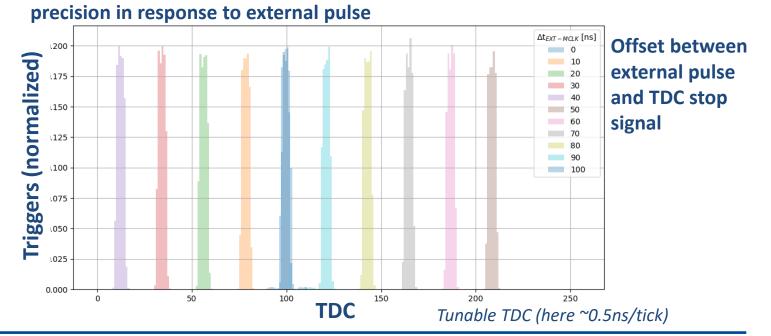
- Develop and test dedicated time-to-digital converter (TDC) to provide < 10ns time resolution
- Add multi-channel coincidence triggering mode to suppress excess data from dark noise at room temp

Progress:

- Received Aug. 2021
- Power-up, configuration successful
- TDC meets design targets


Next Steps:

- LightPix-v2:
 - Provide both TDC and ADC functionality
- Deployment and testing of light detector system in prototype LArTPC
- Exploration/optimization of light detector formats


LightPix-v1b ASIC

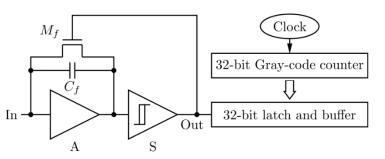
Photoelectron signal spectrum vs. SiPM bias

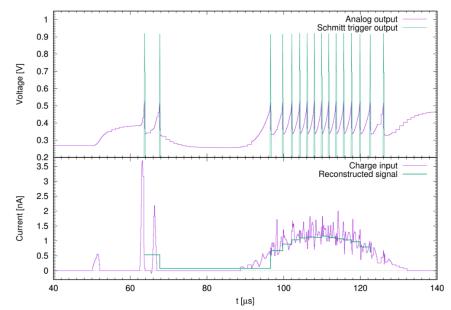
200

Very-low-power TDC achieves ~ns-scale

The University of Manchester

‡Fermilab

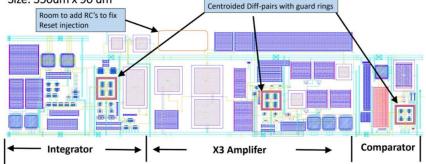



QPix: Concept and Progress

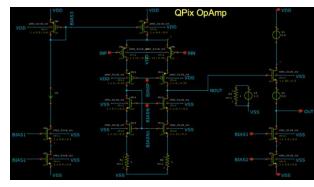
Concept: <u>arXiv:1809.10213</u>

Report 'time between resets' instead of digitizing charge

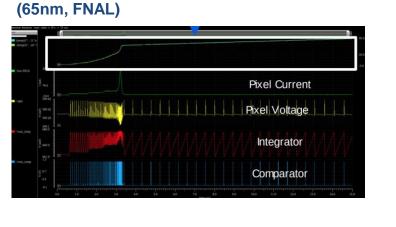
Distribution of reset times proxy for signal current on pixel



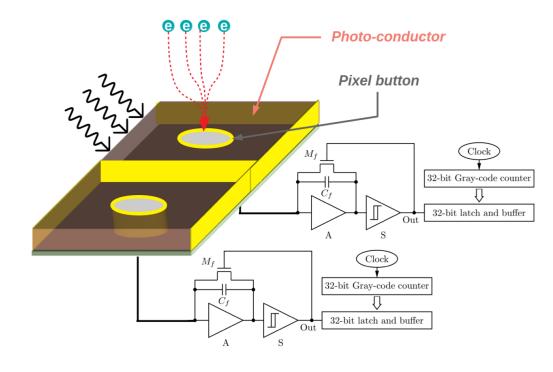
Front-end Prototype ASIC

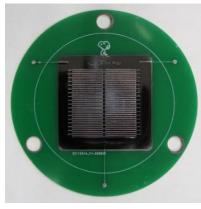

(180nm, UPenn)

QPIX Layout: Integrator + Amplifier + Comparator Size: 350um x 90 um


Front-end Design

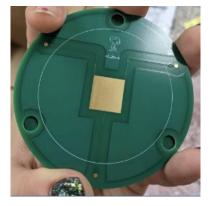
Front-end Prototype ASIC (130nm, UTA)


Digital Back-end Prototype (FPGA-based, U-Hawaii)

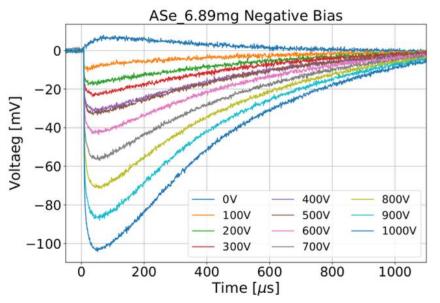

QPix: Light-sensitive Pixels

Concept:

Add photoconductive (ASe) film to pixel anode to make pixels sensitive to both TPC charge and scintillation light

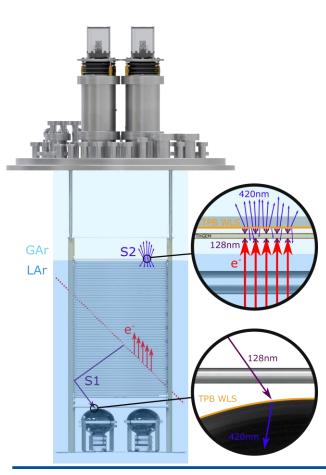

Prototype PCBs with biased traces coated in ASe

127 um trace spacing 5V/um max field UTA/ORNL



127 um trace spacing 5V/um max field UTA/ORNL

25 um trace spacing 40V/um max field UCSC/UTA/FNAL

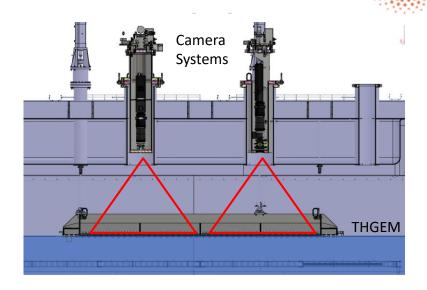

Example signal traces in response to light pulses

ARIADNE+

Concept:

Achieve Dual-phase TPC 3D readout by imaging electroluminescence in THGEM with fast optical cameras

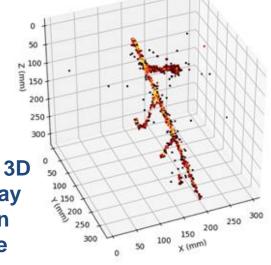
Advantages:


Low noise via optical-only readout Low threshold due to gas amplification Accessible/upgradeable: Cameras outside cryostat

Disadvantages:

Only viable in a dual-phase TPC

- High cathode voltage
- High-field e- extraction region
- THGEM amplification
- Scattered/indirect light


Example 3D cosmic ray imaged in prototype

¥

IGFAE

ROYAL HOLLOWAY LIVERSITY OF

500

400

200

000 ToT (ADU)

erc

Summary: Neutrino Pixels

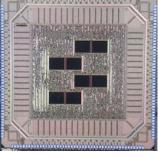
LArPix:

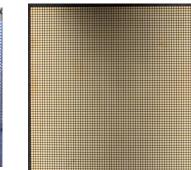
- True 3D pixelated charge readout for LArTPCs
- Low-noise, low-power, cryogenic-compatible
- Self-triggering, 100% live
- Scalable anode design leverages commercial production
- Two recent 80k-pixel ton-scale prototype exceeded expectations
- Baseline technology for the DUNE Near Detector

LightPix:

- Highly-scalable readout for cryogenic SiPMs
- Reuses much of LArPix system design

QPix:


- Record trigger time distribution instead of digitizing charge
- R&D on ASe coating to make pixels light-sensitive

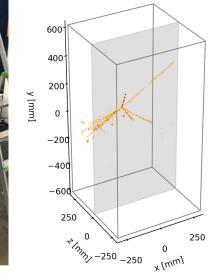

ARIADNE+:

- Optical 3D readout for dual-phase TPCs
- Successful mid-scale prototyping at CERN

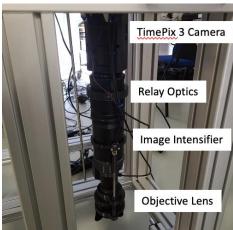
Potential technologies for future highly-granular detectors

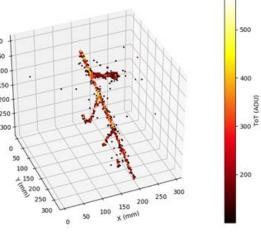
LArPix-v2 ASIC

LlghtPix-v1 ASIC


QPix ASe prototype

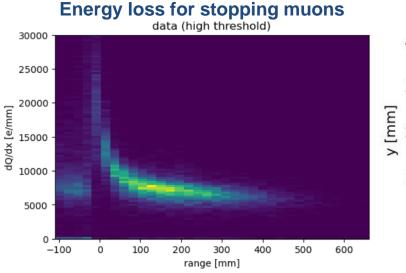
LArPix-v2 Tile


DUNE Near Detector



Cosmic ray 3D images from prototype

ARIADNE+ Camera System and 3D imaging


Backup

2x2 Module 0 Physics Performance

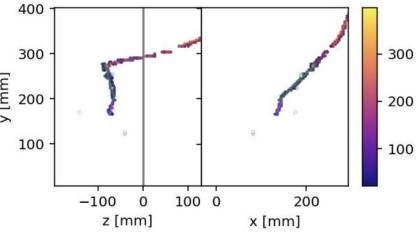
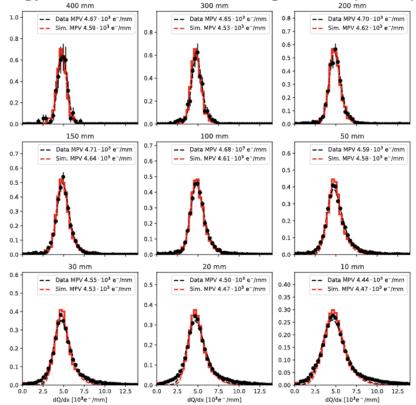

Data/MC comparison of low-level self-trigger charge distribution versus pixel threshold.

Figure 13. Self-trigger charge distribution for MIP tracks measured in thousands of electrons (ke); 50% of the rising edge are shown as indicators of the charge readout self-trigger thresholds. The MC simulation shown in comparison is described in Section 4.

Observation of positron decay

Energy loss for minimum ionizing muons (dQ/dx)

Φ


 $[10^3]$

ge

ē

4

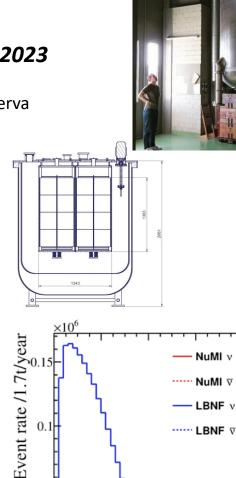
Ξ

Figure 15: dQ/dx measured for segments of different lengths for low threshold runs (black dots) and a sample of simulated cosmic rays (red line). The distributions have been fitted with a Gaussian-convoluted Moyal function (dashed lines).

ArgonCube 2x2 @ NuMI

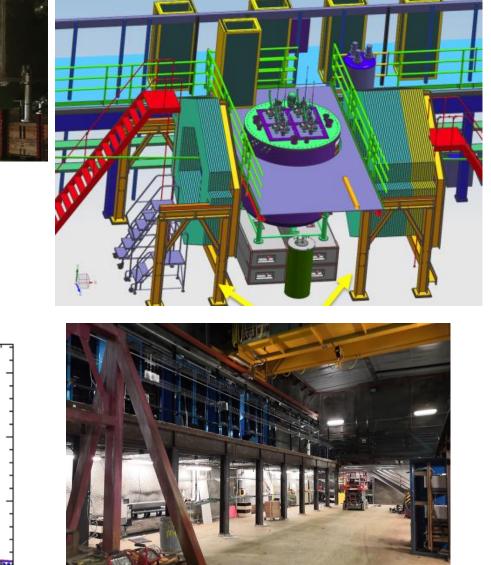
2x2 Operation in NuMI Neutrino Beam 2022-2023

- Install four TPC modules in former location of MINOS-ND
- Includes upstream/downstream trackers, repurposed from Minerva


Goals:

- Develop neutrino signal analysis and reconstruction techniques
 - 3D reconstruction of neutrino signals
 - Charge-light signal correlations, tolerance to beam pileup
- Track matching with external trackers

Status:


- Cryostat & controls commissioned at Bern Delivered to FNAL: July 2021
- TPC Module 0, 1 commissioned at Bern Delivered to FNAL: Oct. 2021, June 2022
- TPC Modules 2, 3 currently in production To be delivered to FNAL: Winter 2022/2023
- Remaining cryogenics system procurements/production To be delivered to FNAL: Winter 2022/2023
- Installation and commissioning in NuMI hall Targeting Spring 2023

Demonstration of ¹/₂-million pixel detector in a GeV neutrino beam!

----- LBNF v

8 p_{μ} (GeV)

Far Detector Pixel Readout: Key Requirements

My summary of the requirements that would drive system design and production for a future Far Detector

Requirement	Approx. Value	LArPix	Comment
Granularity	< 4.7 mm	3.8 mm	Latest LArPix-v2b design has 3.8mm pixel pitch
Noise	< 1000 e- ENC	900 e- ENC	Noise as measured in ~100k-pixel TPC with LArPix-v2a
Threshold	< 200 keV	<mark>200 keV</mark>	1/4-MIP signal efficiency currently marginal for both ND and FD
Power	< 20 W/m ²	14 W/m ²	Anode heat flux less than heat from cryostat walls. Mitigate boiling at anode.
Digital Multiplexing	> 10 ⁶ pixels/channel	10 ⁵ pixels/channel	Ok for ND. O(10x) digital aggregator needed to reduce FD cabling/feedthroughs
Reliability/Longevity	< 5% failure/10yrs	(Unknown)	Cryo-longevity to be assessed as part of ND prototyping program
Total system cost	< \$20k/m ²	\$10k/m ²	Total production cost includes full system assembly, cold/warm electronics, etc.
Production throughput	> 1000 m ² /yr	O(200) m ² /yr	OK for ND. 5x needed for FD. May be possible with current or additional vendors.
Testing throughput	> 1000 m ² /yr	O(50) m ² /yr	4x needed for ND; 20x needed for FD. More QC testing partners needed.

Most important steps toward Pixelization of a Far Detector:

- Design and prototype a cryo-robust digital aggregator
- Develop plan and partners to achieve FD-scale QC testing throughput

Science

Engineering

Production