Integrating imaging detectors: from CCDs to hybrid pixel detectors in photon science

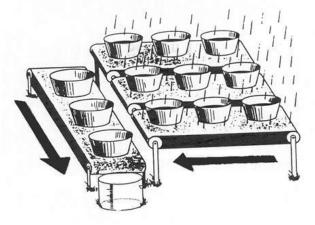
Julia Thom-Levy

Sol Gruner

Cornell University

Brookhaven National Laboratory

The quest for "wide dynamic range"


Integrating imaging pixel detectors

Monolithic

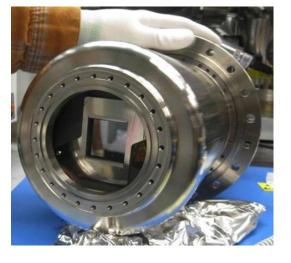
- Charge-Coupled Device (CCD)
- CMOS imagers

Hybrid pixel detectors

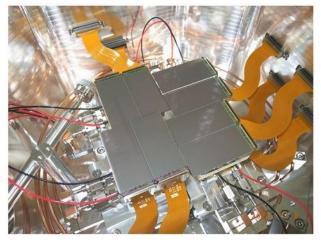
- Sensors in high resistivity silicon or other semiconductors
 - Pixel Array Detectors (PAD), DEpleted P-channel Field Effect Transistor (DEPFET), X-ray Active Matrix Pixel Sensors (XAMPS)...
- Readout chip in low resistivity silicon standard
 IC technology
- ...and combination of the above

George Smith and Willard Boyle

Invention of the 'Charge Bubble' Devices in 1969



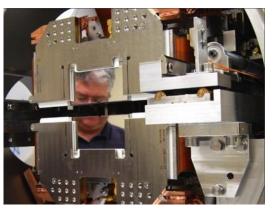
Nobel Prize for Physics in 2009


Charge-coupled devices for x-rays imaging

scintillator fiber coupled to CCD

FCCD, LBNL

MPCCD, Riken, Japan



EM-CCD, XCAM

SOPHIA (L), PIXIS (R) Princeton /Teledyne

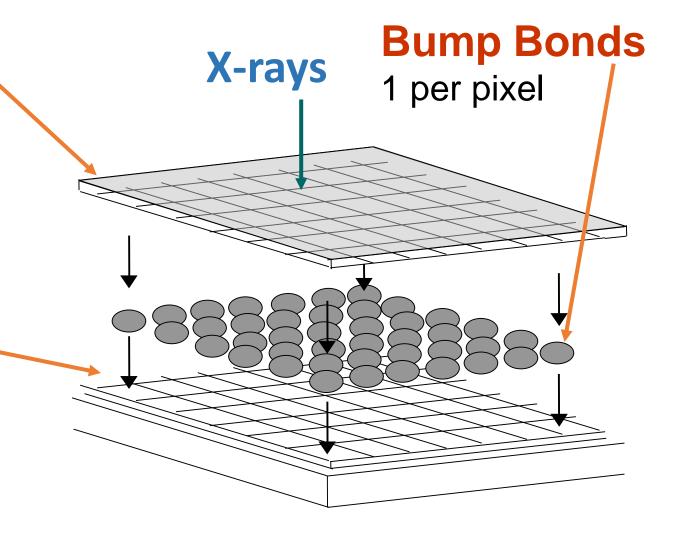
pnCCD, MPG-HLL

Bump-bonded Pixel Array Detectors (PADs)

X-ray Conversion Layer

e.g., Si, CdTe: 0.5 - 1 mm thick

•Large signal/x-ray


Single photon sensitivity

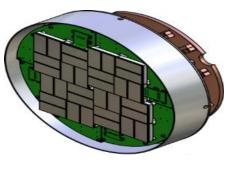
- •Single pixel PSF
- Prompt signal collection

Signal Processing Layer

Application Specific Integrated Circuit (ASIC) – Si CMOS

•Each pixel has own processing electronics

Bump-bonded PADs come in two varieties


Photon counting PADs

• Front ends count each x-ray individually (PILATUS, Medipix, Timepix, XPAD, etc.)

Integrating PADs (our primary focus)

- Use an integrating front-end to avoid the count-rate bottleneck
- Only PAD option for most XFEL and many storage ring experiments
- Single photon sensitivity
- Variants include CS-PAD, MM-PAD, Keck-PAD, AGIPD, LPD, JUNGFRAU, etc.

Cornell-SLAC LCLS

Bump-bonded PADs come in two varieties

Photon-counting PADs

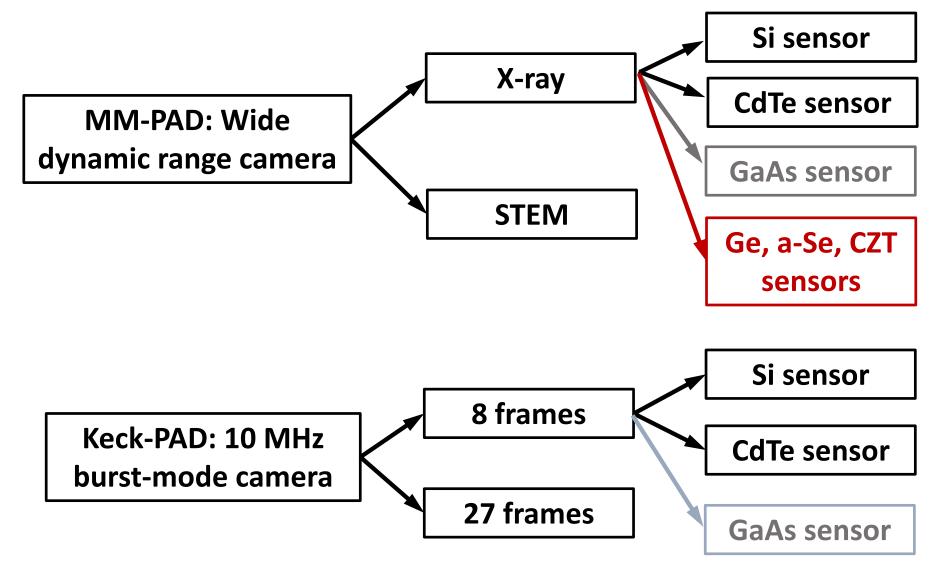
- Front end counts each x-ray individually
- Suppress pixel read noise and dark current
- Count-rate limited to ~10⁶ -10⁷ xrays/pix/s (depending on source characteristics)
- Pixel well capacity (max. detectable signal per frame) set by counter depth

Photon-integrating PADs

- Front end measures the integrated energy deposited in the sensor during a frame
- Dark current must be subtracted; care required to *minimize* read noise
- Count-rate bottleneck avoided Only option for most XFEL experiments and intense single-bunch imaging.
- Well-depth limited by pixel storage capacity to ~1000's of photons/pixel/frame
 - ...but well-depth extension techniques can boost this to >10⁷ xrays/pixel/frame

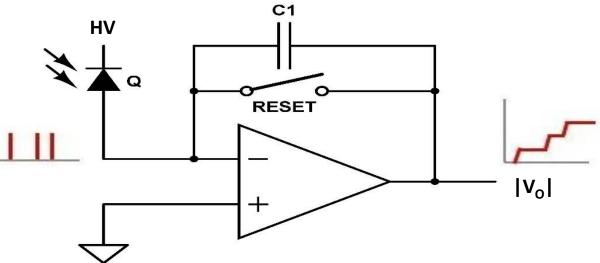
Need for integrators: dynamic range

- Many problems need many photons/pix/frame
- Photon counters: hard to distinguish 2 x-rays/pix arriving in few x100ns
- In APS std. mode instantaneous intensity:

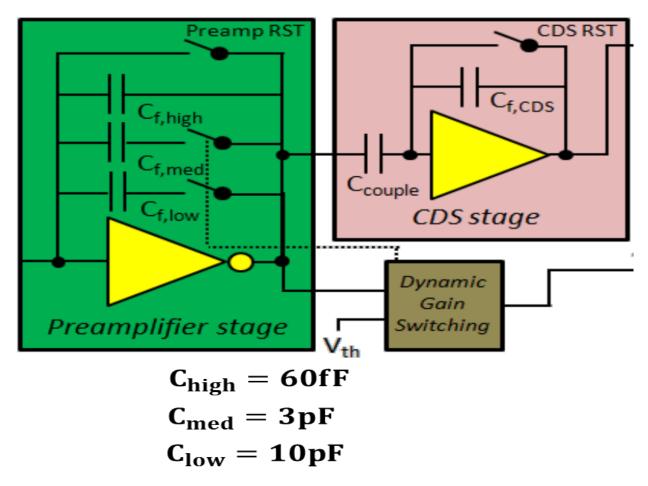

$$I_{\text{instantaneous}} = \left(\frac{\tau_{\text{bunch interval}}}{\tau_{\text{bunch duration}}}\right) I_{\text{avg}}$$

- ≈ 4000 x average intensity
- Stochastic arrival makes it worse

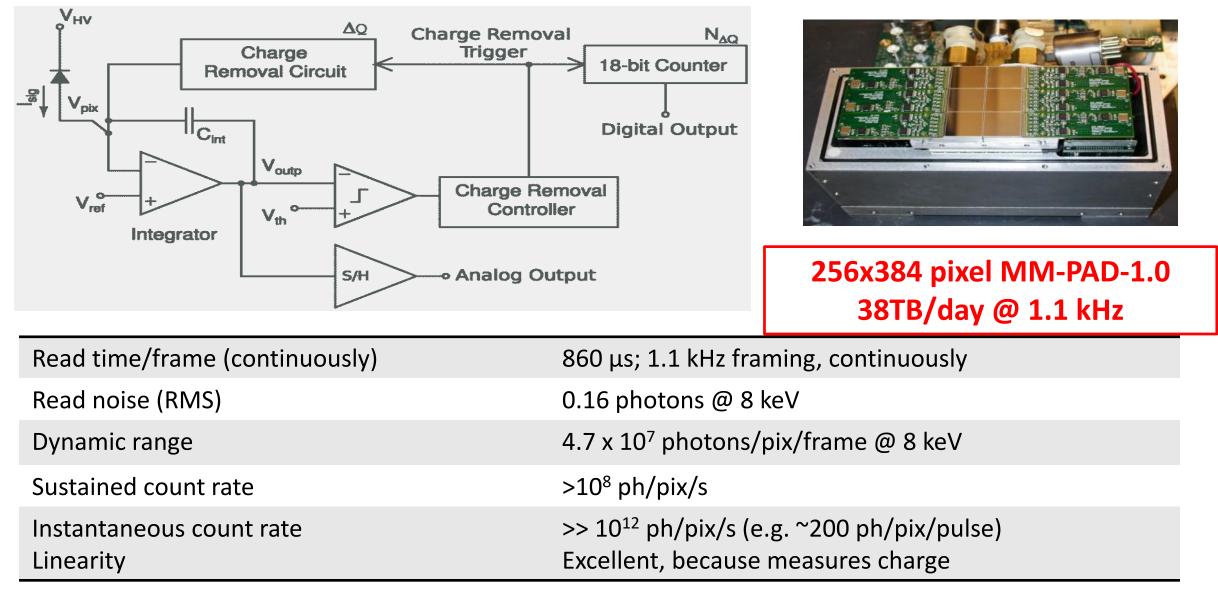
The dynamic range of a photon counter is count-rate dependent


'Fast & precise: these detectors offer single-photon counting, with a count rate up to **10⁷ ph/s/pixel**.'

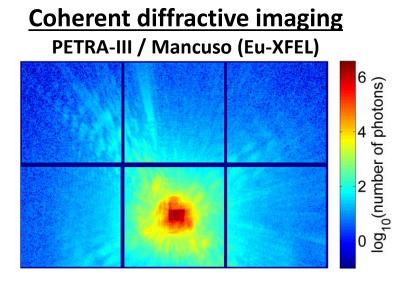
Two families of integrating detectors


Both families: 150 µm x 150 µm pixel size, 256 x 384 pixel tiled systems assembled @ Cornell

What Limits Dynamic Range?


- For Si, 10 keV x-ray deposits Q = (10,000eV /3.64) = 2740 e-
- $V_o = Q_{tot} / C1$, i.e., Charge-to-voltage ratio proportional to 1/C1
- Noise ≈ 0.5 mV. Want good single x-ray sensitivity, say, S/N=5
- Set C1 so Q from 1 x-ray yields $V_o \ge 5x(0.5 \text{ mV}) = 2.5 \text{ mV}$
- But CMOS voltage range ~ 3V => Dynamic range = 3V/2.5 mV = 1200 What methods are used to extend dynamic range without resorting to <u>nonlinear response</u>?

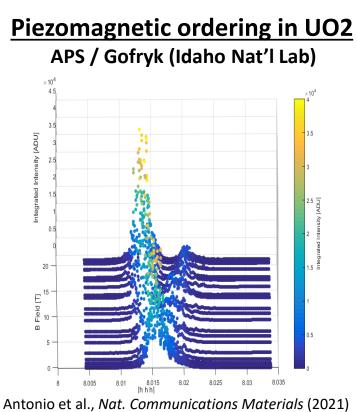
(1) Increase DR by dynamically changing C


- "Adaptive gain"
- Pioneered by SLS (GOTTHARD, JUNGFRAU, AGIPD)
- Dynamically monitor V_o
- As V_O approaches limit, add
 C_{med}, and, again, C_{low}
- DR = 2x10⁴ @ 8 keV

(2) Dynamically remove charge (MM-PADs)

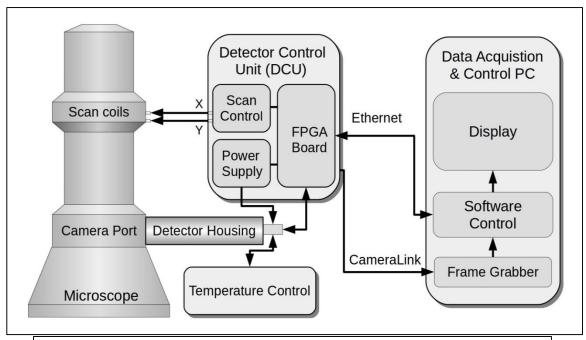

MM-PAD: applications

Wide dynamic range gives extraordinary experimental flexibility


Giewekemeyer et al., Journal of Synchrotron Radiation (2014)

- Capture scattering pattern from Au test object, allowing ptychographic image reconstruction with ~25nm resolution
- Key detector features: wide dynamic range, fidelity at high incident photon rates (>10⁷ ph/pix/s in central spot)

Chatterjee et al., J. Mechanics & Physics of Solids (2017)


- Probe grain-level deformation mechanisms and residual stress in polycrystalline Ti-7Al alloy under applied stress gradient
- **Key detector features:** CdTe sensor for efficient detection of 42 keV photons

Antonio et al., Nat. communications Materiais (2021)

- Observe Bragg peak splitting in UO2 during 10ms magnetic pulse
- Key detector features: Fast (1 kHz) continuous frame rate

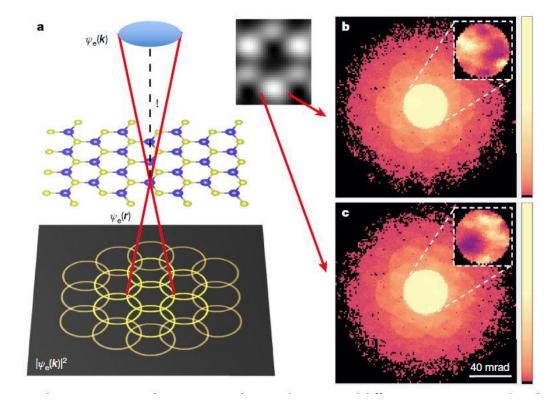
MM-PAD used in STEM (EM-PAD)

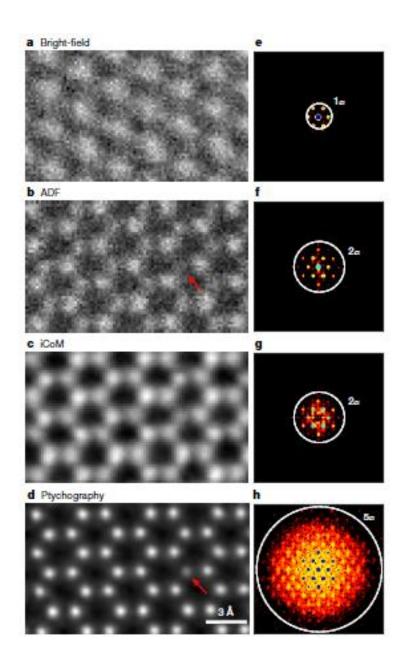
Microsc. Microanal. 22, 237–249, 2016 doi:10.1017/S1431927615015664

High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy

Mark W. Tate,¹ Prafull Purohit,¹ Darol Chamberlain,² Kayla X. Nguyen,³ Robert Hovden,³ Celesta S. Chang,⁴ Pratiti Deb,⁴ Emrah Turgut,³ John T. Heron,^{4,5} Darrell G. Schlom,^{5,6} Daniel C. Ralph,^{1,4,6} Gregory D. Fuchs,^{3,6} Katherine S. Shanks,¹ Hugh T. Philipp,¹ David A. Muller,^{3,6,*} and Sol M. Gruner^{1,2,4,6}

¹Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA ²Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA ³School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA ⁴Physics Department, Cornell University, Ithaca, NY 14853, USA ⁵Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA ⁶Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA


128x128 pixel EM-PAD has been commercialized by Thermo Fisher


Ptychography with EM-PAD ARTICLE

https://doi.org/10.1038/s41586-018-0298-5

Electron ptychography of 2D materials to deep sub-ångström resolution

Yi Jiang^{1,6}, Zhen Chen^{2,6}, Yimo Han², Pratiti Deb^{1,2}, Hui Gao^{3,4}, Saien Xie^{2,3}, Prafull Purohit¹, Mark W. Tate¹, Jiwoong Park³, Sol M. Gruner^{1,5}, Veit Elser¹ & David A. Muller^{2,5}*

	CULINNESS BROOKECON	
Share f 😏 8 ⁺ 🖂 🕓 in	What	
CORNELL UNIVERISTY	0.039 NANOMETRE(S)	
Where	When	
UNITED STATES ()	18 JULY 2018	

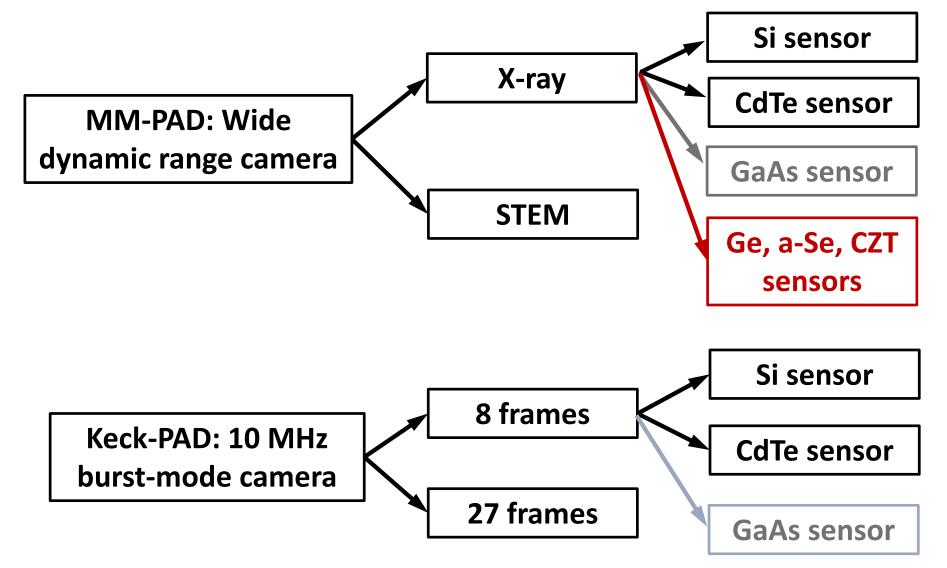
The highest resolution microscope measures up to 0.39 ångströms, achieved by researchers at Cornell University (USA), in Cornell University, Ithaca, USA, as published on 18 July 2018.

Cornell/APS MM-PAD-2.1

- Update to MM-PAD-1.0 design
- Collaboration with detector group at APS
 - APS: firmware, support electronics
 - Cornell: ASIC

Specification	MM-PAD-1.0	MM-PAD-2.1 target
	(8 keV equivalent units)	(20 keV equivalent units)
# of pixels per chip	128	3 x 128
Pixel size	150 μm	
Sensor	Si	CdTe
Electron-collection capability?	No – holes only	Yes – collect electrons or holes
Frame rate	1.1 kHz	<u>></u> 1.1 kHz
Duty cycle	0% at max frame rate	<u>></u> 90%
Read noise	0.16 photon	≤ 0.1 photon
Well capacity	4.7x10 ⁷ photons	10 ⁸ photons
Instantaneous photon rate	> 10 ¹² ph/s/pix	> 10 ¹² ph/s/pix
Sustained photon rate	> 10 ⁸ ph/s/pix	> 10 ⁹ ph/s/pix

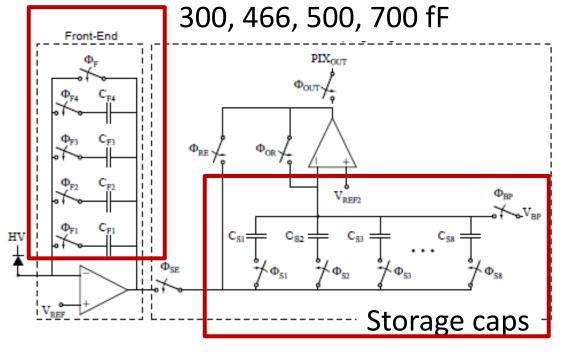
MM-PAD-2.1 full-scale system


- Single-chip Si, CdTe hybrids have been assembled, and x-ray testing is underway
- Four 256x384 pixel systems planned: 2 at Cornell, 2 at APS
- Selectable readout of full array at continuous frame rate of 1.6 kHz or 128x128 pixel area at 9 kHz

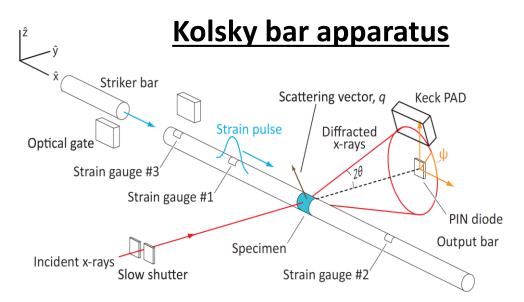
128x128 pixel test pattern

Two families of integrating detectors

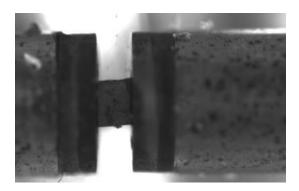
Both families: 150 µm x 150 µm pixel size, 256 x 384 pixel tiled systems assembled @ Cornell



In-pixel frame storage provides down to ~100 ns spacing between stored frames (~10 MHz)

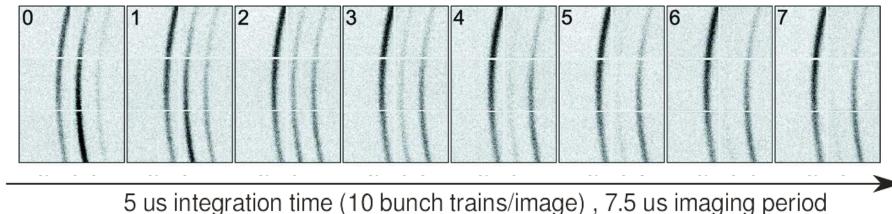

Read time	0.86 ms/frame
Storage caps/pixel	8
Read noise	1 photon @ 8 keV (C _F = 300 fF) 4 photons @ 8 keV (C _F = 1966 fF)
Well capacity	1112 photons @ 8 keV (C _F = 300 fF) 7288 photons @ 8 keV (C _F = 1966 fF)

Integration caps -



Keck-PAD: Microsecond dynamics

Deformation of metal compounds under high strain rates



Husted et al., Journal of Dynamic Behavior of Materials (2018)

Optical video, 1 million FPS

- CHESS G3 with Hufnagel group @ Johns Hopkins & Army Research Office
- Key detector features:
 - Fast frame rate
 - Good single-photon SNR

- MM-PAD architecture successfully extends Dynamic Range
- Proving to be scientifically successful
- The community is starting to reap the benefits of Cornell's MM-PAD development program
- Commercial variants exist and next generation variants are well along in the development pipeline

Thanks!

Slides (mostly) from Julia Thom-Levi, Sol Gruner, Kate Shanks

The Tenth International Workshop on Semiconductor Pixel Detectors for Particles and Imaging

12-16 December 2022 La Fonda Hotel | Santa Fe, New Mexico, USA

TOPICS:

Pixel detectors in nuclear and particle physics, astrophysics, bioscience, and x-ray science, with emphasis on pixel sensor technology and device design, front-end readout electronics, radiation effects on devices, mechanics and integration, calibration, and data processing.

Stipends are available for partial support of students and postdocs attending this conference. For information on how to apply for a stipend: physics.unm.edu/Pixel2022/stipends.php

> Contributed abstracts for talks and posters are welcome. Deadline for abstract submission: September 15, 2022.

Organizing Committee

TO REGISTER, AND FOR MORE INFO: physics.unm.edu/Pixel2022 CONTACT: pixel2022@unm.edu