

Roberto Dinapoli:: Electronics and Photon Science Detector Groups :: Paul Scherrer Institut

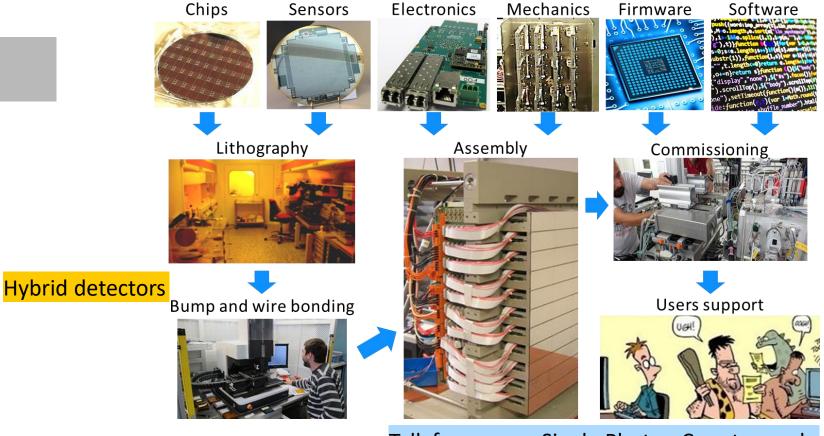
IC design and detector development for Photon Science


PIXEL 2022:: Santa Fe:: 14th December 2022

PAUL SCHERRER INSTITUT

Pixels for Beauty

The Photon Science detector group


- We are a very diverse group bringing together experts from many different fields,~20 people
- Development of hybrid detectors for Photon Science

Chip Design Team Photon Science (PS): R. Dinapoli (NUM) K. Moustakas (PSD) A. Mozzanica (PSD) D. Mezza (PSD)

High energy physics (HEP): B. Meier (NUM) Back: J. Zhang, A. Mozzanica, T. King, D. Mezza, A. Bergamaschi, J. Heymes; *Middle:* E. Fröjdh, C. Lopez, M. Brückner, C. Ruder, B. Schmitt, K. Moustakas, D. Greiffenberg; *Front:* V. Hinger, D. Thattil, R. Dinapoli, S. Hasanaj, M. Carulla, S. Ebner; Missing: R. Barten, P. Kozlowski, F. Baruffaldi

Talk focuses on Single Photon Counters only

What is not going to be covered...

A different challenge: detectors for free electron lasers

- Photons arrive simultaneusly: no SPC possible
- Dynamic range 10⁴ photons with single photon sensitivity at few keV

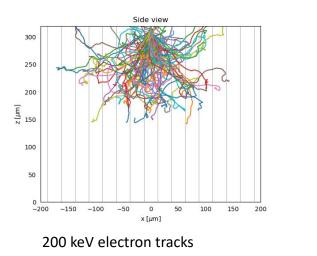
Charge integrating detectors (since 2008)

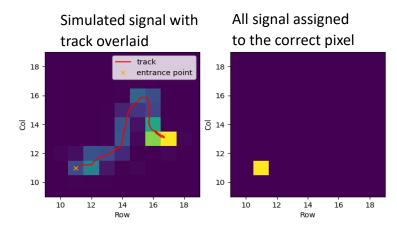
	GOTTHARD ¹	AGIPD ²	JUNGFRAU	MÖNCH
Status	In operation at EuXFEL	At beamline (EUXFEL)	2x 16M at SwissFEL	At beamline
Pixel size	50 μm (Strips)	200 x 200 μm²	75 x 75 μm²	25 x 25 μm²
Maximum system size	Modules (=10 ASICs)	1Mpixel (=16 Modules)	16Mpixel (=32 Modules)	Single Chips (=2x3 cm ²)
Noise (r.m.s.)	<300 e ⁻ ENC	< 322 e ⁻ ENC < 214 e ⁻ ENC (HG)	< 100 e ⁻ ENC (G0) < 35 e ⁻ ENC (HG0)	<35 e ⁻ ENC
Dynamic range	< 1·10 ⁴ x 12.4 keV (3 gain stages)	< 1·10 ⁴ x 12.4 keV (3 gain stages)	< 1 [.] 10 ⁴ x 12.4 keV (3 gain stages)	< 500 x 12.4 keV (2 gain stages)
Maximum frame rate	40 kHz (cont.) 1 MHz (burst)	< 5 MHz (burst*) * 352 frames	2.4 kHz (cont.) < 1 MHz (burst)	6-8 kHz (cont.)

²⁾ Common development with University of Bonn (GER), University of Hamburg (GER) and DESY (GER), ¹⁾ Common development with Desy

Studies on high-Z materials

The «energy challenge», part 2


	Absorption efficiency	Signal stability	Afterglow	Spectral resolution capability	Dark current	Noise	Availability
Silicon	-	++	++	++	+	+	++
CdZnTe High Flux type	++	++	++	+	++	++	
CdZnTe Spectroscopic type	++	+	+	+	++	++	
CdTe e⁻Schottky type	++		ο	ο	+	+	+
CdTe Ohmic tye	++			-	-		+
GaAs:Cr	+	0	0	+		-	+


© CdZnTe seems to be the material of choice at the moment as alternative to silicon to extend the photon energy range

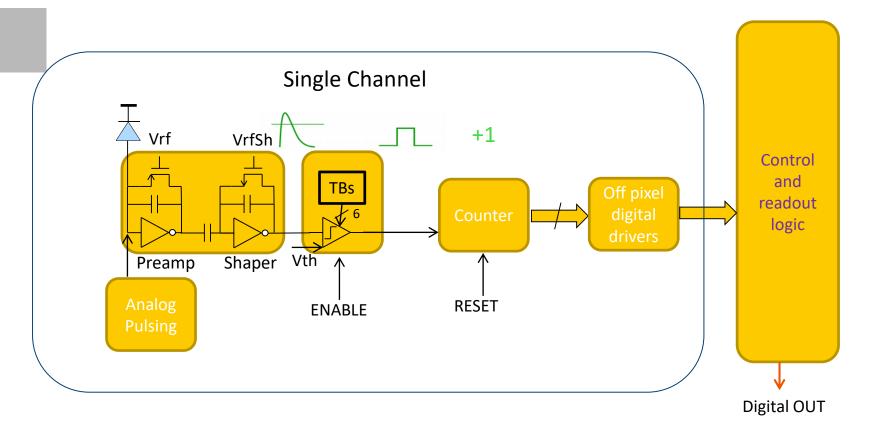
- Still some issues with uniformity and defects
- Sensor yield relatively low (≈40 %)
- ⊗ Biggest problem is the availability of larger sensors (>4×4 cm²)

- Example: Improving spatial resolution in electron microscopy with Mönch and ML
- Postod working on using machine learning to find the entrance point of the electron
- Information encoded in the track by physical processes

Simulated MÖNCH 25µm pixel

Similarities with HEP:

- Detect charge generated by particles entering your detector
- Sensitive to single particles
- Detect all particles impinging on your detector
- Large area detectors
- Harsh conditions, in particular radiation tolerance


Differences with HEP:

- -EASIER
- No timing information required
- Radiation tolerance requirements less stringent: no SEUs,
 SELs or SEFIs
- Much easier access to the detector, no cooldown.
- Area not as big

Differences with HEP: –MORE DIFFICULT • High dynamic range • Energies from 2-3 keV to 20keV

1st generation

Requirements for an ideal X-ray pixel detector

Р

I

L

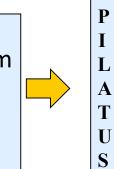
A

Т

U S

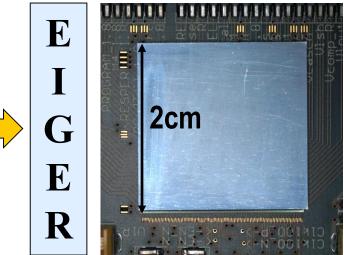
- -Single photon resolution -No spatial distortion
- and response
- Large dynamic range
- -Large area

uniform

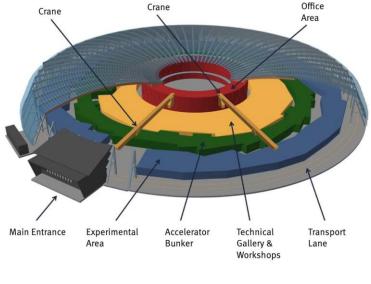


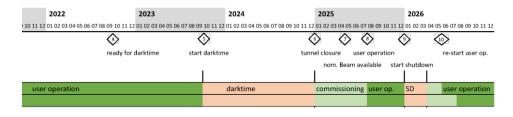
- Differences with HEP:
 - -MORE DIFFICULT
- High dynamic range
- Incoming particle rate >2 orders of magnitude(Mcnts/pixel/s)
- Complete frame readout at:
 - -High frame rates
 - -Negligible dead time
- =>Much higher data throughput (x15)

Requirements for an ideal X-ray pixel detector


- 1st generation
- Single photon resolution
 No spatial distortion and uniform response
- Large dynamic range
- Large area

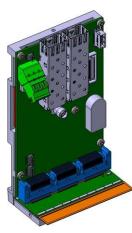
Small pixel size (172x172um²->75x75 µm²) Small dead area


Fast Frame Rate (10Hz->23kHz) Simultaneous exposure and readout Negligible dead time (100ms->3 μ s) High count rate of incoming photons (30 counts/(s* μ m²)-> 200 counts/(s* μ m²)) Low noise at high speed O(150e⁻@150ns τ))

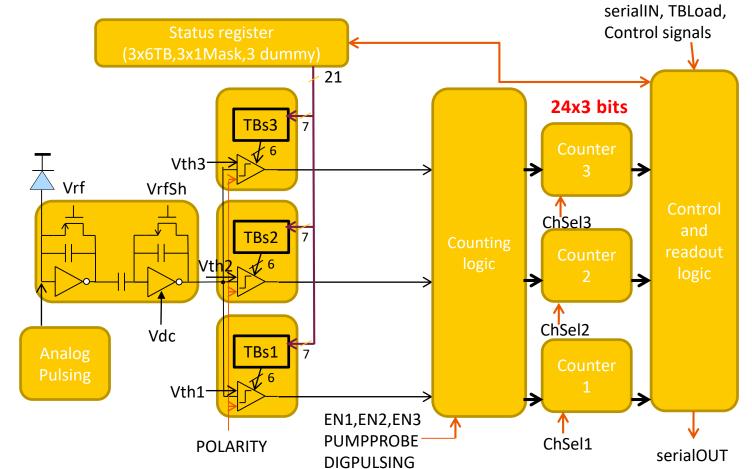


Diffraction limited sources, SLS 2.0 The «speed challenge»

- Depending on beamline ~ 1000x flux
- Dark period form autum 2023
- First light planned 2025 with user operation in later part of the year
- This requires ~20MHz/pix/s
- More flexibility for more applications Can SPCs get there?

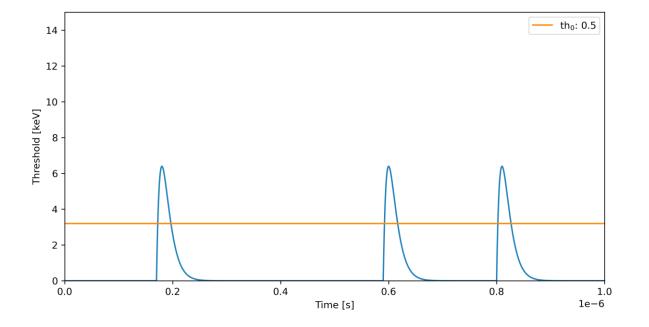


- Hybrid strip detector
- 100/175e- RMS noise (high/standard gain)
- Trimmed threshold dispersion < 6e-
- 300kHz frame rate
 - 8bits, 1 counter
 - limited by RO electronics
- 320um thick silicon sensor
- 50um strips

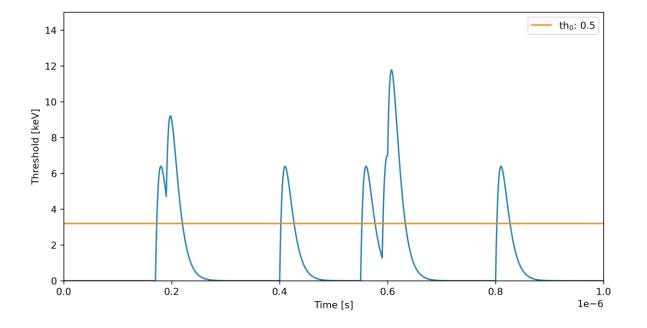


Mythen 3 module

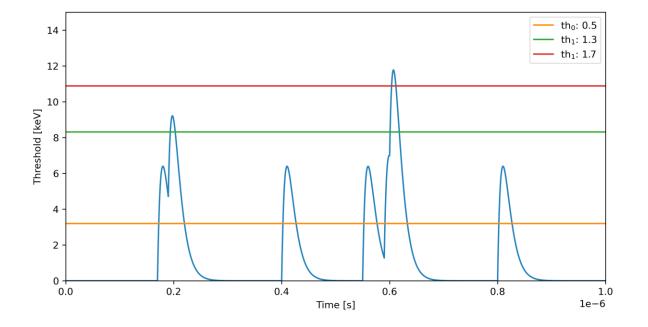
MYTHEN 3, the channel



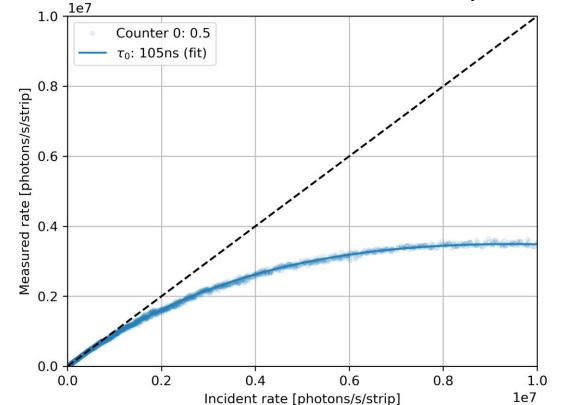
Roberto Dinapoli



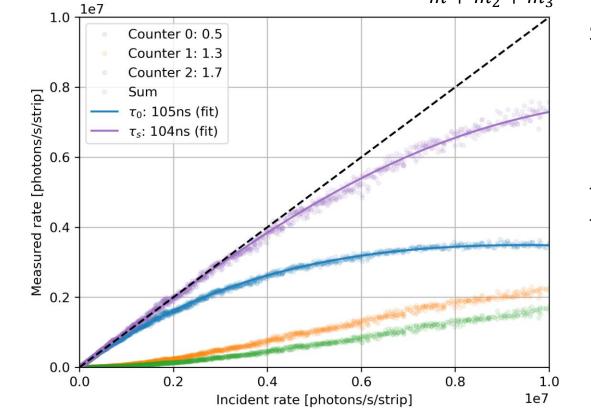
Improving rate capabilities: multithresholding



Improving rate capabilities: multithresholding



Improving rate capabilities: multithresholding



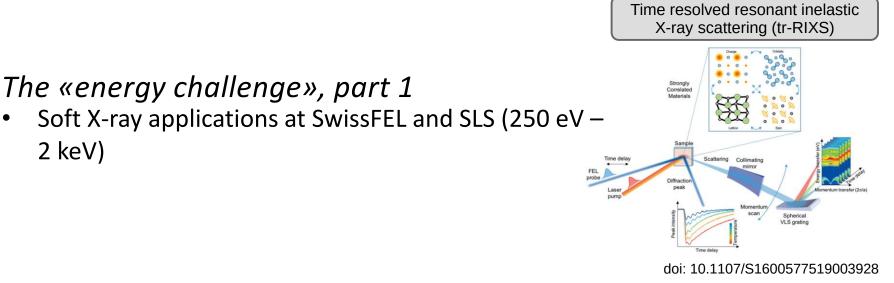
Paralyzable counter model: $m = ne^{-\tau n}$

Settings: standard Energy: 15 keV Noise 175e- RMS

MS beamline@SLS

Extended Paralyzable counter model: $m + m_2 + m_3$

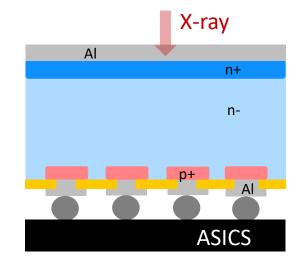
> Settings: standard Energy: 15 keV Noise 175e- RMS


10% lost counts at: th₀: 1.03M th_{sum}: 6 M

MS beamline@SLS

•

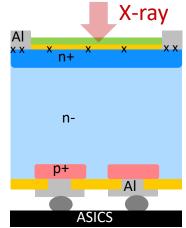
The «energy challenge»

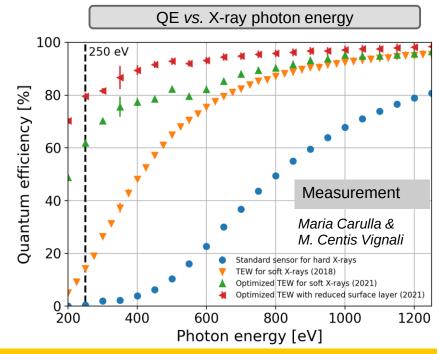

The *«energy challenge»*, part 2

Hard x-ray applications at Synchrotrons, 24-80keV •

Challenges of soft x-ray single photon detection

- Single photon detection of X-ray in the energy range of 250 eV to 2keV:
- Low quantum efficiency (QE): attenuation length of 250 eV photons is ~ 100 nm in silicon.
- Low signal-to-noise ratio (SNR): small signal amplitude (~ 70 e-) with respect to the electronic noise (lowest noise pixel detector @ PSI -> 32 e- r.m.s equivalent noise charge).


Both can be addressed at sensor level!

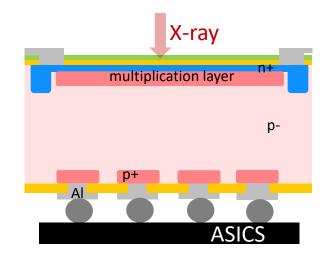


Challenges of soft x-ray single photon detection

- Improve the QE:
 - Reduce thickness of layers above Si
 - Decrease the charge recombination in the silicon/layer interface
 - Reduce the charge recombination in the highly doped implants

Opt. entrance window:

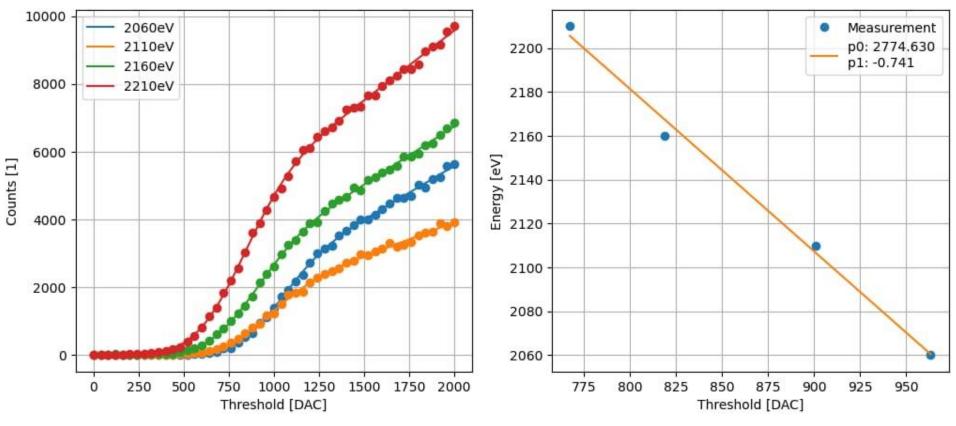
80 % QE for a planar pin diode @250eV



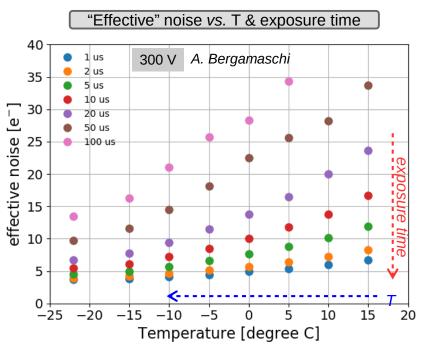
Challenges of soft x-ray single photon detection

• Improving the SNR:

Increase the signal with Low Gain Avalanche Diodes (LGADs) with a multiplication factor 5-20 ->Timing irrelevant for PS


- => iLGAD technology:
 - Entrance window on the multip. layer
 - Fill factor 🙂
 - Gain dependence on the photon energy ${\it columnation}$
 - Leakage current ⊗

iLGADs with EIGER (Preliminary)



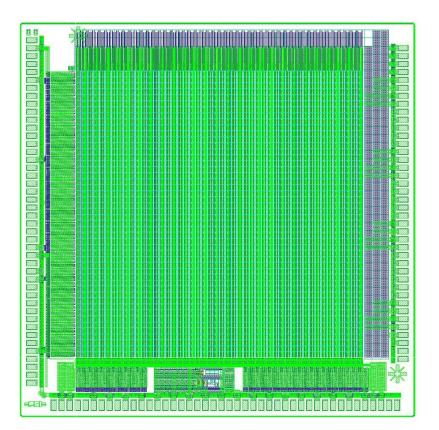
Energy resolution: ~150eV (~40 e-), room for improvement at lower E

iLGAD pixel sensors of 25 um pitch with Moench readout chip: –nominal noise of 35 e⁻ with standard sensor at RT (SNR=5 @ 700 eV) –Various temperatures, RT down to -22 °C to reduce the "effective" noise

down to 3.7 e⁻ at <u>-22 °C</u> with <u>1 μs</u> exposure: SNR > 5 for soft X-rays above 67 eV (134 eV with 2x2 clustering).

"effective" noise =	noise [e ⁻ r.m.s.]
	М

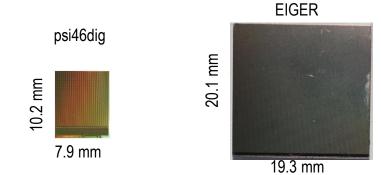
Preview: Matterhorn


- 75x75 um² pixel size
- 4 comparators
- 4x 16 bit counters
- 250 eV- 80 keV dynamic range
- Electron and hole collection
- 160 kHz in 1 bit mode
- <20ns gating speed
- 20 Mcts/pix/sec at 80% efficiency (with pileup tracking)
- *Corner effect mitigation, interpolation (future versions)*

Preview: Matterhorn

- 75x75 um² pixel size
- 4 thresholds
- 4x 16 bit counters
- 250 eV- 80 keV dynamic range
- Electron and hole collection
- 160 kHz in 1 bit mode
- <20ns gating speed
- 20 Mcts/pix/sec at 80% efficiency (with pileup tracking)
- *Corner effect mitigation, interpolation (future versions)*

Prototype submitted last week



- Chip design design at PSI in HEP, precision physics, photon science
- Photon science detector group develops full detectors for synchrotrons and FELs
- Many chips and chip generations were developed for these purposes:
 - \circ SPC for synchrotrons
 - Mythen (strip), Pilatus and Eiger (pixel)
 - \circ CI for FELs
 - Agipd (pixels) and Gotthard for EuXFEL; Jungfrau, Mönch (pixel) for SwissFEL
- Research also in other fields (Electron microscopy, data science, ...)
- Main challanges for new generation detectors:
 - \circ High incoming photon rates of new light sources
 - SPC with fast shaping + multithresholding =>proven in Mythen 3, up to 20MHz/channel
 - Matterhorn development started, first MPW prototype submitted.
 - Expanding the energy range to low (down to 250eV) and high (>80keV) energy
 - First tests with FBK LGADs show 80%QE at 250eV, noise down to 5e-rms
 - Research on High Z materials

PAUL SCHERRER INSTITUT

Chip characteristics: psi46dig and EIGER

Technological process	IBM 0.25 μm Rad tol Design> 250 Mrad	UMC 0.25 µm; Rad tol. Design > 4 Mrad
Pixel array	80 x 52 = 4160 pixels	256 x 256 = 65536 pixels
Pixel size	100 x 150 µm ²	75 x 75 μm²
Count rate	1.2 10 ⁸ hits/cm ² /s	1.8 10 ¹⁰ photons/cm ² /s
Data rate	160 Mb/s	6 Gb/s
Transistors matrix Periphery Transistor density	1.26 M (304/pixel) 575 000 2.2 10 ⁶ /cm ²	28.44 M (430/pixel) 120 000 7.6 10 ⁶ /cm ²

Requirements for an ideal detector

EIGER, designed by PSI-SLS detector group, was optimized to satisfy the main requirements for an ideal detector for synchrotron radiation applications:

Single photons sensitivity and no intrinsic noise • single photon counting detector

Good spatial resolution

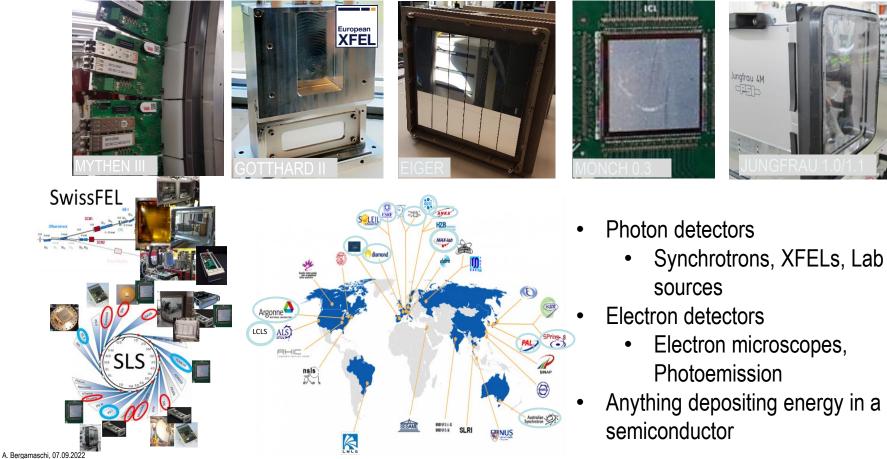
Small pixel size (75x75µm²)

Fast Frame Rate ~tens kHz

- Simultaneous exposure and readout
- Negligible dead time (~ 3μs)
- Frame rate up to 22kHz in 4 bit mode

Detector that can be made as large as possible

- Modular detector system
- Data transfer parallel at half module level
- Projects for ElGER 16M Pixel (~32x32 cm²)

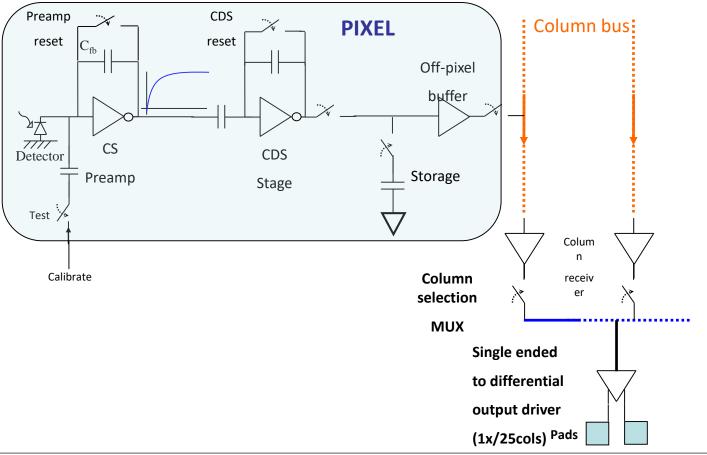

High count rate of incoming photons

Count rates up to 1-2 million counts/pixel/second

No spatial distortion and uniform response • for X-ray energy range few keV to >20 keV

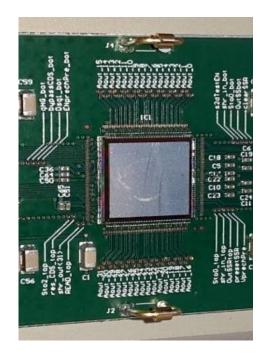
Chip Size	19.3x20.1 mm ²
Pixel Size	75x75 μm²
Pixel Array	256x256 = 65536
Technological process	UMC 0.25µm; Rad tol. Design >4MRad
Sim. Analog Parameters	Gain: 44.6 µV/e- 30ns peaking time Timing: 151ns (Ret.to 0@1%) Noise: 135e-rms Static Power: 8.8µW/pixel(0.6W/chip)
Count Rate	3.4x10 ⁹ xray/mm ² /s
Transistors Matrix Periphery Transistor density	28.44M >120 000 430/pix
Nom. power supplies	1.1V(analog), 2V(digital), 1.8V(I/O)
Counter	binary, configurable 4,8,12bit, double buffered
Readout speed	~22kHz@4bit mode
Threshold adjustment	Yes 6 Trim Bits
Analog out for testing	Yes
Overflow counter	Yes

Detector portfolio



37

PAUL SCHERRER INSTITUT

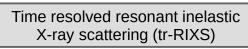

Charge integration with analog readout

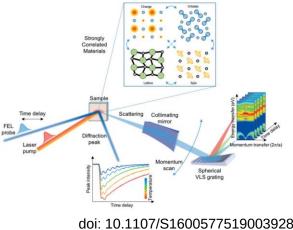
MÖNCH

Micropixel with enhanced pOsition rEsolution usiNg CHarge integration

- •Small pixels 25 x 25 μm^2
- •Low noise
 - -Single photon resolution >700 eV
 - -1.4 keV for clustering
 - -320 eV energy resolution FWHM
- •Large dynamic range
 - -Now static gain, will have switching
- Currently 1x1 cm² prototype available
 - -400x400 = 160 kpixel
- Fast frame rate (> kHz)
 - $-\,currently$ 3 kHz, by design 6 kHz
 - $-\operatorname{Ca.}$ 20 TB/day
- Dead-time free operation possible

M. Ramilli, et al. (2017) J. Instr. 12, C01071.http://dx.doi.org/10.1088/1748-0221/12/01/C01071

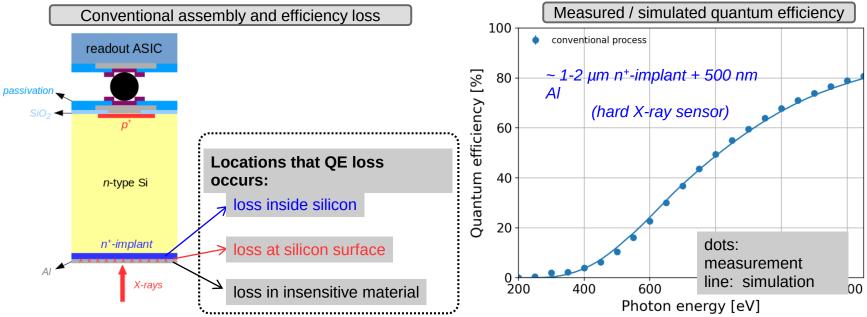

EIGER vs. MATTERHORN


	EIGER	MATTERHORN
Node	0,25 um	110 nm
Pixel size	75 x 75 um ²	75 x 75 um ²
Comparators	1	4
Counter depth	4/8/12 bit	4x16 bit configurable
Energy range	5-25 keV	250eV – 80 keV
Module size	2x4 chips \rightarrow 4x8cm	2x4 chips → 4x8cm
Maximum count rate	1M counts/pixel/s	20M counts/pixel/s
Frame rate	22 kHz	160 kHz
Gating	US	< 20ns

Soft X-ray applications at SwissFEL and SLS *The «energy challenge», part 1*

•Soft X-ray applications at SwissFEL and SLS (250 eV - 2 keV)

- -Access K-edges of biologically important elements
- •e.g. water window 250-520 eV
- -L-edges of 3d transition metals, Fe, Cu, etc.
- -Possible applications:
- •RIXS at FELs and synchrotrons
- –Single photon detection necessary and interpolation desirable
- Contrast enhanced imaging:
- -soft X-ray diffraction
- -ptychography
- -absorption spectroscopy



Quantum efficiency limit

•Soft X-rays (~ a few hundred eV) absorbed in the first micron of silicon sensor

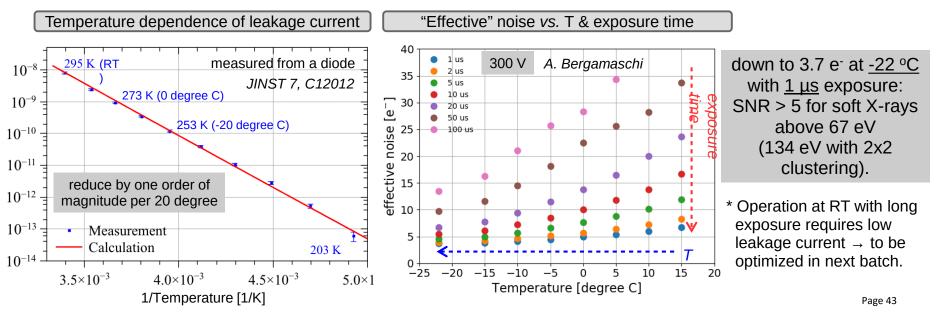
–For conventional process, e.g. p^+ -*n* sensor: n^+ -implant depth ≈ 1 -2 micron + aluminum

•Significant efficiency loss for X-rays below 1.2 keV \rightarrow not usable for soft X-rays! (< 50% below 800 eV)

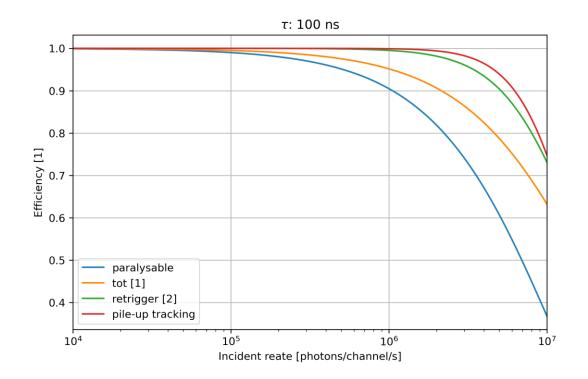
•For soft X-ray detection, it is necessary to develop a thin entrance window process to improve the quantum efficiency (QE) and the charge collection efficiency (CCE)

iLGAD with MOENCH

noise [e⁻ r.m.s.


М

"effective" noise =


•Effect of the shot noise:

-Shot noise: $i_{shot}^2 \sim \frac{2(I_{leakage} + I_{ph})M^2F}{a_0}$, *M* – multiplication factor, *F* – excess noise factor

- -Leakage current is sensitive to the temperature (T), reducing T and exposure helps with the noise
- •iLGAD pixel sensors of 25 um pitch with Moench readout chip:
- -nominal noise of 35 e⁻ with standard sensor at RT (SNR=5 @ 700 eV)
- -Various temperatures, RT down to -22 °C to reduce the "effective" noise

Comparing deadtime models

[1] A. Bergamaschi et. al. Time-over-threshold readout to enhance the high flux capabilities of single-photon-counting detectors J. Synchrotron Rad. 18, 923-929. 2011

[2] P. Zambon, Dead time model for X-ray photon counting detectors with retrigger capability, NIMA 2021

Counting pile-up

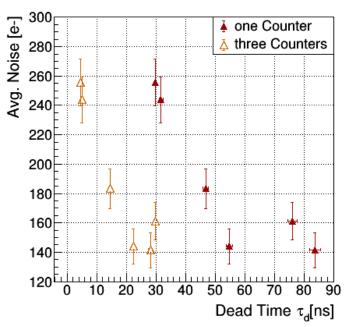
- Paralyzable counter: $m = ne^{-\tau n}$
- Probablility of two and three events pile-up:

•
$$p_2 = e^{-\tau n} (1 - e^{-\tau n})$$

• $p_3 = e^{-\tau n} (1 - e^{-\tau n})^2$

• $m_s = m + m_2 + m_3$

For characterization:


- Fit first counter with the paralyzable model
- Fit sum of counter 1,2 and 3 with the pile-up model

Glenn F. Knoll, Radiation Detector and Measurement 4th Edition, Wiley

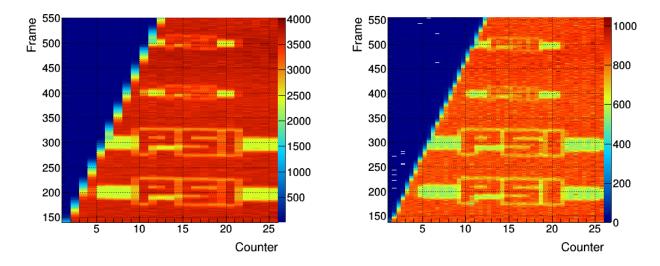
M. Andrae The MYTHEN III Detector System - A single photon-counting microstrip detector for powder diffraction experiments ETHZ Doctoral Thesis

Rate Capability: Pile-up tracking with 3 counters

- Determine dead time and noise

 If gain ↑ : noise ↓ and dead time ↑
- Calculate rate per strip at 90% efficiency: $-\epsilon_{sum} = \epsilon_1 + \epsilon_2 + \epsilon_3$

settings	1 counter	3 counters
Slow	1.3 MHz	7.4 MHz
Medium	1.4 MHz	8.2 MHz
Fast	3.5 MHz	20.9 MHz


Minimum achievable noise: 110 e- rms (not shown)

15th Pisa Meeting

Interpolation: PSI logo

- Direct beam of X-ray tube with W-anode
- Threshold at 5 keV, 5 μm steps in vertical
- 2 μm Gold on 300 μm Silicon
- Large logo: 1064 μm x 274 μm , small logo: 532 μm x 137 μm
- ightarrow Interpolation mode shows many more details