CITIUS: a 17400 frames/s x-ray imaging detector

Takaki Hatsui *on behalf of CITIUS collaboration* RIKEN SPring-8 Center

Dec.13th, 2022 PIXEL 2022

Outline

- 1. Our motivation for the development and performance objectives
- 2. Project History
- **3. Demonstrated Performance**
- 4. Summary

2

New SR facility

NanoTerasu (2023-) 3 GeV, 349 m

Copyright. Geospatial Information Authority of Japar

SPring 8

SACLA

8 GeV SR · XFEL

 XFEL, SACLA (Since 2012-)
 SR, SPring-8 (Since 1997-)

 8 GeV 700 m long
 8 GeV

8 GeV circumference 1.5 km

Copyright. Geospatial Information Authority of Japar

SPring 8

SACLA

H. Yumoto, Nature Communications volume 13, Article number: 5300 (2022)

Scientific Needs: Summary

Higher Count Rate

beyond 1-10 Mcps/pixel

Faster Recording

 with good S/N for each frame

Architecture [1]

Integrating Pixel & High Frame Rate

[1] SPring-8 II CDR (2014)

CITIUS: Project History

8

Research to Development

Technology Choice (1/2)

Fully exploit the CMOS image sensor process/circuitries

Chip level

On-chip ADC

- benchmark on performance/power dissipation
 - for all the available technologies at the time of 2014

Vertical Signal Lines

- Massively parallel

SPring-8 II CDR with updated values
 T. Hatsui, presented at iWorid (June. 2014)

Technology Choice (2/2)

Fully exploit the CMOS image sensor process/circuitries

Pixel

Sensor material

- focus on silicon

Radiation Hard pixel

- photon energies mainly >8 keV
- X-rays penetrate through silicon sensors
- TID hardness > 1 MGy

Multi-gain Pixel Circuitry without switching

- robust calibration by FPGAs
- 3T-type circuits without charge amplifiers
 - similar to LOFIC invented by Prof. Sugawa
 - x2 or x3 digitization needed
- Low input capacitance with SF
 - Low power consumption

Radiation Hard Pixels

T. Kudo, et.al., IEEE Trans. on Nuclear Science, 2014 pp. 1444.

Wafers on a dedicated semiautomatic probe station were irradiated by X-rays.

> 10,000 transistors were evaluated.

SPring.

SACLA

Development

SPring 8

SACLA

First Image of a dried fish at 17.4 kfps 1 k frames were accumulated

Rotating X-ray Generator: Target Element of Mo, 30 kV 65 mA Total exposure time: 55 ms

Integration

CITIUS detector

Architecture [1-3]

Integrating Pixel & High Frame Rate

Feature					
High Dynamic	Ultralow	Spectro-	High Spatial	Single Photon	
Range	Systematic Error	Imaging	Resolution	Sensitivity	

Experimentally Verified Performance

Parameters		Value			
Sensor	Thickness	Si 65	0 μm		
	Pixel Size	72.6 μm			
	Pixel Number	0.28 Mpixel/sensor			
	Noise	0.027 phs.@8 keV (60 e⁻)			
		SR variant	XFEL variant		
	Peak Signal	1,800 phs. @ 12 keV (6 Me-)	17,000 phs.@ 6 keV (28 Me-)		
	Frame Rate	17.4 kfps	5 kHz		
	Sat. Count Rate @12 keV	30 or 600 Mcps	-		
	Pixel Readout Rate	4.87 Gpixels/s	1.4 Gpixels/s		

[1] SPring-8 II CDR (2014) with updated values.[2] T. Hatsui, presented at iWorid (June. 2014).[3] T. Hatsui, AOSFRR (Nov. 2015)

CITIUS Project

Nov. 2014. SPring-8-II Conceptual Design Report

38 Mcps/pixel with 70 μ m \Box pixel

20.88 kfps max 1840 photons/frame

2022 CITIUS: demonstrated performance

945 Mcps/pixel with 72.6 μ m \Box pixel

17.4 kfps max 1840 photons/frame

SPring-8 revolving frequency: 208.8 kHz

Demonstrated Performance

Primary Performance

BL29XU EH3 in July 2021 XPCS @ 17.4 kfps

Dec.13th, 2022 PIXEL 2022

40 Mcps/pixel at 8 keV.

CITIUS Pixel Number: 280 kpixels Frame rate: 17.4 kframes/s Frame Cycle: 57.5 µs

Sample: Silica (100 nmφ, 28.8 wt%) in MEK + PEI + MeOH (66.8, 3.9, 0.5 wt%) in 0.5mm capillary

Count Rate (1/2)

Photon Energy: 10keV Slit to CITIUS: 15m

Slit Size: $20 \times 20 \mu m$

SPring.8

SACLA

Count Rate (2/2)

Dec.13th, 2022 PIXEL 2022

Tandem CITIUS for SPring-8 new SWAXS beamline in collabo. with H. Sekiguchi et.al.,

Upstream WAXS detector 2.8 Mpixels

Downstream SAXS detector 2.2 Mpixels

to be integrated in 2023

22

Feasibility Study of CITIUS for ptychography K. Oza

Nov. 2022 Feasibility study Dec . 2022 first science experiments

K. Ozaki, Y. Honjo, T.N. Hiraki et.al., Y. Takahashi Group (Tohoku Univ.)

840k

SPring.

CITIUS detector for synchrotron radiation

Spectro-Imaging

with Laboratory X-ray sources

K. Ozaki, Y. Honjo, et.al.,

Ti. Fe. Ni. Fe Cu. Au

projected by capillary optics Characters made of Ti, Fe, Ni, and Au elements

Dec.13th, 2022 PIXEL 2022

X-ray Beam Monitor for SPring-8-II

K. Ozaki, T. Kudo, S. Takahashi, M. Sano, T. Itoga, et.al.,

Accelerator feedback with electron monitors

- not enough

X-ray Intensity Image

Undulator beam is hidden by the bending X-rays

Dec.13th, 2022 PIXEL 2022

Beam Position Trends

sub-second feedback by using this monitor to the accelerator system is feasible

note: every second, we get 17.4 kframes.

X-ray Fluorescence Yield Detector for XAFS

Upgrade of SDD and/or Photon Counting Detector

Spectro-Imaging Mode

- Max. 3.2 Gcps/system @ 2.2 Mpixels
- 8 sensors
- weight < 10 kg
- 280 k x 8 module may be another option

CITIUS detector

[1] SPring-8 II CDR (2014) with updated values.

[2] T. Hatsui, presented at iWorid (June. 2014).[3] T. Hatsui, AOSFRR (Nov. 2015)

Architecture [1-3]

Integrating Pixel & High Frame Rate

Feature					
High Dynamic	Ultralow	Spectro-	High Spatial	Single Photon	
Range	Systematic Error	Imaging	Resolution	Sensitivity	

Experimentally Verified Performance

Parameters		Value		
	Thickness	Si 650 μm		
	Pixel Size	72.6 μm		
	Pixel Number	0.28 Mpixel/sensor		
	Noise	0.027 phs.@8 keV (60 e ⁻)		
Sensor		SR variant	XFEL variant	
	Peak Signal	1,800 phs. @ 12 keV (6 Me-)	17,000 phs.@ 6 keV (28 Me-)	
	Frame Rate	17.4 kfps	5 kHz	
	Sat. Count Rate @12 keV	30 or 600 Mcps	-	
	Pixel Readout Rate	4.87 Gpixels/s	1.4 Gpixels/s	

Dec.13th, 2022 PIXEL 2022

30

20.2M Large Area Detector

To be integrated to SACLA in 2023

- 20.2 Mpixel @ 60 frames/s
 - 72 sensors

Development for SPring-8 MX beamline under discussion

- 20.2 Mpixel @ 17.4 kfps

20.2 M: Sensor Sub System

Each Sensor Sub System can be tested and calibrated.

2.52 Mpixels

Spare Units in case of damage

Optimized for SACLA operation

Summary

SPring. 8

Motivation, Development History

Architecture: Integrating pixels & High Frame rate

- High Count rate: 945 Mcps/pixel (18 Tcps/cm²)
- Faster Recording: 17.4 kframes/s for full frame readout of 280k pixels
- Spectro-imaging: 242 eV FWHM @ 5.9 keV

Detector variants from 280 kpixels to 20.2 Mpixels

Issues not covered in this talk: Data

- 20.2 Mpixels at 17.4 kframes/s produces 6 EB/year
- SPring-8 Data Center Initiative, a hybrid of
 - FPGA-accelerated Edge computing
 - On-Site supercomputing
 - Cloud supercomputing

Acknowledgment

RIKEN and JASRI Team

K. Ozaki, Y. Honjo, H. Nishino, K. Kobayashi, K. Nakajima, T. Hiraki, Y. Joti, T. Kudo, T. Sugimoto, M. Yamaga, T. Kameshima, Y. Inagaki, K. Fujiwara, T. Nakagawa, Y. Oyaki, M. Kimoto, M. Nakamachi, M. Yabashi, T. Ishikawa

RIKEN R-CCS

- S. Matsuoka, K. Sato, K. Sano, F, Shoji and their division members

Private Companies

- Sony Semiconductor Solutions
- GLORY System Create Ltd
- Nihon Gijyutu Center
- Meisei Electric Co. Ltd.
- JEPICO Corporation
- Tokyo Electron Device Limited

SPARE SLIDES

Now, CITIUS detectors are ramping up.

Any obstacle foreseen?

Data Size Estimation (1/2)

280k pixels 17.4 kframes/s

about 1 kg

Dec.13th, 2022 PIXEL 2022

Data Size Estimation (2/2)

FPGA-based Data Processing on-the-fly

K. Ozaki, H. Nishino, et.al.,

Data-Framing Board

- support 130 Gbps data/board
 Functions
- Calibration
- Preprocessing for compression
 - compression ratio of >1000 was obtained for some experiments.
- Selection of the meaningful frames
- Accumulation
- Photon-Energy Window

SPring-8 Data Center Initiative

Y. Joti, T. N. Hiraki et.al.,

Edge Computing

FPGA acceleration

On-Site

Supercomputer under construction

10 PB storage

5 kcore CPUs

Off-site

Fugaku (7.6 Mcore, 540 Pflops)

HPCI supercomputers

Public Cloud (Amazon etc.)