

Pixel'22 in Brief

- We've been through 5 exciting (exhausting) days
 - 17 sessions & poster session
 - $20 + 23 + 7 + 21 + 7 = 70 \pm 5$ talks
 - 16 posters
 - Dealing with various aspects of pixel detectors
 - Sometimes loooong pixels called strips
 - Focussing on HEP
 - Operational, in construction, future
 - Not forgetting applications
 - Medicine, space, material science...
- Impossible to pay tribute to every single one...
 - Have to adopt a statistical mechanics approach
 - My sincere apologies to those not mentioned explicitly

Structure of the Talk

- Pixels started in the 80's
- 1st Pixel Workshop Genova 2000
- 10th Pixel Santa Fe 2022
 - There seems to be a natural time constant of 22 ± 2 y
- We enjoy exciting times at the second tick of this clock, the HL-LHC is about to start
- What do we need to do to make
 - 20th Pixel in 2044 (FCC-ee started ?)
 - 30th Pixel in 2066 (FCC-hh about to start ??) as exciting as the 10th ?
- I'll (of course) focus on the latter in my Outlook

Part I: Summary

Historical Prelude

Pixels from the 80's

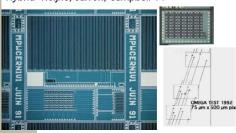


Fig. 3. Photograph of a partly assembled ladder. The 3 up CCDs have been mounted on the ceramic mother card. ladder would be completed by mounting 2 further CCDs

Gaalema Hybrid SLAC-SSC Shapiro et al.

Hybrid Heijne, Jarron, Campbell ++

HR-Si Snoeys et al. 1991

1982 CCD RAL/CERN EP

Chris Damerell & Steve Watts: CCD in NA32 (1985), then SLAC SLD (1989) -see next slide

1984 IR-MOS Hybrid SLAC/SSC

IEEE-Nucl.Science Symposium, Orlando: Steve Gaalema (Hughes Aircraft) shows hybrid assembly of IR matrix or Ge matrix with bumped CMOS 3T circuit in each pixel with low noise and random-access

Steve Gaalema. IEEE NS-32(1985) 417-418 S. Shapiro et al., Nucl.Instr.Meth. A275(1989)580-586 40 000 pixels of 50µm

1987 Si-CMOS Hybrid/Mono-SOI CERN EF LAA /RD19

Erik Heijne, Pierre Jarron, Michael Campbell full signal processing circuitry support by François Krummenacher, Christian Enz EPFL & Swiss Nat Fund hybrid assembly of Si + 3μ m SACMOS, 9x12 pixels, 200μ m $x200\mu$ m -see later

1989 Monolithic Hp-Si SLAC/LBL

Sherwood Parker, Walter Snoeys, Chris Kenney 7T circuit in pixel

W. Snoeys et al., Nucl.Instr.Meth. A326(1993)144-140 W. Snoeys et al., IEEE ED-41(1994) 903-911

Silicon Micropattern Detector

tentative characteristics E. HEIJNE

LONDON CONT. 1967

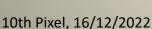
- 2-dimensional array of detecting elements

iust 35 years ago

- granularity of 20-100 um
- no insensitive regions between segments
- in situ signal processing, giving digital output BINARY OR zero suppression, local ADC DIGITAL
- memory function until external trigger/clear
- hierarchical information structure using mosaic of devices
- recognition of useful data (patterns)
- active area per device > 100 mm²

1m2 = 104 devices

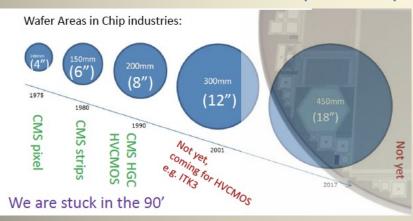
- boundary conditions in: power dissipation < .1 W/cm²

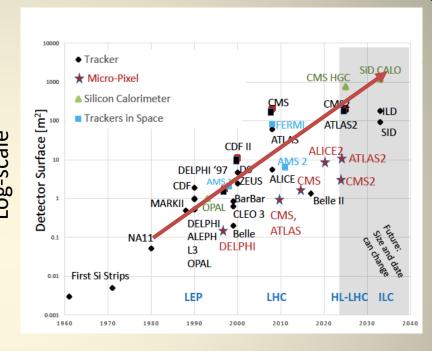

radiation tolerance 107 rad

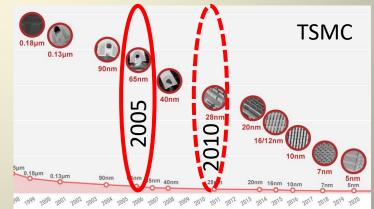
1014 neutrons

Nim A 273 (1988) 615

Wishlist in 1987

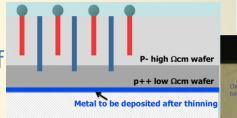

 \bigcirc


Dreams Come True



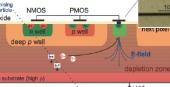
Hartmanr

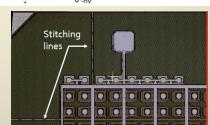
- Position sensitive silicon detectors in HEP
 - Moore's law
 - Doubling in 4 years
 - For strips and pixels
- Not exactly technology drivers
 - Just made it to the '90s in sensor wafers
 - In 2005 for CMOS (->2010)

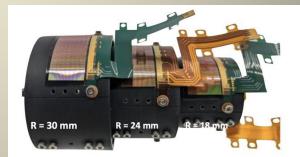


Beyond the Dream

LGAD


- 4-D tracking
 - 4th D: timing (<50 ps)
 - LGAD's, trench (@column?) 3-D...
 - Timing layers (LGAD) in Phase2 (ATLAS, CMS)
- 3-D sensors have made it!
 - From ATLAS IBL to inner pixel layers of Phase 2 in ATLAS & CMS
 - Yield under control (done deal ?)
- From hybrid to monolithic e.g. 50-60 µm (for RD50)
 - The future of tracking
 - (Too?) Many approaches
 - No application in Phase2
 - Reticle stitching allow wafer size detectors
 - Thinning allows bending (ITS3)
 - Run5 upgrades are theirs!




Handle wafer to be thinned down

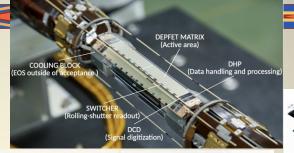
column

Monolith

In fact 5-D: energy

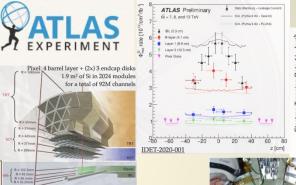
10th Pixel, 16/12/2022

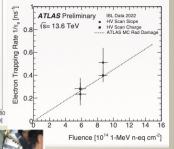
Marko Mikuž



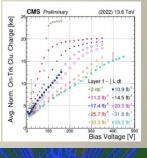
Current Pixel Systems

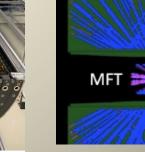
- Belle II, ATLAS, CMS, ALICE
 - Wildly different requirements and realizations
 - DEPFET (incomplete, 2023)
 - 3D, planar hybrid (LSO, LS1)
 - Planar hybrid (LS1, LS2)
 - MAPS (LS2)
 - Common
 - They all perform!



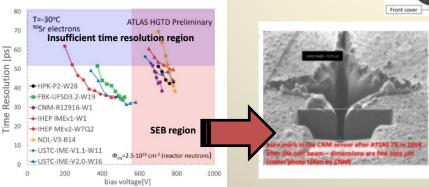


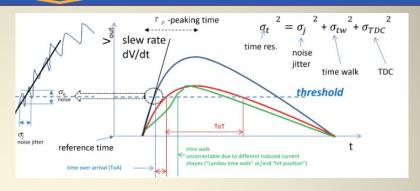
2023

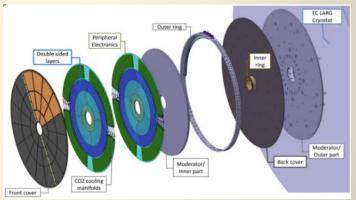


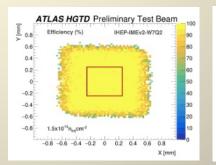

Outer Barrel Half Barrel

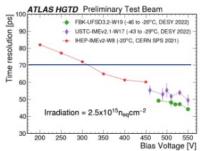
Inner Barrel Half Barrel



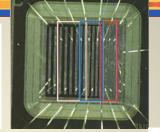


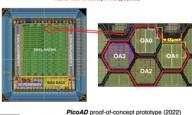

Precision timing



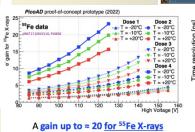

- Goal <50(30)ps
 - Ultimate: 5ps FCC-hh
- Progress on all contributions
 - Sensor and electronics
- 50 ps timing resolution achieved on large scale
 - ATLAS HGTD
 - C-enriched LGAD
 - up to $2.5 \times 10^{15} \, n_{eq}/cm^2$

Precision timing (cont.)

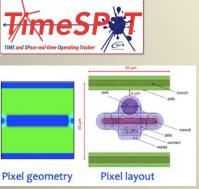

LGAD flavours

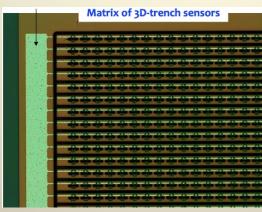


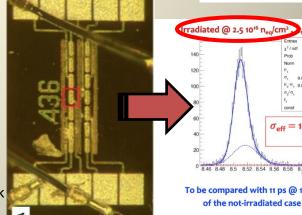
true 4-D -> ATAR, EPIC

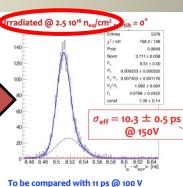


charge collection




PicoAD Proof-Of-Concept Prototype (2021)

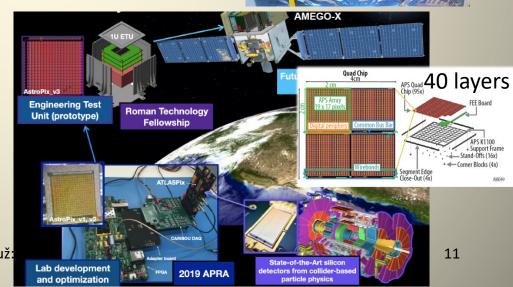




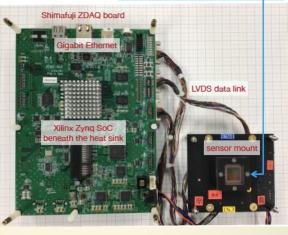
3D trench

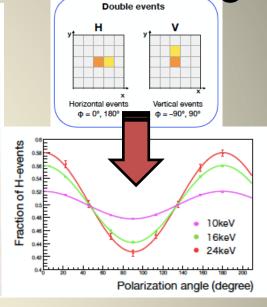
Marko Mikuž: Summary & Outlook

Space, Astronomy, Dark Matter


- **Neutrinos LArPix**
 - LAr TPC
 - Cryo, huge

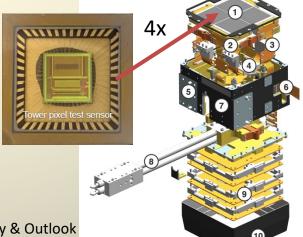
- - Adaptation of ATLASPix for space
 - HEP→ astronomy
 - AstroPix v1, 2, 3
 - AMEGO-X mission





Space, Astronomy (cont.)

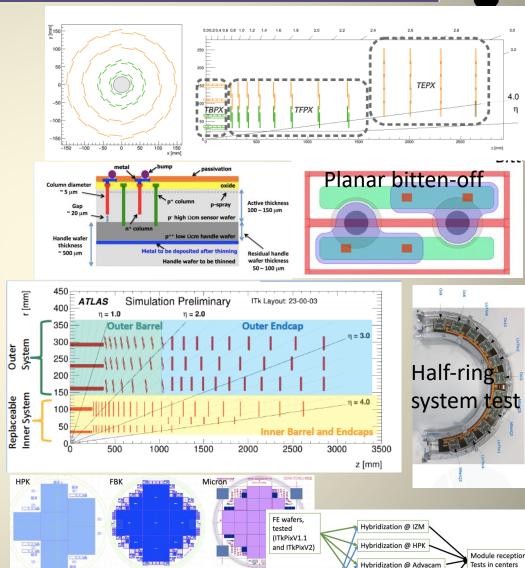
- X-ray polarimeter
 - GigaPixel
 - 5k x 5k pixels
 - Up to 15 % modulation


GPixel GMAX0505 (RF) series pixel size: 2.5 um pixel number: 25 million = 5k x 5k area:12.8 x 12.8 mm²

ULTRASAT SKYLIGHT TO SPACE

- UV-astronomy
 - Tower 180nm MAPS stiched to 4.5x4.5 cm² active area
 - 4 MAPS -> 90Mpixel camera
 - Ready for launch in 2025

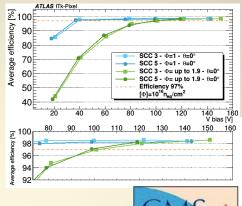
- 1 Sensors
- 2 Mosaic assembly
- 3 Rigid-flex sensor cable
- (4) Thermal straps
- 5 Spider interface
- 6 Cable towards satellite
- 7 Frame
- (8) Heat pipe system
- 9 Power supply boards
- 10 Housing


Pixel System Upgrades – Run4

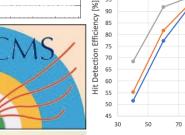
Marko Mikuž: Summary & Outlook

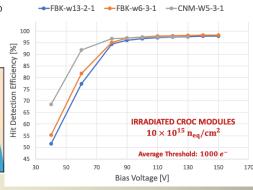
CMS Phase II

- 4.9 m², 3900 modules
- 3D inner layer, 150 μ m
 - thermal constraint
- The rest 150 μ m planar
- All cells 25x100 μ m²
- ATLAS ITk Phase II
 - 13 m², 9400 modules
 - 3D layer L0, 150 μ m
 - The rest 150 μ m planar
 - 100 μm in L1
 - Cells $50x50 \mu m^2$
 - Except 3D L0 25x100 μm²

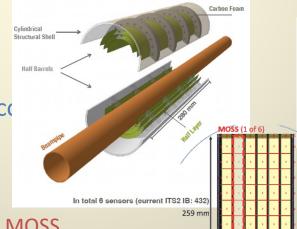

Preproduction

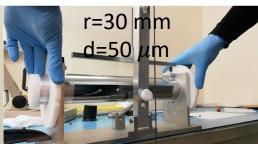
sensor wafers 3D, 100 um, 150 um (5s), 150 um (6s)




Pixel System Upgrades (cont.)

- ATLAS & CMS 3D modules
 - FBK 3D sensors
 - ITkPixV1.1 or CROC
 - Irradiated to 1-2x10¹⁶ n_{eg}/cm²
 - Need 90-120 V for ~full efficiency
 - Comfortable operation window before (soft) breakdown




ALICE ITS3

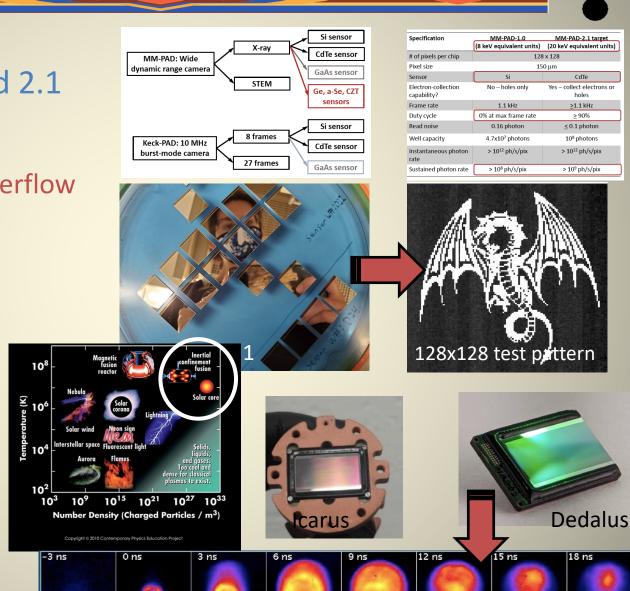
- 3-layer cylindrical
- 50 μ m thick Si
- self-supporting, air $0.05\% X_0$
- MAPS in 65 nm
- Wafer-scale stitching
 - MOnolithic Stitched Sensor MOSS

ITS3, Even closer, thinner, better:

- 18 mm from IP
- <0.05% x/X₀ per layer, Inner Barrel
- pixel size ~ O(20x20) µm²
- -> Replace 3 innermost layers with wafer-size, truly cylindrical layers

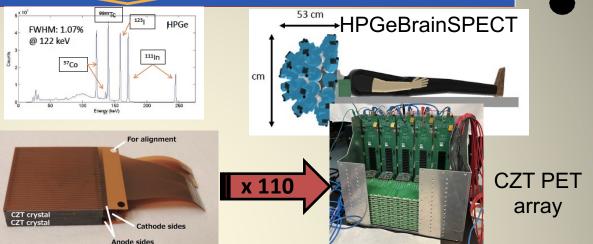
10th Pixel, 16/12/2022

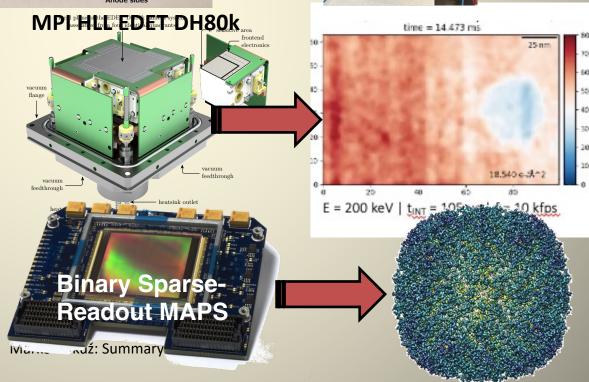
Marko Mikuž: Summary & Outlook



X-ray Detectors

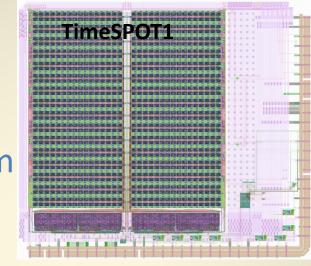
Cornell

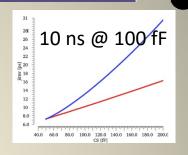

- MM-PAD 1.0 and 2.1
 - Integrating
 - Dynamic range extension by overflow counting
 - Hybrid: Si, CdTe
- Ultra-fast
 - X-ray "movies"
 - HDEP e.g. ICF
 - Icarus, Dedalus
 - Hybrid
 - ns shutters



Imaging (Medical, IR, DE)

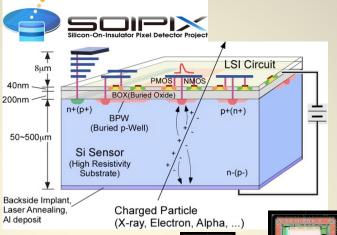
- Ge and CZT hybrid for SPECT/PET
 - DSSD
 - Scaled up assemblies

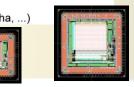

- DEPFET/MAPS monolithic for direct electron at SEM
 - Fast, precize and large
 - TEM movies (DEPFET)
 - sparsification and electron counting (MAPS)



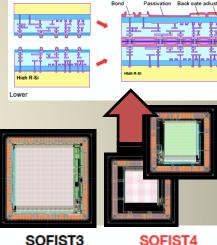
Pixel Electronics

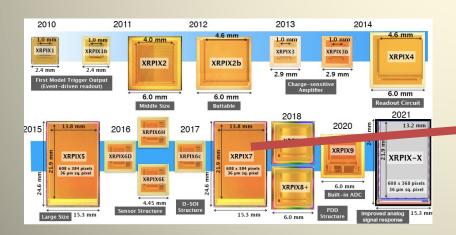
- 1st HEP ASIC in 28 nm
- 4D tracking





SOI


- Strong Japanese community
 - ILC SOFIST
 - X-ray Astronomy
 - Compton Camera

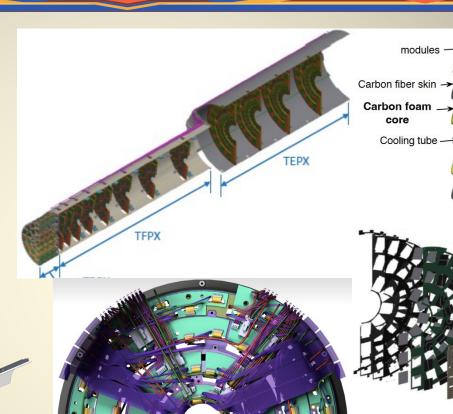

GFAG detector (absorber)

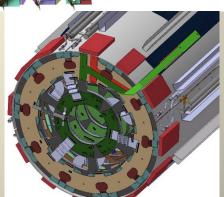
30 20 10 0 -10 -20 -30 -20 -10 0 10 20 30

x [mm]

Full function

(20x20 µm² pixel)

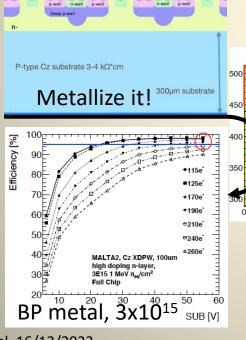

Mechanics and Integration

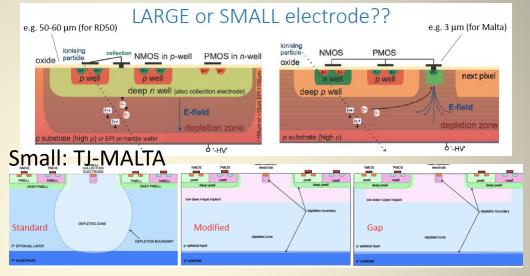


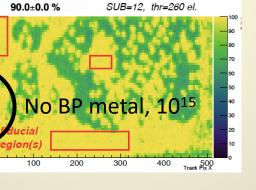
- Vital part of HEP experiment
- Contradicting requirements

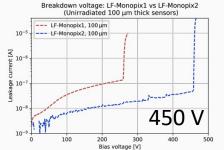
Power-Cooling

- Precision-Mass






CMOS Detectors

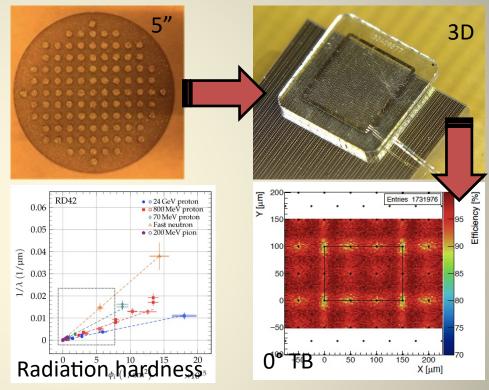

- The future is theirs!
 - Small vs. large electrode
 - Can small be radhard enough?

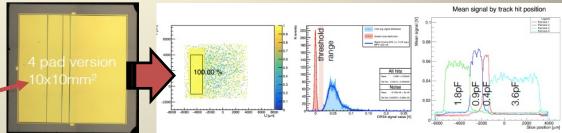
PW PW NW PW NW PW NISO PSUB 1 Cpw NISO PSUB 1

Large: LF-Monopix

Marko Mikuž: Summary & Outlook

P-substrate


Beyond Silicon - Diamond



3D pixel (RD42)

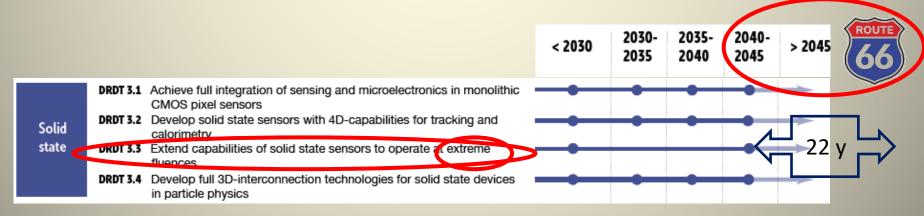
- Laser drilling of pCVD
- 100x150, 50x50 μ m²
- PSI46dig2 chip
- 99.7% efficiency @70% CCE(@0°!)
- Production up-scaling ??
- Radiation hardness summary published
- BCM' (ATLAS ITk)
 - Planar pads 1-50 mm2 on 10x10 pCVD
 - Protection and lumi
 - Calypso asynchronous R/O

To be installed in inner pixel in 2025

Part II: Outlook

Future (Global) HEP Projects

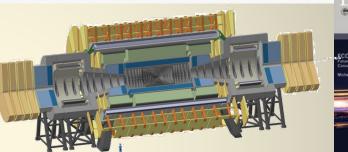
- The 2020 European Strategy for Particle Physics establishes two project initiatives as high-priority
 - "the highest-priority next collider": "an electron-positron Higgs factory"
 - for the longer term: "a proton-proton collider at the highest achievable energy", dubbed as the FCC-hh project.
- End of 2021 the ECFA Detector R&D Roadmap was approved by the CERN Council
 - Long term HEP Detector R&D goals defined
 - Implementation strategy in terms of Detector R&D Collaborations (DRDC) worked out, starting in 2024
- Development cycle towards the use of a new technology in detectors spans over 10 to 20 years.
 - prospective detector R&D ("Blue Sky" research) TRL 1
 - guided detector R&D, according to known needs of future projects – TRL 2-5
 - focussed detector R&D of approved experiments TRL
 5-7



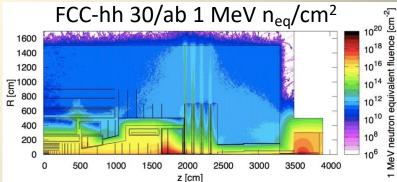
What's in for Pixels?

- No doubt we're Solid State...
- We've heard a lot of the 3 out of 4 DRDT's
 - Monolithic CMOS
 - Precision timing -> 4D tracking
 - 3D interconnects
- Nothing on extreme fluences (DRDT 3.3)
- ... so let me try to make up for this!

Extreme?



What is extreme?


extreme (ik'stri:m)

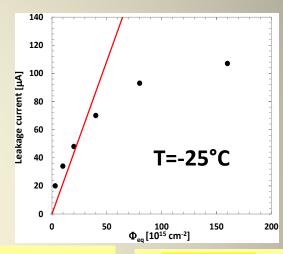
adi

- 1. being of a high or of the highest degree or intensity: extreme cold; extreme difficulty.
- 2. exceeding what is usual or reasonable; immoderate: extreme behaviour.
- A rather subjective measure
 - for LHC 10¹⁵ n_{eq}/cm² was considered extreme
 - design was 730/fb @14TeV...
 - HL-LHC takes it to nx10¹⁶ (vertex) or even 10¹⁷ (FW calo)
 - 4000/fb @14TeV
 - FCC-hh is specifying towards 10¹⁸ for the tracker (FCC-hh CDR)
 - 30/ab @100TeV
 - 300 MGy TID in addition (not addressed)
 - Ratio 1:20:600 !
 - well, you *need* ~7²≈50 in HL/FCC lumi...
- What is the limit of tracking sensors?
 - TRIGA, NPP and ITER are $10^{21} \leftrightarrow 10^{24}$

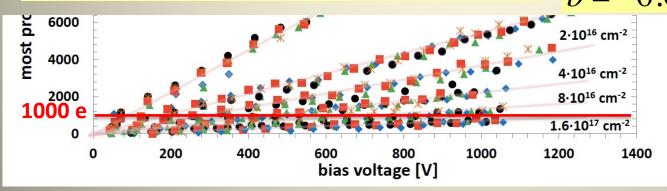
First tracking layer:

- 10 GHz/cm² charged particles
- 10¹⁸ hadrons/cm² for 30/ab

Expectations for $10^{17} \, n_{eq}/cm^2$


- For a ~yearly replacement of FCC-hh inner tracker!
 - Or a 2-stage operation 5->30/ab
- Linear extrapolation from low fluence data
 - Current: $I_{leak} = 4 \text{ A/cm}^3 @20^{\circ}\text{C}$
 - 2 mA/cm² (2W @ 1 kV) for 300 μm thick detector @ -20°C
 - Depletion: $N_{eff} \approx 1.5 \times 10^{15}$ cm⁻³
 - FDV ≈ 100 kV
 - − Trapping $\tau_{eff} \approx 1/40$ ns = 25 ps
 - $Q \approx Q_0/d v_{sat} \tau_{eff} \approx 80 \text{ e/µm } 200 \text{ µm/ns } 1/40 \text{ ns} = 400 \text{ e in very high electric field (>>1 V/µm)}$
- Looks much like Mission Impossible (part n...)

CCE measurements up to 1.6x10¹⁷ n_{ea}/cm²


- n^+p "spaghetti" strips, 300 µm
- Observed signal not at all compatible with expectations
 - Above $3x10^{15}$ linear $CCE(V_{bigs})$
 - Power law scaling with fluence, $b \approx -\frac{2}{3}$
 - Leakage current "saturating"

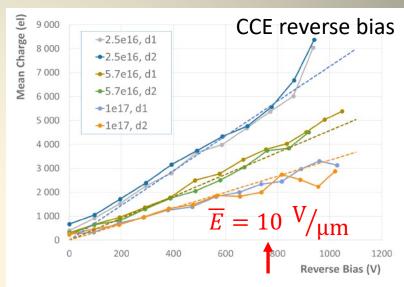
$$Q_{MPV}(V,\Phi) = k \cdot (\Phi/10^{15} \,_{\text{n}_{eq}/cm^2})^b \cdot V$$

$$k = 26.4 e_0/V$$

 $b = -0.683$

From:

G. Kramberger et al., JINST 8 P08004 (2013).



More measurements on thin detectors

- 75 μm epi detectors from CNM on low-resistivity substrate
- Irradiated to 0.25, 0.57 and $1.0 \times 10^{17} \, n_{eq}/cm^2$
- CCE in reverse and FW
- Annealing 1200 min @ 60°C

$$Q_{mean} = k \cdot \phi^b \cdot V$$

 $k_{75} = 44 e_0/V$
 $b_{75} = -0.56$
Thinner is better!

From:

I.Mandić et al.,

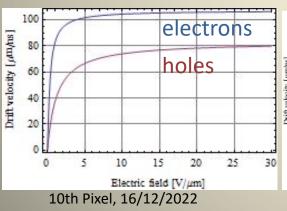
JINST 15 P11018 (2020).

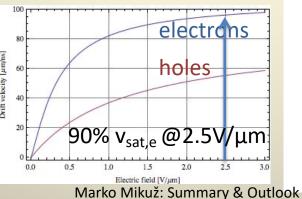
Linear *CCE(V)* ??

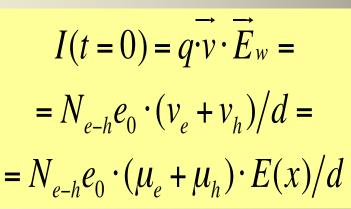
- What could be linear
 - SCR governed CCE(V) after irradiation (VV), highly resistive ENB (VV), without trapping
 - Trapping dominated with non-saturated drift velocity
- What is not linear
 - velocity saturation
 - charge multiplication
 - double junction
 - field in ENB

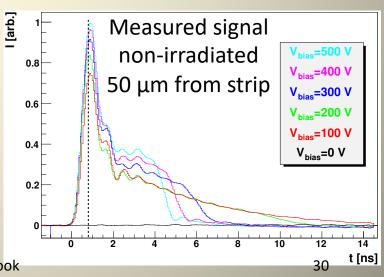
— ...

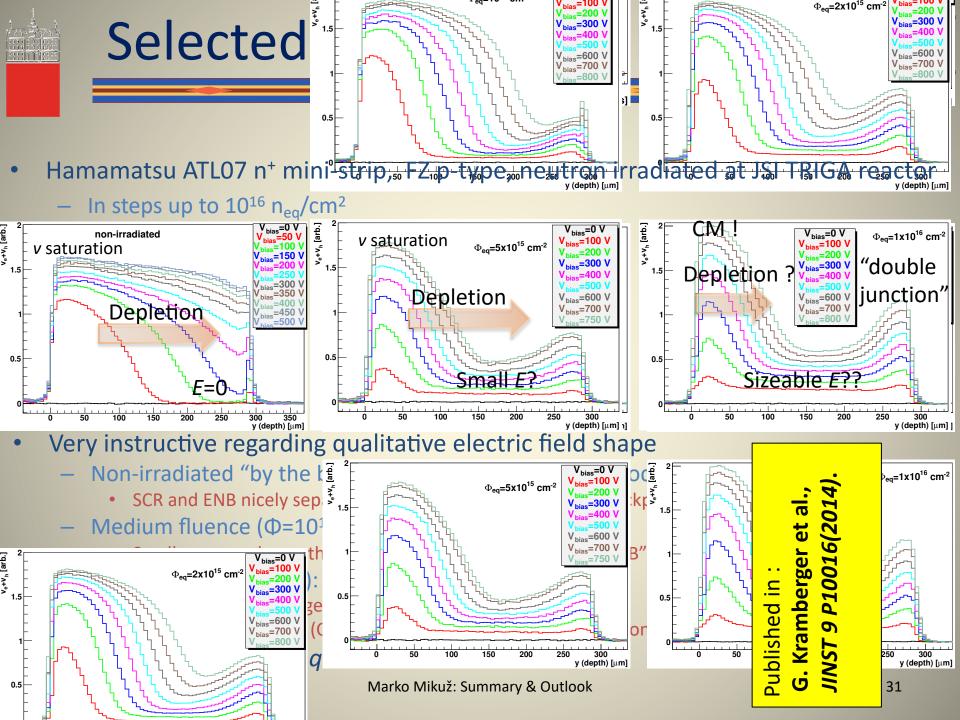
- Just a nice coincidence or some physics behind?
 - look into silicon to search for an answer
- > Using edge-TCT to probe silicon

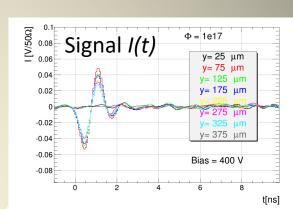

Electric Field Measurement

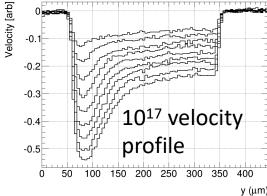


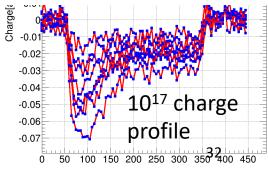

- Initial signal proportional to velocity sum at given detector depth
- Caveats for field extraction
 - Transfer function of electronics smears out signal, snapshot taken at ~600 ps
 - Problematic with heavy trapping
 - Electrons with v_{sat} hit electrode in 500 ps



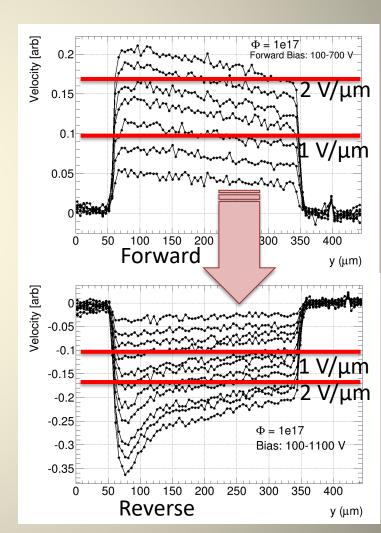

v saturates for E >> 1V/μm






Extending the Reach

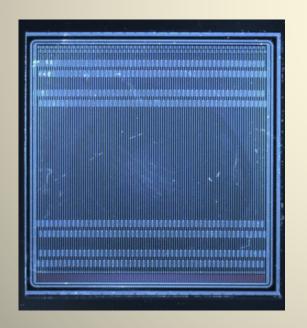
- In 2014 added 5x10¹⁶ and 10¹⁷
 n_{eq}/cm² measurements of the same detector
 - 10¹⁶ of this fluence fully annealed, the rest 80 min @ 60°C
- Intrinsic feature signal oscillations
 - period ~5/4 ns
 - LRC ($C^2pf => L^20 nH^2 1cm of wire$)
- Velocity (slope) and charge (integral) yield consistent results
- should be, as $Q \approx Q_0 v_{sum} \tau_{eff}/d$

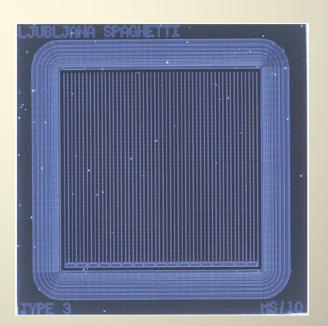


Absolute Field Measurement

- Solution: concurrent forward bias v_{sum} measurements
 - Ohmic behaviour with some linear (field) dependence
 - constant (positive) space charge
 - can use $\int E(y)dy = \overline{E}d = V$ to pin down field scale
 - corrections from v(E) non-linearity small
- Use same scale for reverse bias!
- FW measurements up to 700 V
 - know E scale up to 2.33 V/μm
 - can reveal v(E) dependence

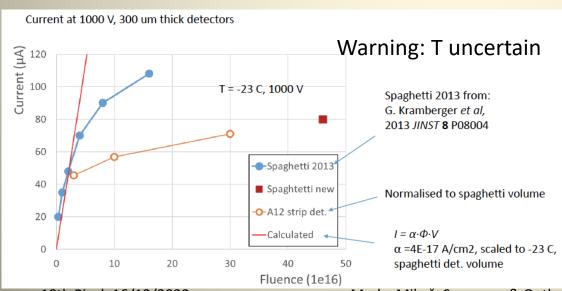
Proton Irradiations

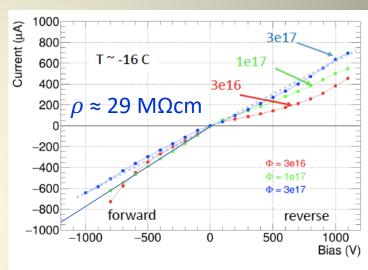

- 5 sample pairs of ATL12 mini-strips irradiated at CERN PS during summer 2015
 - got 0.5, 1.0, 2.9, 11, 28e15 protons/cm², no scanning
 - NIEL hardness factor 0.62
 - thanks to CERN IRRAD team
 - took 41 PS days to reach the highest fluence
- Covers HL-LHC tracker range well
 - does really not look practical for 10¹⁷++
- 2 samples per fluence investigated by E-TCT for all fluences
 - concurrent forward and reverse bias measurements

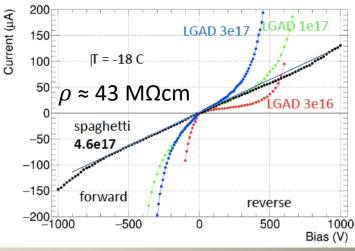

Additional Irradiations

- 3e17 n_{eq}/cm², JSI reactor neutrons
 - A12 mini, 7x8 mm², 75 μm pitch, 300 μm thick
 - Also to 3e16, 1e17
 - Spaghetti: 4x4 mm2, n-on-p, strip pitch 80 um, 300 um thick, strips connected together at side
 - 1.6e17 received previously, 4.6e17 total

A12

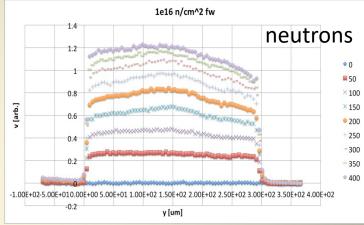



Spaghetti

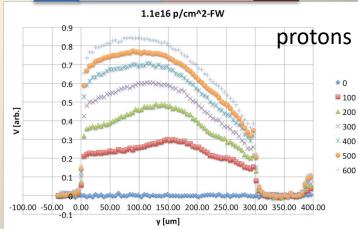

Basic Measurements

- *I-V* for 3&4.6e17 looks very linear with little difference between reverse/FW bias
 - No breakdown, as observed in LGAD's
- I @1000 V does not scale linearly with fluence!
 - Not governed by generation current ?
- Tried to measure 4.6e17 spaghetti CCE with ⁹⁰Sr
 - No signal above background observed up to 320 V
 - Magic formula predicts 120e for 4.6e17 @320 V

Mobility Considerations FW bias

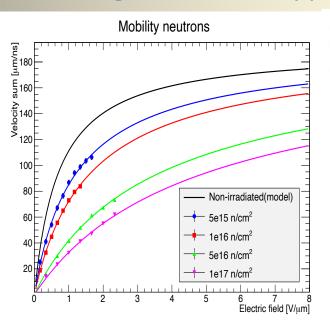


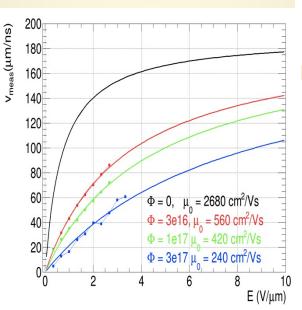
- For forward bias can extract v(E) up to a scale factor
- Observe less saturation than predicted
- Model with

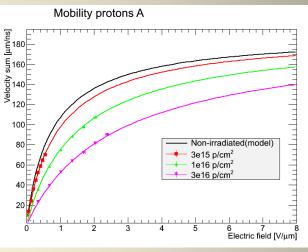

$$v_{sum}(E) = \frac{\mu_{0,e}E}{1 + \frac{\mu_{0,e}E}{v_{e,sat}}} + \frac{\mu_{0,h}E}{1 + \frac{\mu_{0,h}E}{v_{h,sat}}}$$

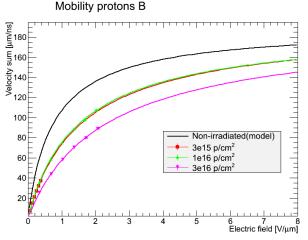
- keep saturation velocities at nominal values
 @-20°C ($v_{e,sat}$ = 107 μm/ns; $v_{h,sat}$ = 83 μm/ns)
- float (common) zero field mobility degradation
- fit v(E) for $\phi_n \ge 5 \times 10^{15}$ and $\phi_p \ge 3 \times 10^{15}$

n.b. FW profiles less uniform for lower fluences & protons; departures from average field still small, corrections O(%)




Mobility Fits




Data fits model almost perfectly

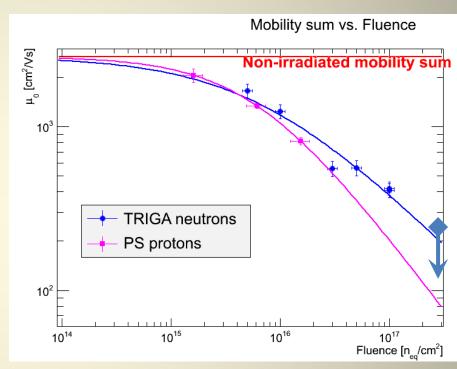
- μ_0 degradation the only free parameter, scale fixed by $v_{sum,sat}$
- At 3e17 E range too limited (v(E) linear),
 regard result as upper limit

Mobility Results

- Fit to $v_e + v_h$ with common mobility degradation factor
 - factor of 2 at 10^{16} n_{eq}/cm², 6 at 10^{17} n_{eq}/cm², >10 at $3x10^{17}$ n_{eq}/cm²
 - need 2x/6x/>10 higher E to saturate v!
 - 🔀 correspondingly higher E for charge multiplication!

Фп	$\mu_{0,sum}$	Фр	$\mu_{0, sum}$
[10 ¹⁵ n _{eq} /cm ²]	[cm ² /Vs]	$[10^{15} n_{eq}/cm^2]$	[cm ² /Vs]
non-irr (model)		2680	
5	1661 ± 134	1.6	2063± 188
10	1238 ± 131	6.1	1337± 47
30	560	15.4	817± 42
50	555 ± 32		
100	407 ± 40		
100	420	T=·	-20°C
300	<240		

Mobility Analysis

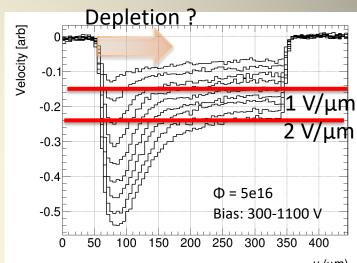

 Mobility governed by hard scattering on acoustic phonons and traps

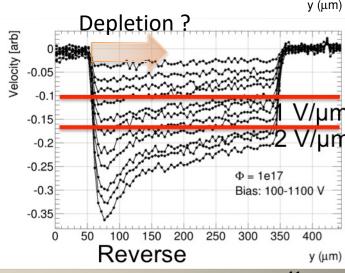
$$\frac{1}{\tau} = \frac{1}{\tau_{ph}} + \frac{1}{\tau_{trap}}$$

 Fit mobility dependence on fluence with a power law

$$\mu_{0,sum}(\Phi) = \frac{\mu_{0,sum,phonon}}{1 + (\frac{\Phi}{\Phi_{\frac{1}{2}}})^a}$$

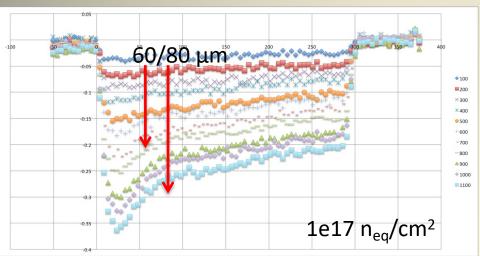
- Fits perfectly, value of a close to linear
 - 10% error assumed for all neutron data
- At same NIEL, mobility decrease worse for protons
 - NIEL violation ? Large errors ?


Irradiation particle	а	σ_a	Φ _½ /10 ¹⁵	$\sigma_{\Phi \%} \ /10^{15}$
Reactor neutrons	-0.68	0.08	6.9	1.7
PS protons	-0.90	0.19	6.1	1.0

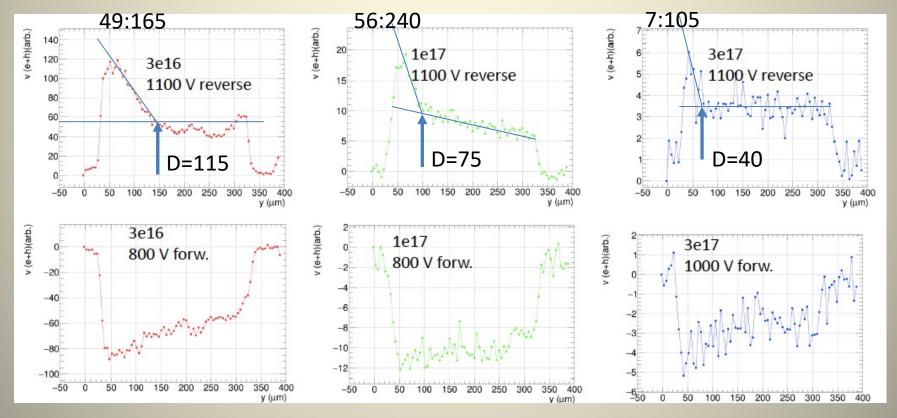


Reverse Bias Field Profile

- Two distinct regions at high biases
 - Large region from backplane with (small) slope in the field
 - constant (small, negative) spacecharge
 - E = j.p at junction ? like "ENB" ?
 - indication of thermal (quasi)equilibrium: $np = n_i^2$?
 - thus no current generation?
 - Small region at junction building up with bias
 - depleted space-charge region ?
 - source of generation current ?

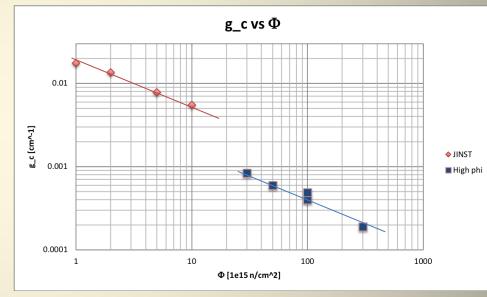


SCR Consistency


- Hard to estimate SCR extent, especially at lower bias and highest fluence
- A crude estimate
 - $-5x10^{16}$ n_{eq}/cm² : ~80 μm @ 600 V; ~120 μm @ 1000 V -10^{17} n_{eq}/cm² : ~60 μm @ 600 V; ~20 μm @ 1000 V
- ~60 μm @ 600 V; ~80 μm @ 1000 V
 - 5x10¹⁶ n_{eq}/cm²: 300/300 μA @ 600 V; 400/500 μA @ 1000 V
 - 10¹⁷ n_{eq}/cm²: 400/300 μA @ 600 V; 500/600 μA @ 1000 V
 - Not compatible with linear I-V at 3 & 4.6e17 pure resistor ?
- Reasonable agreement with current generated exclusively in SCR
 - n.b. current "saturation" observed @1000V in JINST 8 P08004 (2013)
- Acceptor introduction rates: $g_c \approx 6/4 \times 10^{-4}$ cm⁻¹
 - substantial part (up to 80 %) of voltage drop "spent" in "ENB"
 - matches well data in JINST 9 P10016(2014) (up to 10¹⁶)

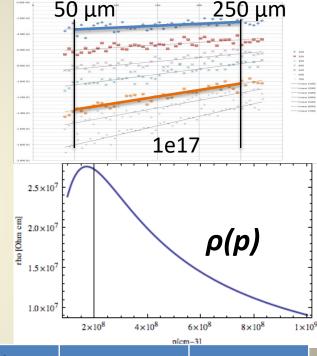
ATL12 up to 3e17

- Estimate of SCR width 115 -> 75 -> 40 μm
- V_{drop} in SCR only 23 -> 19 -> 6 % of 1100 V



Acceptor introduction in SCR

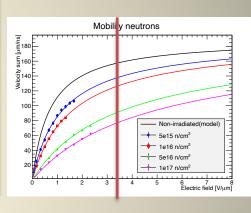
- Stable acceptor introduction rate g_c drops by nearly two orders of magnitude from low fluences to $3x10^{17}$
 - Observed up to 10¹⁶ in
 JINST 9 P10016(2014)
 - Looks like a power law
 - g_c in JINST not taking into account voltage drop out of SCR higher values of g_c



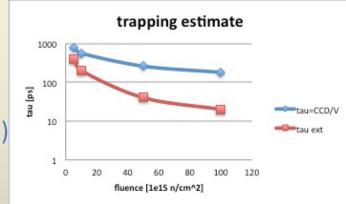
"ENB" Consistency

- Space charge in "ENB" rising with bias, e.g. for 10¹⁷ n_{eq}/cm²
 - 1.6x10¹¹@ 100 V, 9.2x10¹¹cm⁻³ @ 500V
 - c.f. ~4x10¹³cm⁻³ in SCR
 - negative space charge, like in SCR
- Resistivity from $\rho = j/E @ 100 V$
 - maximum $\rho(p) \approx 2.8 \times 10^7 \Omega$ cm using nominal mobilities @ $p \sim 2 \times 10^8$ cm⁻³
 - all measured values exceed this limit
 - compatible with measured mobility sum and $p\sim O$ (10⁹) cm⁻³
 - Compatible also with ρ from *I-V* for 3 & 4.6e17

	nlcm-31			
Φ	ρ	p		
[n _{eq} /cm ²]	$[10^7 \Omega \text{cm}]$	[10 ⁹ cm ⁻³]		
1e16	3.3	0.5		
5e16	3.0	1.5		
1e17	2.8	2.1		



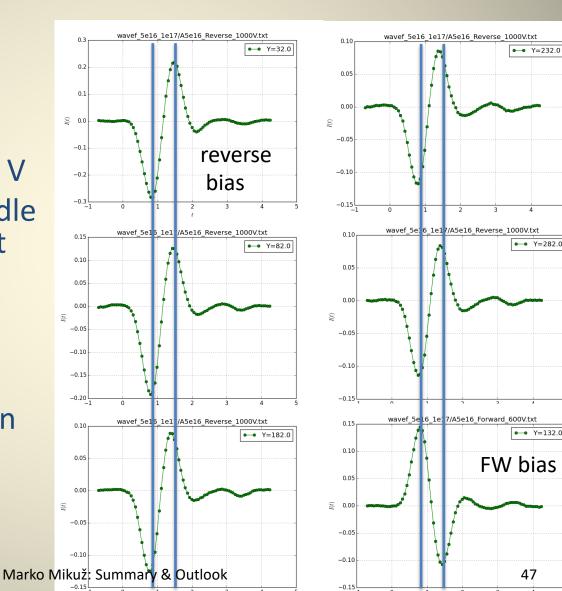
Trapping analysis



- Take v_{sum} at average $E = 3.3 \text{ V/}\mu\text{m}$
- Calculate CCD from "magic formula"

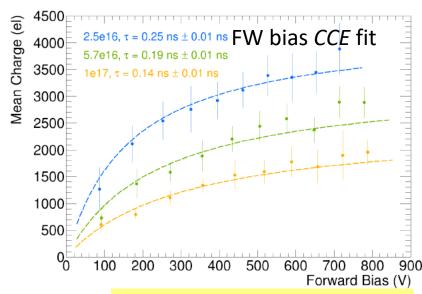
Ф [1e15]	5	10	50	100
<i>v_{sum}(3.3</i> V/μm)	137	126	90	77
<i>CCD</i> _{1000 V} [μm]	110	70	23	14
τ ≈ <i>CCD/v</i> [ps]	800	560	260	180
τ _{ext} [ps]	400	200	40	20

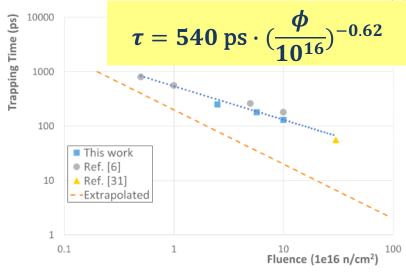
- Implies factor of 6-9 less trapping at highest fluences
 - lowest fluence still x2 from extrapolation
 - weak dependence on fluence as anticipated
 - CM would effectively shorten trapping times
 - not good when large E variations (v(E) saturates)
 - not good when CCD ≈ thickness (less signal at same τ)



Trapping – position dependence ?

- Waveforms plotted every 50 um in detector depth for reverse bias at 1000 V
- Forward bias in middle of detector added at 600 V
- Very little, if any, wf dependence on position observed
- Trapping not position (even not bias) dependent!?


Trapping revisited



- From I.Mandić et al., JINST 15 P11018 (2020)
 - FW bias CCE estimated by

$$Q = \frac{\Delta Q}{\Delta x} \cdot v \cdot \tau$$

- v(E) with fluence dependent μ
- constant E=V/D (FW)
- Order of magnitude smaller than extrapolated!
- Agrees with estimates from reverse bias CCE
- Trapping independent of bias, seen in wave-forms

Summary

- Measurements performed on Si detectors irradiated to extreme fluences
 - Neutrons from 10^{15} to 4.6×10^{17} n_{eq}/cm², PS protons from 5×10^{14} to 3×10^{16} p/cm²
 - Velocity vs. electric field impact observed and interpreted as reduction of zero field mobility
 - Zero field mobility follows power law with $|a| \le 1$, $\Phi_{1/2} \approx 10^{16}$ n/cm²
 - Protons degrade mobility more than neutrons
 - Induces resistivity increase in-line with measured I-V
 - Exhibits adverse effect on charge multiplication!
 - Simple field profile for very high neutron fluences
 - Diminishing SCR and highly resistive ENB
 - Effective acceptor introduction rates reduced by factor ~100 wrt low fluences
 - Current much lower than anticipated. Generated in SCR only? Ohmic at highest fluences...
 - Trapping estimates for very high neutron fluences
 - from charge collection in FW and reverse bias
 - from waveforms
 - All estimates point to severe non-linearity of trapping with fluence, 10x lower at 10¹⁷
 - Trapping appears independent of electric field
- Conclusion: Low fluence extrapolations do not work at all!
 - ... go out and measure to get anything working at extreme fluences !!!

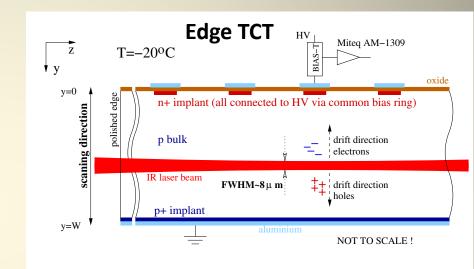
Implications for DRDT 3.3

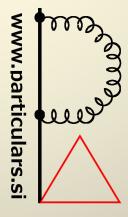
- Basic bulk silicon properties in the fluence range to master are the prerequisite to any inner tracking detector design for FCC-hh
- They need to be measured
 - Only pioneering consistency checks done so far
- Need resources far beyond current ones
 - Facilities
 - Measurement techniques
 - People
 - at least for the first ~5 of the 20 years
- New DRD Collaboration based on the RD50 research line essential for achieving the goal
 - EU funding should help to rise funds at national level

Conclusion

NOTHING IS IMPOSSIBLE, THE WORD ITSELF SAYS "I'M POSSIBLE" - AUDREY HEPBURN

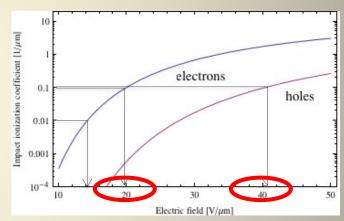
Backup Slides




Edge TCT

Edge-TCT

- Generate charges by edge-on IR laser perpendicular to strips, detector edge polished
- Focus laser under the strip to be measured, move detector to scan
- Measure induced signal with fast amplifier with sub-ns rise-time (Transient Current Technique)
- Laser beam width 8 μm FWHM under the chosen strip, fast (40 ps) and powerful laser
 - Caveat injecting charge under all strips effectively results in constant weighting (albeit not electric!) field

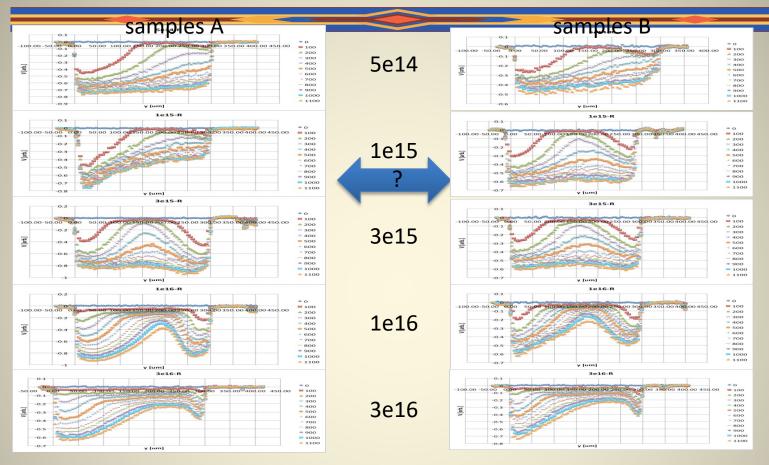

Charge Multiplication

- Multiplication is textbook physics
 - e.g. S.M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981
 - Ch 1.6.4 High-Field Property
 - Velocity saturation, impact ionization
 - Ch 2.5.3 Avalanche Multiplication
 - Junction break-down
- Measured impact ionization
 - Electrons create 1 pair in 10 μm at E^2 0 V/μm (100 μm at 14 V/μm), holes need E^4 0 V/μm
 - Holes need ~1 mm for pair creation at E~20 V/ μ m
 - Neglect hole multiplication in signal creation altogether
 - Need to invoke hole multiplication for junction breakdown
- $\alpha_e >> \alpha_h$ Nature gentle to us (in silicon)
 - Large range in E where electrons multiply without inducing breakdown
 - But beware of (too) high electric fields!

$$\alpha_{e,h}(E) = \alpha_{e,h}^{\infty} e^{-b_{e,h}/E}$$

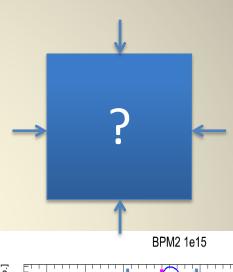
A. G. Chynoweth, Phys. Rev. 109, 1537(1958).

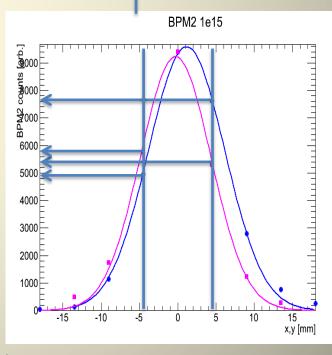
R.VAN OVERSTRAETEN and H.DE MAN, Solid-State Electronics 13(1970),583-608. W.MAES, K.DE MEYER, R.VAN OVERSTRAETEN, Solid-State Electronics 33(1990),705-718.


$$\int_{0}^{w} dx \, \alpha_{e}(x) e^{-\int_{0}^{x} (\alpha_{e}(x') - \alpha_{h}(x')) \, dx'} = 1$$

Breakdown condition, can swap α_e with α_h

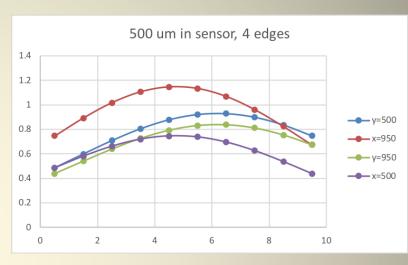
Reverse velocity profiles

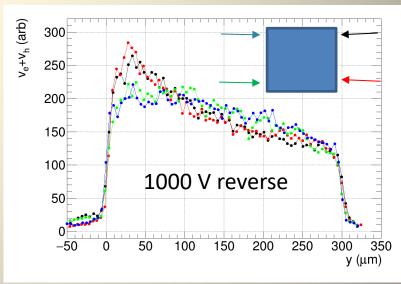

- Something's fishy... never repeat experiments ?!
 - Explained by PS beam profile variation on sample edges



Proton irradiations - details

- Samples irradiated in PS in pairs
 - in series in same sample holder
- Same leakage current in both samples
 - ⇒same *average* fluence received
- Beam profile asymmetric
 - monitored by BPM2
- Which side did we pick up?





Protons revisited

- BPM2 results for the 1e15 sample, 0.5 mm in sensor
- 10x10 mm² average to peak: 0.7
 - Values rescaled
- Mid-side to average:
 - **1.17,** 0.88, 0.82, **0.74**
 - Must be the larger difference
 - Correct fluences by -10 %
 - > Assign 20 % error
- Re-measured one sample from both sides, match with BPM2 data – still in progress
 - Looks like explaining the issue

Mobility Comparison

Table 3. Best-fitting parameters for the impurity dependence of electron and hole Ohmic mobilities at room temperature, as given in eqn

	Electrons	Holes	Units
µ _{min}	92	47.7	cm2 V-1 sec-1
µmax.	1360	495	cm2 V-1 sec-1
Nret	1.3×1017	6.3 × 1016	cm ⁻³
α	0.91	0.76	-

- Dependence on shallow dopant concentration
 - Measured in the roaring 60's
- Characteristic trap concentration $N^{\sim}10^{17}\,\mathrm{cm}^{-3}$
 - looks out of reach for typical $q=0(10^{-2})$
- But g refers to $N_{eff} = |N_a N_d|$
- While N is more like $N_a + N_d$
 - x-sections for deep and shallow?
- Power law looks compatible: $a \le 1$

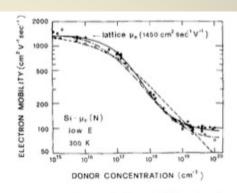


Fig. 5. Electron mobility, µ, in silicon at 300 K as a function of impurity concentration. Open and closed circles are the experimental results reported by Irvin[55] and of Mousty et al.[56]. respectively. The continuous line is the phenomenological best fit (egn (6)) of Baccarani and Ostoia[53] the broken line the best fit (egn (7)) of Hilsum [54] the dot-dashed line (egn (8)) of Scharfetter and Gummel [57] (see Tables 3 and 4).

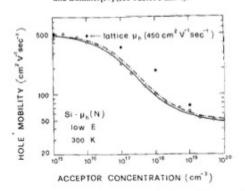
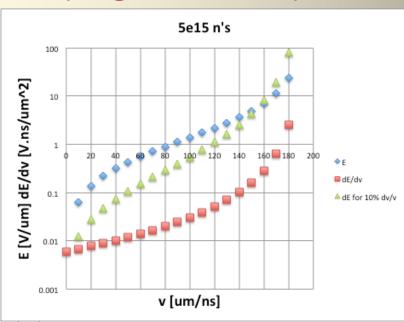
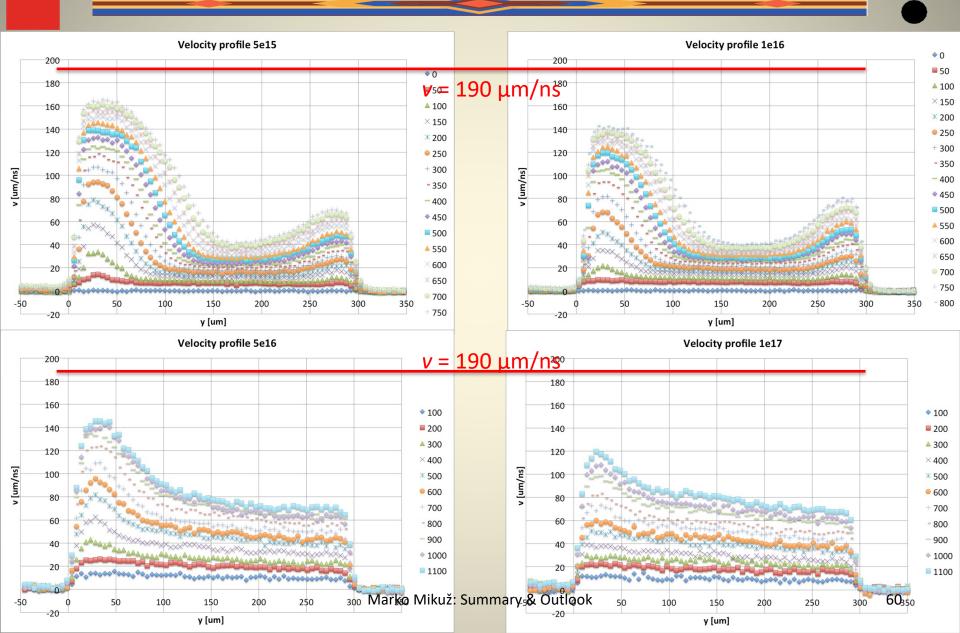


Fig. 6. Hole mobility, μ_h, in silicon at 300 K as a function of impurity concentration. Open circles are experimental results reported by Irvin[55]. Continuous and dot-dashed lines represent the best fitting curves of Caughey and Thomas [58] (eqn (6)) and of Scharfetter and Gummel [57] (eqn (8)), respectively (see Tables 3

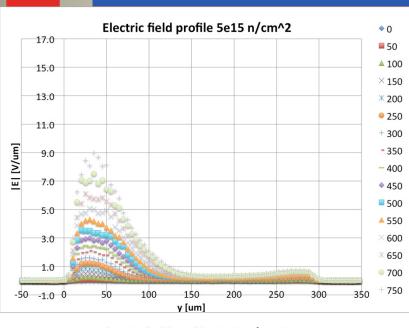

Istituto di Fisica dell'Università di Modena, 41100 Modena, Ital 18 March 1976; in revised form 12 July 1976

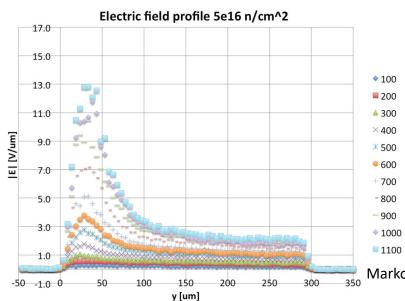
Velocity and Field Profiles

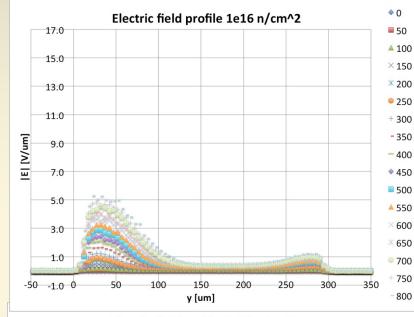


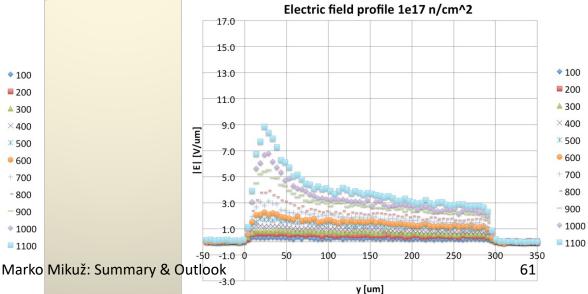
- Knowing v(E) can set scale to velocity profiles
 - assumption: same scale on FW and reverse bias
 - protons: for 5x10¹⁴ and 10¹⁵ use same scale, fixed by average field for 5x10¹⁴ at 1100 V (no good FW data)
- Invert *E*(*v*) to get electric field profiles
 - big errors when approaching v_{sat} i.e. at high E
 - exaggerated by CM in high field regions
 - v > v_{sat} not physical, but can be faked by CM

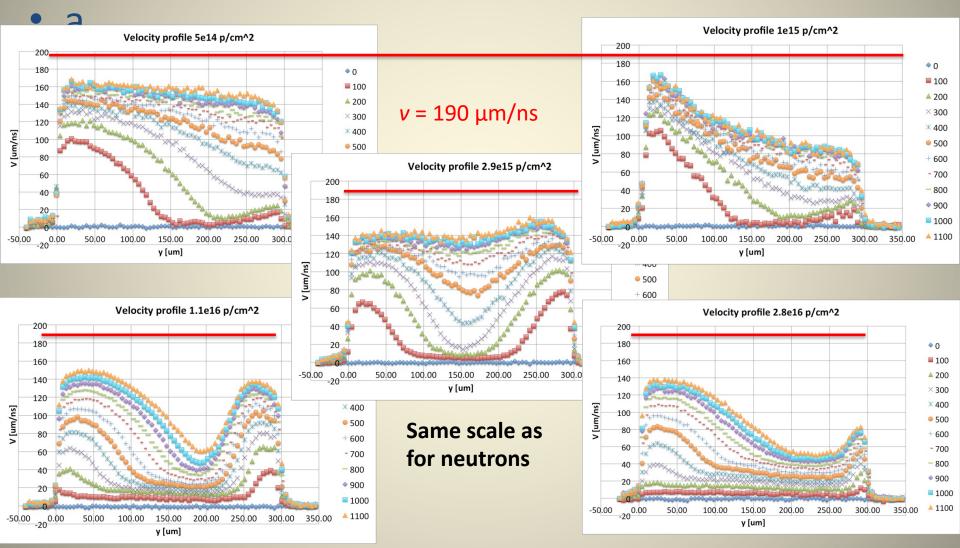
Velocity Profiles Neutrons



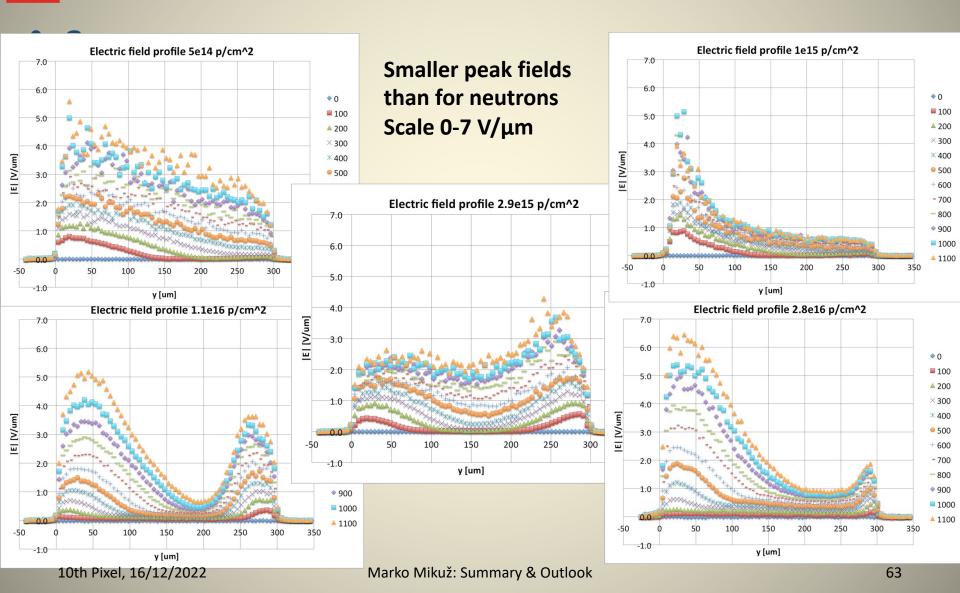




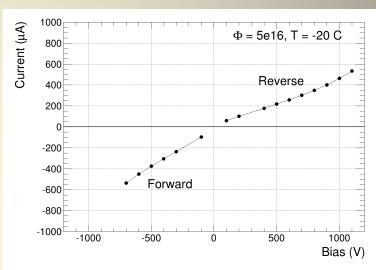

Field Profiles Neutrons

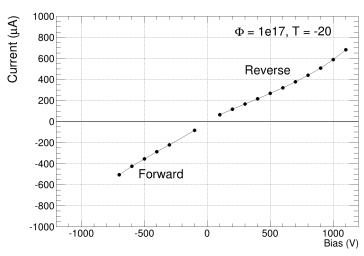


Velocity Profiles Protons



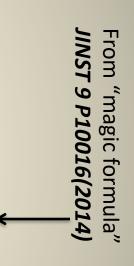
Field Profiles Protons





Current Characteristics

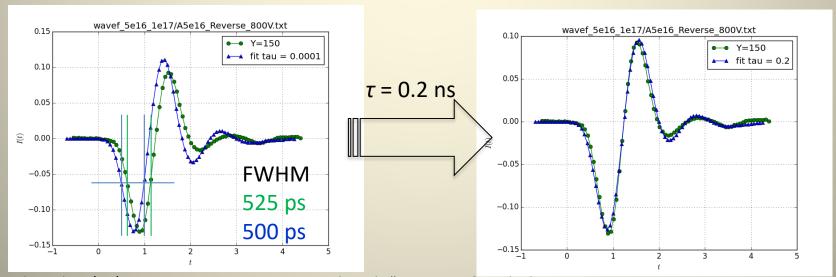
- Smooth behaviour in both directions
 - Highly resistive Si limits FW injection
- Reverse current smaller than predicted by an order of magnitude
- Both currents rising ~linear with bias
 - Slopes FW/reverse more compatible at higher fluences
- Consistent with recent measurements at highest fluences



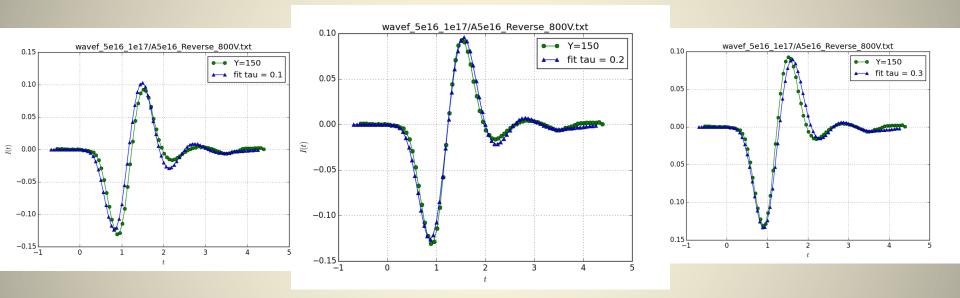
Trapping Considerations

• Extrapolation from low fluence data with $\beta_{e,h}(-20^{\circ}\text{C})=4.4,5.8\times10^{-16}\,\text{cm}^2/\text{ns};\ 1/\tau=\beta\Phi$

Ф [1е15]	5	10	50	100
τ [ps]	400	200	40	20
mfp@v _{sat} [μm]	95	48	9.5	4.8
MPV [e ₀]	7600	3800	760	380
<i>MPV</i> @1000 V	8900	5500	1800	1150
<i>CCD</i> _{1000 V} [μm]	110	70	23	14


- Measured data exceeds (by far) linear extrapolation of trapping
 - n.b.1: E^3 V/µm by far not enough to saturate velocity
 - n.b.2: little sign of CM at highest fluences

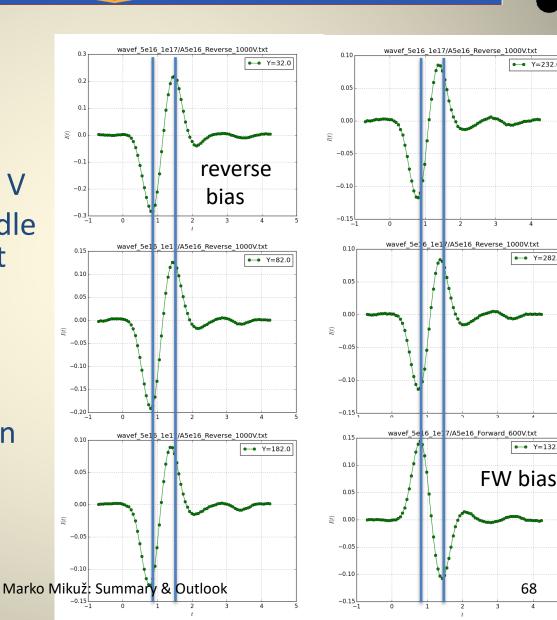
Exploiting TCT Waveforms


- Waveforms at $y=100 \mu m$, 800 V, $5x10^{16}$ and 10^{17}
 - $E \approx 3$ V/μm, CCD/2 implies signal within ~10 μm or <0.2 ns
 - the rest you see is the transfer function of the system
- Still distinct signals from the two fluences
 - treat 10¹⁷ waveform as transfer function of the system
 - convolute with $e^{-t/\tau}$ to match $5x10^{16}$ response
 - τ = 0.2 ns provides a good match
- In fact, measure $\sim \Delta \tau$, as "transfer" already convoluted with $e^{-t/\tau(1e^{17})}$!

Waveforms: How sensitive?

- $\Delta \tau = 0.2$ ns certainly best fit, 0.1 too narrow, 0.3 too broad
- precision ~50 ps

Trapping – position dependence?

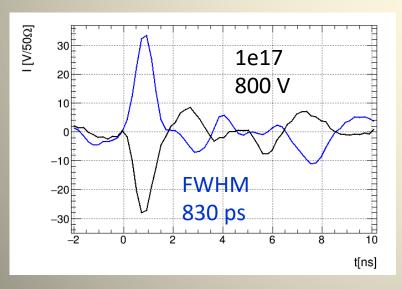


• Y=232.0

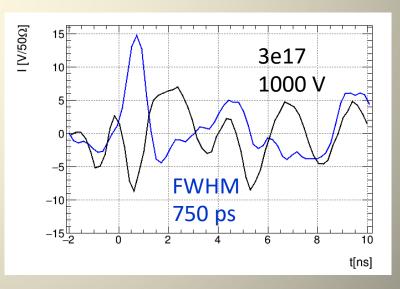
● Y=132.0

68

- Waveforms plotted every 50 um in detector depth for reverse bias at 1000 V
- Forward bias in middle of detector added at 600 V
- Very little, if any, wf dependence on position observed
- Trapping not position (even not bias) dependent!?



Trapping @3e17



- Moved to another setup different waveforms
 - Widths of reverse and FW similar
 - With decreases 1->3e17
 - Irregular waveforms with small signal @3e17
 - Hard to state something more quantitative

Blue Reverse

Black FW

