

High-purity Germanium Detectors for Medical Imaging

Todd E. Peterson, Ph.D.

Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA

BASICS OF SPECT: SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY

- Radiotracer
 - Molecule of interest
 - Radionuclide
- Detector
- Collimator
- Sampling
- Reconstruction Algorithm

→ Wide range of radionuclides (99m Tc, 111 In, 123 I) & radiotracers → >15M studies/yr in US

PIXEL2022

THE ANGER CAMERA – NAI(TL)

- PMTs coupled to large, continuous Nal(TI) crystal
- Spatial resolution 3–4 mm FWHM
- Energy resolution 8–10% FWHM
- Large-area, >40cm x 40cm typical

3

EVOLUTION OF HPGe DSSDS

VANDERBILT VUNIVERSITY MEDICAL CENTER

CURRENT HPGe DSSD DESIGN & PERFORMANCE

- 90 mm diameter, 10 mm thick
- 55 cm² active area
- 16 x 16 orthogonal strips
- 5 mm strip pitch (0.25 mm gaps)
- Mechanically cooled (75-85 K)
- Position Estimation
 - Sub-Strip interpolation
 - 530 μ m x 530 μ m pixel size
 - Depth-of-interaction estimation

Detector Property	NaI Camera	HPGe Camera [1]	
Intrinsic Efficiency	~90.0%	55.4% (10 mm)	
Energy Resolution	~10% @140keV	~1% @140keV	
Spatial Resolution	~2-3 mm	<1.5 mm	
DOI Estimation	None	~1 mm	

[1] Johnson et al., IEEE Trans Nucl Sci. 62(5), Oct 2015:2036-2042.
 doi: 10.1109/TNS.2015.2448673.

5

VANDERBILT WUNIVERSITY MEDICAL CENTER

FIRST HPGe PRECLINICAL SPECT-CT

Pinhole Collimator:

- 1-mm diameter
- Variable focal length:
 5.0 9.5 cm
- Tungsten polymer composite

Integrated HPGe camera with MicroCAT II CT scanner

Johnson et al., IEEE TNS 62(5) (2015)

NEMA NU-4 2008 Small-animal IQ Phantom

- Helical acquisition
- 64 projections

6

VANDERBILT VUNIVERSITY MEDICAL CENTER

ENERGY RESOLUTION

VANDERBILT VUNIVERSITY

MEDICAL CENTER

- Brain Imaging simultaneous imaging of dopamine transporters (^{99m}Tc-TRODAT) and receptors (¹²³I-IBZM) or perfusion (^{99m}Tc-HMPAO) and receptors
- Cardiac Imaging simultaneous perfusion (^{99m}Tc-MIBI) and innervation (¹²³I-MIBG)

PIXEL2022

• Cancer Imaging – "multi-spectral" imaging of biologicals (antibodies, peptides, etc.)

DUAL-ISOTOPE EXPERIMENT

• Compare Germanium camera to BioScan NanoSPECT (Nal)

^{99m} Tc —	Energy Windows	NanoSPECT	Ge-SPECT
	^{99m} Tc (140 keV)	122.5 – 149.5	137.5 – 142.5
	¹²³ l (159 keV)	150.5 – 171.5	156.5 – 161.5

• Cross-Talk Ratios from single-isotope projections:

- Acquired SPECT images with all syringe combinations on both systems
- Utilized NanoSPECT's software to implement cross-talk correction

VANDERBILT VUNIVERSITY MEDICAL CENTER

DUAL-ISOTOPE EXPERIMENT

VANDERBILT VUNIVERSITY MEDICAL CENTER

PIXEL2022

PRELIMINARY BRAIN SPECT SYSTEM DESIGN

- Single-pinhole collimation
- Fix analytic resolution at CFOV to 7 mm
- Vary pinhole diam., focal length, & # detectors as function of system radius
- Initial simulation study: 24-detector, cylindrical 2-ring system
- Sensitivity: 106 cps/MBq @CFOV

GATE Simulation:

- Zubal phantom [1]
- Striatum:Background ratios 5:1 for both ^{99m}Tc & ¹²³I with 2:1 ^{99m}Tc :¹²³I ratios [2]
- Energy windows: 138-142 keV & 156.5-161.5 keV
- Downscatter from ¹²³I into ^{99m}Tc window was 2.8% of total
- Scatter within own windows <5%
- Compared to ~60% downscatter and ~11% selfscatter for NaI simulation [2]

[1] Zubal et al., Medical Physics 21(2), Feb 1994:299-302.
[2] Du and Frey, Medical Physics 36, June 2009:2021-2033. doi:10.1118/1.3120411.

10

HPGe Brain SPECT – DESIGN CONCEPT

30 detectors: Rings of 12, 11, 6, 1

VANDERBILT VUNIVERSITY MEDICAL CENTER

TARGETED ALPHA THERAPY IMAGING

PIXEL2022

De Kruijff et al. 2015 Pharmaceuticals 8(2)

VANDERBILT VUNIVERSITY

MEDICAL CENTER

Robertson et al 2017 Phys. Med. Biol. 62 4406 doi:10.1088/1361-6560/aa6a99

vyns

PLANAR IMAGING OF THERAPEUTIC RADIONUCLIDES

VANDERBILT VUNIVERSITY MEDICAL CENTER

VANDERBILT VUNIVERSITY MEDICAL CENTER

CHALLENGES IMAGING THERAPEUTIC RADIONUCLIDES

• Sensitivity

- Administered doses often <2 mCi
- Branching ratios not large
- Energy range many emissions above ~300 keV
 - Collimation challenging
 - Detection efficiency decreases
 - Compton scattering dominates

\rightarrow Consider Compton Camera or Compton-enhanced imaging

MEDICAL CENTER

DETECTOR INVESTIGATIONS

Increasing operating temperature:

- Reduces power consumption
- Slows charge collection \rightarrow improved spatial resolution?

G551 – Test detector:

- 16x16 strips with amorphous Ge contacts
- Charge collection times (Temp): 100 ns (85 K) to 120 ns (105 K)

ONGOING DEVELOPMENTS

- Improving fabrication
 - Flat cuts
 - Higher fabrication yield
 - Better temperature tolerance
 - Larger-diameter detectors
- Signal processing improve spatial resolution
- Alternative electrode configurations

56.4 cm²

61.3 cm²

→ HPGe detectors are a promising technology for enabling multi-tracer SPECT, but much work remains to be done

VANDERBILT VUNIVERSITY MEDICAL CENTER

ACKNOWLEDGMENTS

- Funding:
 - NIH:
 - R25 CA136440
 - R44 RR031937
 - R01 EB013677
 - R01 EB026991
 - F31 EB022422-02
 - US Department of Energy BER
 - SREB
- Ethan Hull, Matthew Kiser, Jim Lathrop

Lindsay Johnson, Oleg Ovchinnikov, Desmond Campbell, Rose Perea, Andrew Gearhart, Sepi Shokouhi

23

VANDERBILT WUNIVERSITY MEDICAL CENTER