

A High-Granularity Timing Detector for the ATLAS Phase-II upgrade PIXEL 2022 conference

Afonso Ferreira on behalf of the HGTD group

12/12/2022

High Granularity Timing Detector

- Detector designed to provide precise timing information to minimize pile-up in the High Luminosity LHC
- Also provides bunch-by-bunch luminosity information
- Per track timing resolution of 30 ps 50 ps up to a fluence 2.5e15 n_{eq}/cm^2
- Covers forward regions $2.4 \le |\eta| < 4.0$
- 2 disks with double-sided layers mounted on cooling plates
 - Located in endcaps region
 - Each layer composed of 3 rings with modules using silicon sensors

HGTD Basic functionality overview

- \geq Charged particles detected by Low Gain Avalanche Detectors (LGADs)
- LGAD signals are registered by frontend ASIC ALTIROC \geq
 - \geq Timing and hit information
- Data transferred through module flex up to the peripheral electronics \geq
- Data of multiple ASICs is aggregated at the peripheral electronics and \geq sent to the off detector servers

Peripheral boards

Active

Region

LGAD Sensor technology

- > LGADs are segmented planar silicon detectors with inner gain provided by a multiplication layer
 - Avalanche in multiplication layer triggered by charged particles
 - **Fast Timing** \rightarrow internal gain and thin active layer provide a good rise time
 - **High Radiation hardness** \rightarrow highly doped multiplication layer maintains performance up to high radiation levels

						Masure Result				1
						Main A	Negative	Percel #	-34	11000
1						12	2 Points 2 Points	Pariouti	1.27 mm 1.27 mm	
										_
		100								
						=	-			
8										
1983										
			-	-	-	-	-			
1000			-	-						
1993			-	-	-	-	-			
			-			-	-			
1000										
	1.00									
		-								
and the second second										
1. 1.										
	4 4			*						
7.55	-		contraction of the	-					and desired	in the second second

- Each HGTD LGAD is $1.3 \times 1.3 mm^2$ **
- Full-sized sensor composed of 15x15 pads **

Various prototypes from multiple vendors tested in the R&D phase

IHEP-IME, USTC-IME, FBK, HPK, CNM *

Single Event Burnout

At 2021 test beams we identified an upper limit for the operational bias voltage due to **Single Event Burnout (SEB)**.

- Most likely cause is a collapse of the electrical field
- The thickness and bias voltage are crucial parameters to determine a safe operating voltage
- After dedicated test beam camping a safe zone was determined: < 11 V/µm</p>
- Sensors are 50 µm thick so max voltage is 550 V

Large current in small region created a fat crater

In 2022-2021 R&D focused on identifying sensor capable of operating in the safe zone at high irradiation levels

Sensors with carbon enriched gain layers identified as best candidates

Multiple runs from various providers using carbon based gain layer (FBK, USTC-IME and IHEP-IME,)

HGTD Sensor Testbeam tests

Time resolution [ps]

90

60

50

40

30

ALTIROC – HGTD FRONTED ASIC

ALTIROC is a fast timing ASIC

- 225 channels bump bonded to 15x15 full sensor
- > A preamplifier and a discriminator to capture LGDAs signal
- > 2 Vernier TDCs for timing data

Time of Arrival (TOA): 2.5 ns window with 20 ps resolution (7 bits)

Time over Threshold (TOT): 40 ns window with 40 ps resolution (9 bits)

- Timing data and hit flag stored in local registers
- Local data aggregated column wise and transmitted through e-links at L0/L1 trigger rate
- Multiple configurations and control options

- Timing requirements quite strict as
 - <70 ps jitter at 4 fC and <25 ps jitter at 10 fC</p>
 - Minimum discriminator threshold 2 fC
- Most recent version of ASIC is ALTIROC 2 with most of the final capabilities (not final version)
 - 225 channels for full size sensor
 - Includes voltage and transimpedance amplifiers
 - Digital memory for timing data
 - Data serializer for data transmission

Control and Data transmis sion

ALTIROC 2 tests

Ongoing tests on multiple characteristic of the ASIC at testbenches and test-beams (Vth, jitter, TOA, TOT...)

Bare ALTIROC 2 tested

- ✓ All blocks are functional
- ✓ Main requirements are fulfilled

ASIC + sensor (Hybrid) tests ongoing

- Successfully assembled multiple hybrids for testing
- Difference in TOA/TOT behavior at low charge under study
 - > <u>Parasitic inductances</u> between sensor/preamp are the likely cause

1.0

TOA and trigger efficiency of all channels with transimpedance amplifier on a Hybrid

ATLAS HGTD preliminary

ALTIROC2

SPS test-beam setup

HGTD Module assembly

- HGTD modules are composed of a flexible PCB attached to 2 hybrids
 - ✤ 8032 modules to be assembled in 6 separate institutes
 - 2cm x 4cm dimension
 - Module flex glued on the surface of the LGAD sensor
 - Flex wirebonded to ASIC for readout and sensors for HV biasing
 - Ongoing test on reading out hybrid through the module flex
 - Assembled digital modules (flex + ASIC) for readout tests

Jig for gluing Flex

Glue deposition on flex test

HGTD detector unit and flex tail

- Modules are glued to detector units
 - Detector units made out of PEEK
 - > 13 unique detector units per side
- Ongoing development of tooling for loading and manufacturing of detector units
 - Vacuum plates hold modules for gluing
 - ➤ Glue placed on side of flex → exact amount and placement done by a machine
 - Detector unit aligned and placed on top

Flex tails connect peripheral electronics to modules

- Flex tail manufactured in different sizes
- ➤ Tight thickness constraints → 4.2mm max thickness for a 19 flex stack
- Flex carries data as well as HV for biasing and LV power for ASIC

HGTD Peripheral Electronics Boards (PEBs)

- Peripheral Electronic Boards are located outside the HGTD active region
 - 6 unique boards per quadrant
 - > Data from ASIC aggregated at PEBs
 - Complex design due to density of components
- PEB 1F is the densest and connects to 55 modules
 - ✓ Schematic complete for an initial prototype
- > Ongoing tests on individual components
 - Developed emulator board to test basic readout chain
 - Includes 2 LpGBTs, DC-DC converter, VTRX
 - Distributed among 4 institutes for testing

HGTD Vessel and cooling

- Sensors and ASIC need to be operated at -30°C
 - Modules mounted on a cooling plate to maintain stable temperature
 - Cooling plate in-between two layers
 - Liquid CO2 cooling through serpentines inserted in plate
 - > 8 serpentines per half disk
- Cooling plate and inside of vessel attached to ground (Faraday cage)
- Feedthrough design ongoing

Dry nitrogen passage

CO₂ transfer lines

Outer ring sections

Connectors

HGTD demonstrator work

Building a demonstrator at CERN to verify various parts of HGTD

Heater Demonstrator:

- Verify CO2 cooling capabilities as well as identify best thermal media between modules and cooling plate
- Module-sized silicon heaters on prototype support
- ✓ Best thermal media → two graphite sheet layers with thermal grease in between
- Heating test with Kapton heaters on plate with inner serpentine and capillary

DAQ demonstrator

- Successful communication link between server and multiple module emulators
- Ongoing tests on communication with ALTIROC 2 with module flex

Full demonstrator

 Preparation for full demonstrator with 55 modules connected to prototype PEB

Good progress with LGAD R&D

↔ Carbon enriched sensors satisfy requirements up to 2.5e15 n_{eq}/cm^2

ALTIROC 2 produced and tested

✤ ASIC alone fulfills requirements

Produced hybrids and modules with full size sensors

- Ongoing tests in test-benches and test-beams
- ✤ Ongoing work on loading modules on to support units in preparation of full demonstrator tests
- Developing DAQ readout chain digital modules

Thank you

