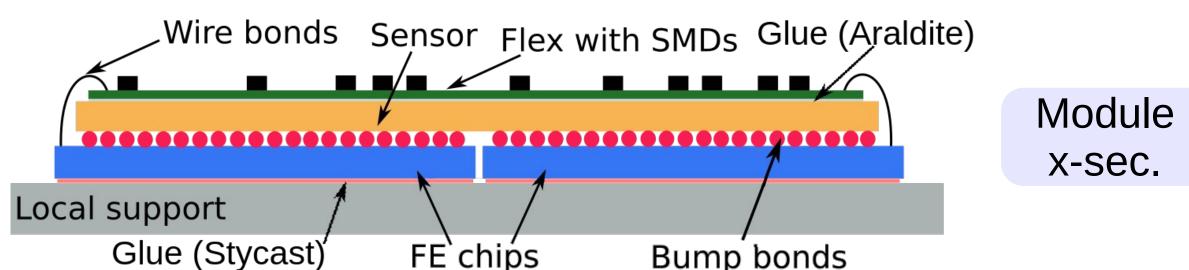
Bundesministerium für Bildung und Forschung

ATLAS ITk pixel module bump bond stress analysis Jörn Grosse-Knetter on behalf of the ITk Collaboration

JOIN GIOSSE-KNETTER on behalf of the ITk Collaboration II. Physikalisches Institut, University of Göttingen – email: jgrossel@uni-goettingen.de



Pixel Modules

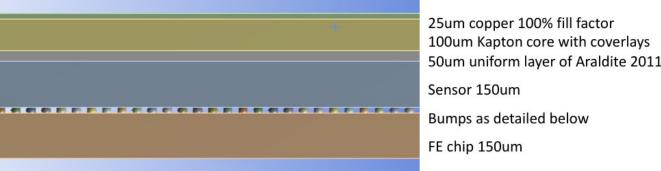
Pixel module structure:

- Hybrid of pixel sensor and 3 or 4 read-out chips (FE):
- Connected channel by channel with SnAg or In bump bonds.
- Bump bond pitch same as pixel size: $50 \times 50 \ \mu m^2$.
- Glued to thin PCB (flex).
- Mounting of modules on support structures forming barrel or endcap layers.

Bump Bond Stress

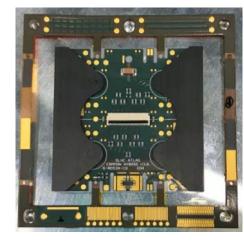
Modules need to be cooled in operation (dedicated CO_2 cooling plant), but will be warm in-between. Require all components to withstand order of 100 cycles of the cooling system between +25 and -45 °C @ 1°C/min.

Prediction of bump stress and cycles to failure obtained from **FEA simulation**:

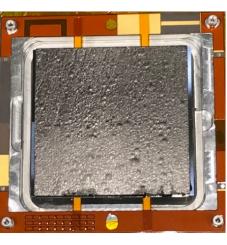

High density array of bumps, individually modelled with full
 visconlastic material

 ϵ_{f}' fatigue ductility coefficient, N_{f} mean cycles to failure,

fatigue ductility exponent.


viscoplastic material properties.

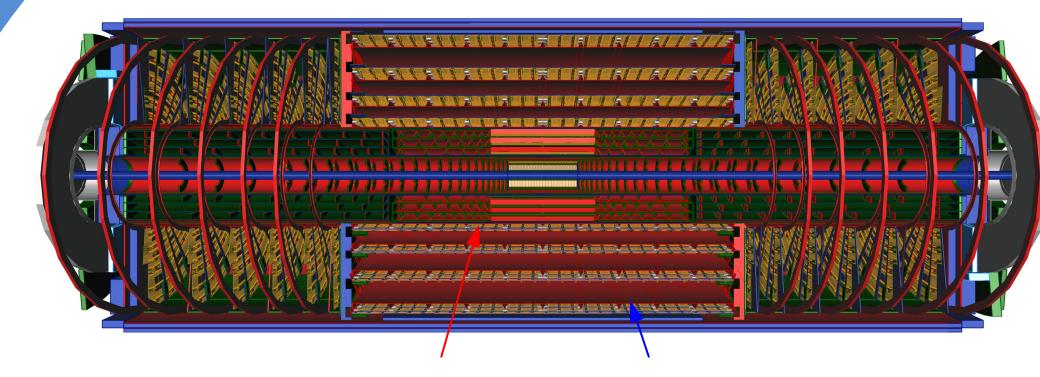
• Flex with realistic Cu content.



Compound structure of detector:

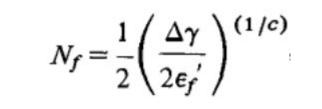
- CTE mismatch between components of/on module.
- Modules will be mounted on substrate with CTE \leq lowest CTE local support as proposed in ITk pixel: with rigid adhesive
- \rightarrow stress through temperature variation during operation a concern.

- Investigated with modules with
- Prototype (RD53A) chips (½ size) or pre-production chips (full size)
 Real ITk bump bond pitch, SnAg bump bonds



Flex with real Cu content
Attached to carbon sheets (end-cap (EC) style, outer barrel (OB) style (PG), or TPG)

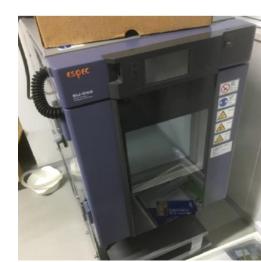
Dedicated campaigns with doublechip and four-chip modules from three bump bond vendors. Some samples coated with parylene (HV protection).


The ITk-Pixel Detector

ATL-PHYS-PUB-2021-024

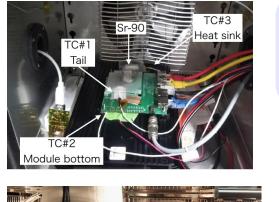
Pixels

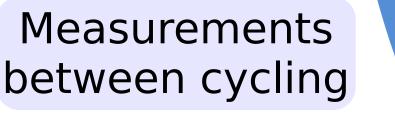
Coffin–Manson law:


→ calculation of cycles to failure from total strain $\Delta \gamma - result$:

Results do not include creep and based on empirical values from similar parts

	Temp range (°C)									
	+60-> -55	+40-> -45	-25 -> -45							
ix 25um Cu Im Araldite	2400	7700	100,000							
ix 35um Cu ım Araldite	800	2600	35,000							


Experimental studies involving thermal cycling of modules through specialised machines at several sites over +60 to -55 °C – wider range to see faster delamination than at range +25 and -45 °C.



Climate/shock chambers used for cycling studies

Cycling: Bump Defects

Tests of module bump quality:

- Source tests: too few / no hits seen
- → bump connection lost (requires β , γ , or X-ray source).
- Noise or cross-talk: sensor influences amplifier
 - \rightarrow information on bump connectivity (easier in-situ).

Sample	ven	endor Sul		bstrate	Pary	lene	Module	chi	р	Number of thermal cycles with <0.1% disconnects		
DCM34	С		OB TPG		N		Dual	2		50-100	500/985	
GD02	C		OB TPG		N		Dual	1		10-50	700/2539	
GD02	C			TPG	N	Dual		2		10-50	700/13594	
GD01	C			CFRP	N		Dual	1		100-250	500/1523	
GD01	C			CFRP	N		Dual	2	-	100-250	500/583	
DCM32	C			CFRP	N		Dual	1		>1000	1000/46	
DCM32	C			CFRP	N		Dual	2	>1000		1000/17	
KEKQ14	C			PG	Y Y Y		RD53-Quad	1-4	L	>100	100/0	
KEKQ17	C			PG			RD53-Quad	1-4		>100	100/0	
KEKQ18	C			PG	Ŷ		RD53-Quad	1-4		>100	100/0	
GLA2	C			CFRP	N		RD53-Quad	1-4		>100	100/0	
GLA3	C			CFRP	Y		RD53-Quad	1-4		>100	100/0	
GLA4	C			CFRP			RD53-Quad	1-4		>100	100/0	
RD08	A			CFRP	N		Dual	1		>1000	1000/0	
RD08	A		EC CFRP		N		Dual	2		500-1000	1000/155	
RD05	A		EC CFRP		N		Dual	1		>1000	1000/31	
RD05	A			CFRP	N		Dual	2	-	>1000	1000/0	
RD04	A			CFRP	Ν		Dual	1		>1400	1400/26	
RD04	Α		EC	CFRP	Ν		Dual	2		1200	1600/81	
DCM2	A		OB	TPG	Ν		Dual	1		>100	100/42	
DCM2	Α		OB	TPG	Ν		Dual	2		250-500	1000/248	
DCM5	Α		OB	TPG			Dual	1		10-50	250/354	
DCM5	A		OB	B TPG N			Dual	2	50-100		500/136	
B10	В		EC	CCFRP N			Dual	1 >50		>50	50/0	
B10	В		EC	CCFRP N			Dual	2		50-100	1000/37490	
B15	В		EC	CFRP	Ν		Dual	1		500-1000	1000/855	
B15	В		EC	CFRP	Ν		Dual	2		100-250	500/41497	
B17	В		EC	CFRP	Ν		Dual	1		0-10	1000/8027	
B17	В		EC	CFRP	Ν		Dual	2		100-500	1000/11699	
Sample	,	vendo	or	Substra	ate	Irrad	iated		Nu	mber of thermal	Max. number of cy	
					-					cles with <0.1%	cles/number of dis	
									-	sconnects	connects	
KEKv1-1		В	-+	OB TPG N		N			>1		100/0	
KEKv1-1		B	-+			N			>100		100/0	
KEKV1-2 KEKv1-2		B							>200		200/0	
		ь В									100/0	
KEKv1-3									>100			
KEKv1-3		B							>200		200/0	
KEKv1-4		B		OB TP		N				00	100/0	
KEKv1-1		В		OB TPG N				>100			100/0	
KEKv1-19 B		В		OB TP	TPG 6.3e15/500Mrad			>200		200/0		

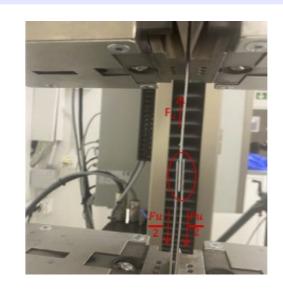
Upgrade of ATLAS with HL-LHC

Strips

- LHC will upgrade to higher inst. luminosity (HL-LHC)
- Upgrade of ATLAS: replacement of current tracking detector by all-silicon Inner Tracker (ITk)
- ITk comprises of 4 strip and 5 pixel layers in barrels and end-caps

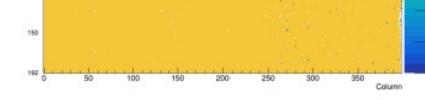
→ build O(10k) pixel modules in next years
 → must verify that design ensures reliable operation over 10 years of HL-LHC

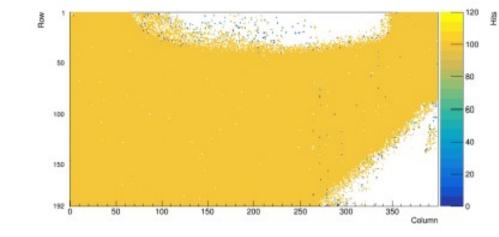
Most modules: failure at adhesive layer, not at bump bonds → only lower limit of force. In case failure is observed,


Results

turn force into bump strength.

Observed difference between vendors A, B support cycling results.


Shear Tests


Better understanding of adhesion → measure bond strength in lap shear tests.

Module samples, sandwiched between Al strips, bonded with ARALDITE 2011, pull tested to failure.

Test	Vendor and module type	Test type	Surface preparation	Bumps per FE	Ultimate force per chip (N)	Ultimate bump strength (N)
1	Vendor-A single chip module	Double lap shear test	Acetone cleaning	400*336	>652.8	> 0.0049
2	Vendor-A single- chip module	Single lap shear test	Plasma cleaning	400*336	>693	> 0.0052
3	Vendor-A single- chip module	Single lap shear test	Heavy ace- tone and alchohol cleaning	400*336	>1060	> 0.0079
4	Vendor-A single- chip module	Single lap shear test	Scotch-brite	400*336	>1450	> 0.0108
5	Vendor-B quad module FE-1	Single lap shear test	Scotch-brite	400*384	853	0.0056
6	Vendor-B quad module FE-2	Single lap shear test	Scotch-brite	400*384	219	0.0016

Results:

Vendors A, C: delamination

starts > 100 cycles; end-cap/PG support slightly better than TPG
Vendor B: several modules with delamination < 100 cycles

Vendor B with parylene: increased bump connection strength

Summary

 Measurements confirm simulation: thermal cycling is risk to bump bond integrity

- Result depends on vendor (UBM and bump bond specifics)
- supported by shear stress measurements
- Result depends on carbon support material: TPG vs end-cap or outer barrel support
- Parylene coating reduces effect, before and after irradiation
- Vendors A and C qualified even with harsher cycling range
- Benefit from parylene coating go forward with vendor B: gain more statistics and thus more confidence in vendor B until production

• Upcoming studies: 3-chip modules and In bump bonds (promis. FEA)

Pixel 2022 – The Tenth International Workshop on Semiconductor Pixel Detectors for Particles and Imaging, Santa Fe, New Mexico, USA