CMOS Pixelated Detectors

For Multi-probe Radiography

Zhehui (Jeph) Wang for UDA & MP collaboration

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

LA-UR-22-24837; LA-UR-22-26871; LA-UR-22-32340

Ultrafast Detectors & Applications (UDA) institutions

Outline

Motivations

- Flash radiography
- High-speed imaging for dynamic experiments
- '6H' frontiers

Recent progress & highlights

- Electronics-driven: CMOS sensors
- (Photonics-driven)
- Materials-driven: Scintillators (primarily)
- X-Ray Applications
- Neutron work in progress

Summary

UNCLASSIFIED

Evolution of high-speed imaging as of ~ 2017

In need of better temporal resolution

(a) 11 keV	(b) 12 keV	(c) 13 keV
t=0.0 us	t=0.0 us	t=0.0 us
t=33.3 us	t=10.0 us	t=3.33 us
t=66.6 us	t=20.0 us	t=6.66 us
t=100.0 us	t=30.0 us	t=10.0 us
t=133.3 us	t=40.0 us	t=13.33 us
t=166.6 us	t=50.0 us	t=16.66 us
Fluid phase	相互相對目的。在此關係的認識的影響	"Phase explosion"
$T \sim T_0$		$T > T_0$
Sechr	est <i>et al</i> , Appl. Phys. Lett. 11 7	7 (2020) 124102.
	ONCERSSITIED	June 2021 <u>zwang@la</u>

Operated by TRIAD National Security, LLC for the U.S. Department of Energy's NNSA

nl.gov Slide 4

In need of 3D information: X-ray experiment @ APS

UNCLASSIFIED

June 2021

zwang@lanl.gov Slide 5

In need of Large FoV: X-ray experiment @ APS

April 2021

zwang@lanl.gov Slide 6

Operated by TRIAD National Security, LLC for the U.S. Department of Energy's NNSA

Open problems in Flash Radiography

- High-energy photons (20 keV +)
- High photon flux (10⁷ + per pulse, sub-ns duration)
- High-efficiency /sensitivity (50% +)
- High temporal resolution (< 75 ns -)
- High spatial/pixel resolution (1-100 um -)
- High Data Volume

Operated by TRIAD National Security, LLC for the U.S. Department of Energy's NNSA

Slide 8

zwang@lanl.gov

High-speed X-ray Cameras & prototypes

- Hybrid CMOS
- **Highest TRL Driven** by near-term needs /light sources

EST 1943

PAL layer integration with CMOS sensor

Pixel-level hybridization

Lee et al, Instruments 5 (2021) 17

UNCLASSIFIED

Yue et al, (2021)

zwang@lanl.gov Slide 10

Large FOV: Billion-pixel X-ray cameras (BiPC-X)

Slide 11

Some challenges with hardware centric approach

- Long development cycle
- High cost
- Imperfect results

Alamos

NATIONAL LABORATORY

UNCLASSIFIED

July 2022 Z. Wang Slide 12

Open problems in Flash Radiography

High data volume ~ large dynamic range

- Single photon sensitivity and > 10⁵ photons per pixel within the same image
- Large FOV and resolution in a single device
- Image interpretation using theory or simulations
- Calibration data depend on a number of control parameters
- Noise

Operated by TRIAD National Security, LLC for the U.S. Department of Energy's NNSA

Slide 14

Super – resolution in astronomy

M87

Schawinski et al, MNRAS 467 (2017) L110

The Event Horizon Telescope Collaboration *et al. Astrophys. J. Lett.* **875**, L1 – L4 (2019).

UNCLASSIFIED

June 2021 zwang@lanl.gov Slide 15

Ф–Cam Architecture based on Neural Network

Operated by TRIAD National Security, LLC for the U.S. Department of Energy's NNSA

3D reconstructions of X-ray images sensitive to noise

B. T. Wolfe et al, RSI 92 (3) (2021) 033547.

UNCLASSIFIED

22 iWoRiD 2021 Z. Wang Slide 17

Model sensitivity studies

Wolfe et al, https://arxiv.org/abs/2206.02564

UNCLASSIFIED

22 iWoRiD 2021 Z. Wang Slide 18

Neutron highlights

See Simon Spannagel (DESY) Talk

-- Shanny Lin (LANL/ Texas Austin)

UNCLASSIFIED

22 iWoRiD 2021 Z. Wang Slide 19

Summary

- Flash X-ray radiography
 - With roots in Flash photography
- Recent trends (hard-ware driven)
 - CMOS technology & device physics (legacy of the Moore's law)
 - Material discoveries (scintillators, nanomaterials),
 - Multiprobe radiography
- Emergent opportunities (data-driven)
 - data science, machine learning
 - Experimental validation
 - Broad application potentials → Multiprobe Radiography

UNCLASSIFIED

Apr 2022 zwang@lanl.gov Slide 20

NISA

Acknowledgement

Thank you !

Work supported in part by LANL Office of Experimental Science (C2, C3), LDRD, NNSA LRGF, NNSA SSAP, DoE SC

• Los Alamos

UNCLASSIFIED

Apr 2022

zwang@lanl.gov Slide 21

