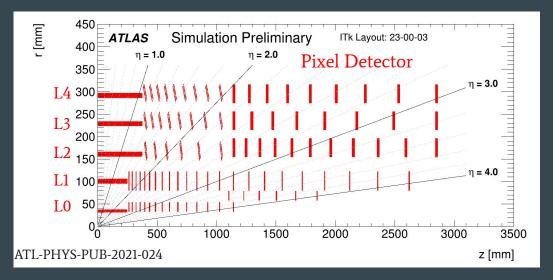
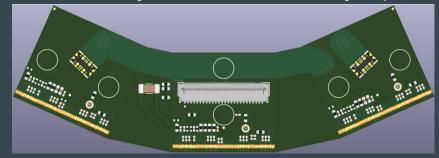
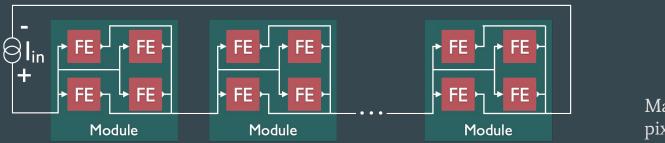
Serial Powering for ATLAS ITk Pixel Modules


 $\bullet \bullet \bullet$

Jay Chan (University of Wisconsin-Madison) For the ATLAS ITk Collaboration December 15, 2022

ATLAS ITk pixel modules

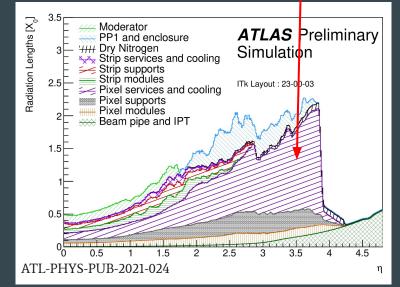

Pre-production (ITkPixV1) quad module


Pre-production (ITkPixV1) R0.5 triplet hybrid

- ATLAS ITk pixel detector contains 8372 modules
 - 396 triplets (3 FE chips) used for L0
 - 7976 quad modules (4 FE chips) used for L1~L4

See Craig Buttar's <u>talk</u> about ATLAS pixel upgrade Dimitris Varouchas' <u>talk</u> about ATLAS pixel module

Module Serial Powering


Mass dominated by pixel services (e.g. cables)

Large volume of powering cable materials affects detector performance

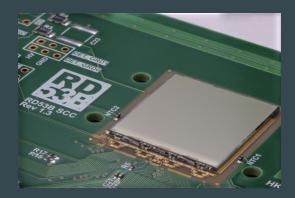
Novel power scheme: groups of modules powered in series to reduce cable materials!

Requirements/challenges:

- Constant-current power supply with load regulation
- Over-voltage protection
- Over-current protection
- Fault condition handling (response to chip faults!)

ITkPixV1.1 chips

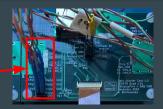
ITkPixV1.1 chip is the preproduction ATLAS ITk pixel FE chip designed by RD53 collaboration


Turn the serial powering from an R&D activity into a "professional grade" powering technology!

- Shunt-LDO operation: the combination of low dropout regulators (LDO) and shunt circuits gives ohmic behavior and allows for constant current operation
- Over-voltage and over-current (under-shunt) protection \bullet provide good response to chip faults
- Low power mode allows non-standard operation during testing stage

Novel power scheme with no operational experience: need to build confidence with test setups!

20mm 400 pixels


20.7mm

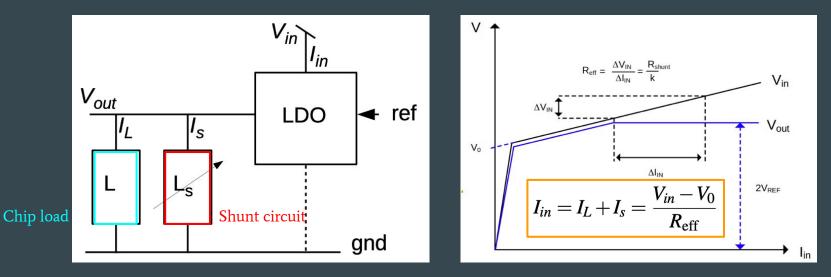
Serial power testing (@ LBNL)


Up to 8 quad modules powered in series with constant current

Internal voltages/currents of quad modules measured through multiplexers routed to the data adaptor card

Single-chip card provides pure chip information

Chip internal voltages/currents measured through probe pins

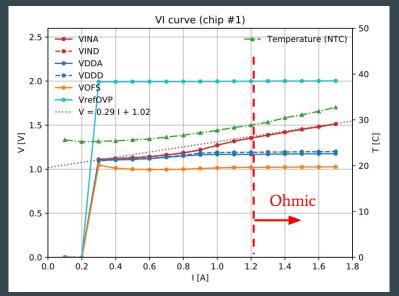

Extensive electrical tests on pre-production (ITkPixV1.1) modules have been performed to verify that modules work as designed

Powering tests highlighted in the following:

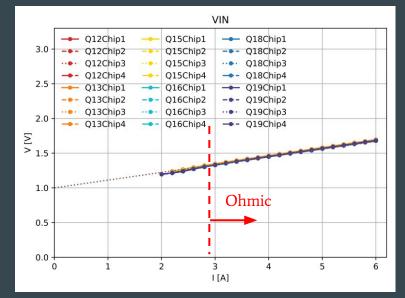
- Shunt-LDO voltage-current (VI) test
- Low-power (LP) mode enabling
- Test of under-shunt condition

Shunt-LDO VI test

Shunt-LDO VI test


VI tests are crucial to validate the shunt-LDO design

Main goals:


- Verify the ohmic behavior and compare with theory prediction
- Record the minimal operating current $(I_{in} > I_L)$ and voltage $(V_{in} > V_{out} + V_{drop-out})$ for proper shunt-LDO operation

Results of Shunt-LDO VI test

Single-chip card

Serial-power chain

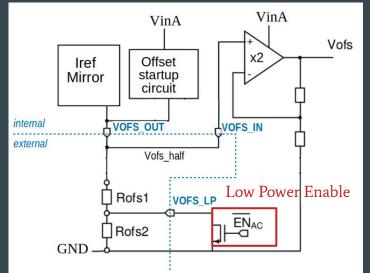
VINA(D) = input voltage for analog (digital) domain VDDA(D) = V_{out} of analog (digital) domain regulator VOFS = offset voltage of shunt circuit VrefOVP = over-voltage protection threshold Minimal operating current determined by chip configuration (changes chip load current consumption)

Ohmic behavior consistent with theory prediction

Low-power mode enabling

Low power mode

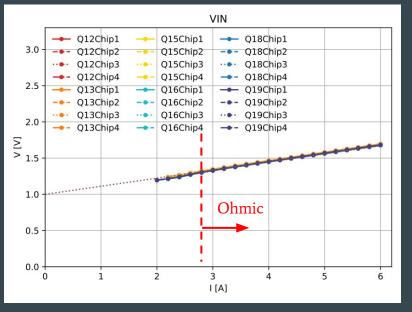
Increase the shunt offset voltage (VOFS) and allow for a smaller current (e.g. 2A) needed to develop a high enough voltage for voltage regulators


Low power operation useful for module testing without a proper cooling system (e.g. during integration to test cable connection)

Low power mode can be enabled by injecting an A/C signal

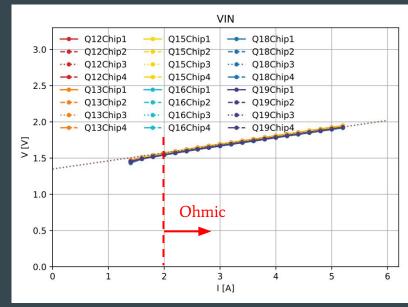
- Square wave: Vpp > 1.2V, f = 80 kHz
- Sine wave: Vpp > 1.2V, f = 130 kHz

Low Power Enable


Enable low power mode for the serial power chain

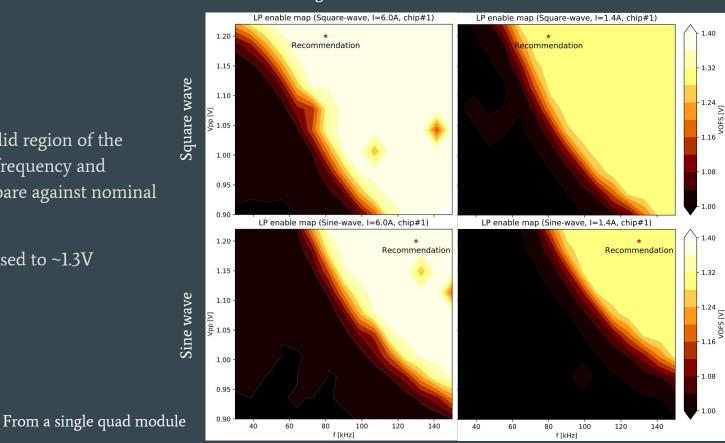
A/C signal can be injected through the data adaptor card to enable the low power mode for a quad module

Enable low power mode for the serial power chain


Normal power mode

VOFS increased from ~1V to ~1.3V

Reach the ohmic region at a lower current


Low power mode (inject square wave Vpp=1.2V, f=80kHz)

Low power enable valid region

Scan through the valid region of the injected A/C signal frequency and amplitude and compare against nominal values

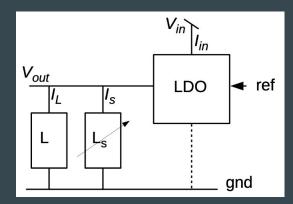
Valid = VOFS increased to ~ 1.3 V

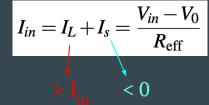
High current

Low current

13

Under-shunt condition


Under-shunt condition and protection


Under-shunt condition: shunt current drops to zero $(I_s \rightarrow 0)$ when current consumption drawn by chip loads exceeds input current $(I_L > I_{in})$ (chip faults or wrong configuration)

- Effective resistance decreases from programmed constant value
- Could lead to internal shorts and cause chip damage
- Cause transient effect in a serial power chain

Under-shunt protection prevents shunt current going to 0 and protects against internal short induced by dynamic situation

- Function by reducing the reference voltage VrefA/D and subsequently VDDA/D
- Can cause internal oscillation

Test under-shunt condition in a serial power chain

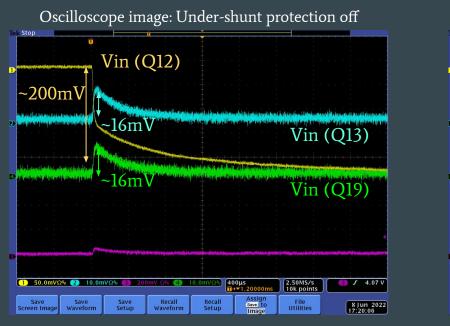
Create under-shunt condition by raising the chip current consumption with or without under-shunt protection

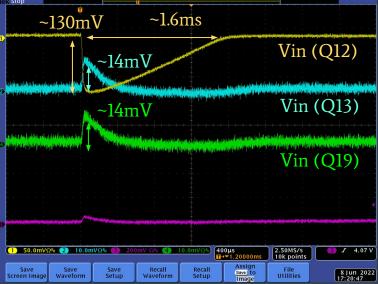
Steady under-shunt:

Change the chip preamplifier settings -> Steady under-shunt for analog domain

Dynamic under-shunt:

Inject signal pulses (digital scan) -> under-shunt for digital domain

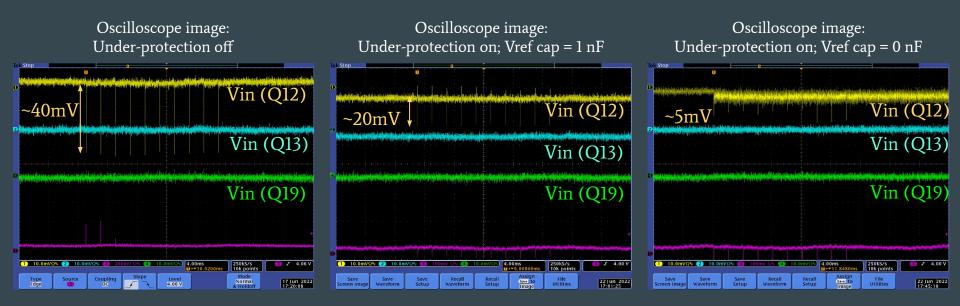

Dynamic


Monitor Vin transient on neighboring modules

Induce under-shunt

Steady under-shunt condition (analog)

Oscilloscope image: Under-shunt protection on

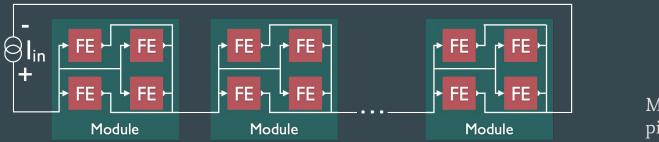

- When under-shunt protection is off: internal short from under-shunt condition causes Vin to drop
- When under-shunt protection is on: internal short is recovered by reducing reference voltage
- Observe transient effects on neighboring modules (both protection on and off)

Response time vs bypass capacitors

Oscilloscope image: Oscilloscope image: Oscilloscope image: Under-protection on; Vref cap = 10 nFUnder-protection on; Vref cap = 1 nFUnder-protection on; Vref cap = 0 nF~200µs Vin (Q12) Oscillation ~40us Vin (Q12) ~85mV Vin (Q12) ~10mV Vin (Q13) Vin (Q13) Vin (Q13) Vin (Q19) Vin (Q19) Vin (Q19) ~10mV 2.50MS/s 10k point 2.50MS/s J 4.00 V 400µs 2.50MS/s Assign Save to Assign Save to Image Recall Recall File 22 Jun 2022 18:17:19 More 22 Jun 2022 Save Screen Imag Save Recall File Utilities 22 Jun 2022 17:42:53 4 Label

- Response time of under-shunt protection depends on the bypass capacitors for the reference voltages: shorter response time with smaller capacitor -> also smaller transient effects
- Too small capacitor results in large internal oscillations

Dynamic under-shunt condition (digital)

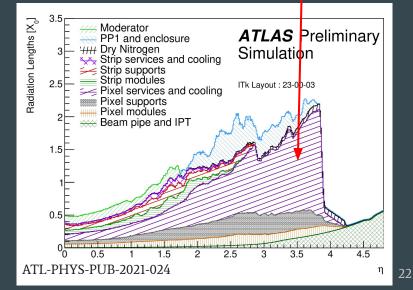

- Similar behavior observed for the dynamic under-shunt condition: small bypass capacitors result in shorter response time and larger internal oscillations
- No substantial issue observed (1 nF found to be a good balance between response time and internal oscillations)

Summary

- Serial powering of the ATLAS ITk pixel modules is a new concept of powering and allows to significantly reduce power cable materials
- Extensive electrical tests on the pre-production (ITkPixV1.1) module serial powering have been performed; powering tests highlighted in this talk:
 - Shunt-LDO voltage-current test
 - Low power mode enabling
 - \circ Test of under-shunt condition
- Observed mild transient effect in a serial power chain, while no substantial issue was found; allows to move forward to the next stage of the chip/module developments!
 - Module pre-production submitted July 2022; chip production to be submitted February 2023

Backup slides

Module Serial Powering


Mass dominated by pixel services (e.g. cables)

Large volume of powering cable materials affects detector performance

Novel power scheme: groups of modules powered in series to reduce cable materials

Requirements/challenges:

- Constant-current power supply for stable operation
- Voltage drop across module determined by current
- Novel power scheme with no operational experience: need to build confidence with test setups!

