SEIRR

SANTA CRUZ INSTITUTE
FOR PARTICLE PHYSICS

UCISANTAYCRUZ

AC-coupled Low Gain Avalanche Diodes for 4D tracking:
impact of electrode geometry on charge sharing

Jennifer Ott

jeott@ucsc.edu

12-16 December 2022

La Fonda Hotel | Santa Fe, New Mexico, USA




_CoIIabora_tors

|
|

UCSC: J. Ott, S. M. Mazza, J.-L. Cazalis, S. Letts, G. Lozano, A. Molnar, M.
Nizam, E. Ryan, T. Shin, M. Wong, N. Yoho, Y. Zhao, H.F.-W. Sadrozinski,
B. Schumm, A. Seiden

X |

Brookhaven: G. DAmen, G. Giacomini, W. Chen, A. Tricoli

Fermilab: C. Madrid, R. Heller, C. Peia, S. Xie, A. Apresyan

University of Tsukuba & KEK: |. Goya, K. Hara, S. Kita, K. Nakamura, T. Ueda

Rice University: W. Li

UIC: Z. Ye

INFN Torino & FBK: N. Cartiglia, V. Sola, R. Arcidiacono, F. Siviero, M. Tornago,
M. Mandurrino, M. Ferrero, M. Boscardin, G. Borghi, G. Paternoster, F.
Ficorella, M. Centis Vignali, G.F. Dalla Betta, L. Pancheri



Precision tracking and timing

* LHC and HL-LHC: high energies, luminosities in p-p collisions — pileup
and radiation damage
* Phase-2 upgrades for ATLAS and CMS: improvement of tracking

detectors (silicon pixels and strips) + installation of dedicated timing
detectors to reduce effect of pileup at extreme luminosities

LHC nominal: 10* cm?®*s™ HL-LHC: 10* cm?*s™
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* 4D tracking is going to be essential in future high-energy physics
experiments to mitigate effects of higher luminosity and pile-up and
to improve tracking, vertexing and timing precision
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CMS Collaboration, A MIP Timing Detector for the CMS Phase-2 Upgrade, CERN-LHCC-2019-003, 2019

ATLAS Collaboration, A High-Granularity Timing Detector for the ATLAS Phase-Il Upgrade, CERN-LHCC-2018-023, 2018
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Low gain avalanche diodes

* Silicon low-gain avalanche diodes (LGADs) are studied by
the CMS and ATLAS experiments for their endcap timing

detector upgrades
* Thin sensors, typical thickness 50 um
* Low to moderate gain (5-50) provided by p* multiplication layer
» Timing resolution down to ca. 20 ps
» Good radiation hardness up to 10*> n.,/cm?

* A more recent development: AC-coupled LGAD

n* connection AC metal pads n* connection
p-stop Dielectric l J'

\ | l \
-F I PR - -
?
Junction termination

n*contact  extension

Metal pads

- - -

50 um | | p-type bulk

~50 um | | p-type bulk dielectric

resistive n* layer

p*gain layer

p*gain layer

p** contact p*™ contact
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AC-coupled low gain avalanche diodes

* In AC-coupled LGADs, also referred to as Resistive Silicon Detectors (RSD), the
multiplication layer and n* contact are continuous, only the metal is patterned:
» The signal is read out from metal pads on top of a continuous layer of dielectric

» The underlying resistive n* implant is contacted only by a separate grounding
contact

» No junction termination extension: fill factor ~100

* The continuous n* layer is resistive, i.e. extraction of charges is not direct
» Mirroring of charge at the n* layer on the metal pads: AC-coupling
» Strong sharing of charge between metal pads

> Extrapolation of position based on signal sharing — finer position resolution for
larger pitch, also allowing for more sparse readout channels
AC signals

charge charge
extraction —/\/— J\ﬁ —/\f —~N~ extraction
T
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G. Giacomini et al., Fabrication and performance of AC-coupled LGADs, JINST 2019, 14, P09004
A. Apresyan et al., Measurements of an AC-LGAD strip sensor with a 120 GeV proton beam, JINST 2020, 15, P09038
S. M. Mazza, An LGAD-Based Full Active Target for the PIONEER Experiment, Instruments 2021, 5(4), 40 5



Key developments in (AC-)LGADs

* Gain layer doping
e Suitable gain, breakdown voltage, radiation hardness...
 Thinner sensors: from 50 to below 30 um
* Faster signal rise time and charge collection time

e Reducing Landau component of the timing resolution
» Towards 10 ps timing resolution

* n*layer resistivity
* Dielectric
* Segmentation
* Type: pad/pixel, strip
* Geometry: rectangular, cross-shaped, ...

e Metal size
* Pitch
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AC-LGAD strip sensors

120 GeV proton beam at the
Fermilab test beam facility *

BNL 2021 Strip sensor
Metal width 80 um, three
different pitches:
Narrow, 100 um
Medium, 150 um
Wide, 200 um
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* C. Madrid, 39t" RD50 Workshop, November 2021,
https://indico.cern.ch/event/1074989/contributions/4602013/,

R. Heller et al, https://arxiv.org/abs/2201.07772 )

Brookhaven National Laboratory

IR Laser TCT

BNL 2021, new production

Variations in both pitch and metal width
« 100/200/300 um pitch with 50 % metal
* Uniform strips: 500 um pitch - 200 um
metal
Including long(er) strips of 1 cm and 2.5 cm
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Strip length ca. 2.5 cm


https://indico.cern.ch/event/1074989/contributions/4602013/
https://arxiv.org/abs/2201.07772
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Position resolution by signal sharing

Case of two adjacent strips
* Averaged maximum pulse height (pmax): The

pmax sum ist not constant under the strip
metal, but fairly constant between strip centers
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* The pmax fraction of an individual strip is

defined as:
pmax (channel)

Y. pmax

pmax fraction (channel) =

* The position resolution can be calculated from
the fraction of pmax at a given position (fitted
with an error function):

d(position) S

osition resolution o, ,. = ——
p pos d(fraction)’ N

120

100

Pmax [mV]
N Y [e)) [os]
o o o o

o
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Position [mm]

0.9

01 Lo
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Position [mm]

Signal-to-noise ratio is favoring sensors

with higher gain g



Charge on neighboring strips

* Closer examination of the individual strips’ pmax profiles reveals
contribution from next and even second neighboring strip

* Actual sharing extends from the central strip almost to the far edge of
the next neighbor

» Localization indicates induced charge on the neighboring strips, not purely
conduction through the resistive n* layer
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https://doi.org/10.1016/j.nima.2022.167541

Position resolution in BNL 2021 strips

e Strip pitch is expected to - and appears to - have a large impact on charge
sharing as seen in the pmax fraction profile ...

e ... position resolution of ca. 15 um at the respective strip metal centers (end of
the data points in the plot): in fact very similar for all three pitches
* Between strips, a position resolution of ~6 um or less is reached; slightly
better for smaller pitch
* At best, < 1/20 of the pitch
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Timing resolution

2 _ 2 2 2 2 2
0t = OLandau + G]itter +JTimeWalk + OTpC + Opistortion

 AC-LGADs provide comparable performance to
conventional LGADs, determined by largely by the gain
layer: < 40 ps established, 20 ps reachable

* Impact of signal sharing on timing resolution:

* Weighted reconstruction of
several contributions can
improve timing resolution O'W

e But: lower signal in individual 20
segment increases rise time and ]
reduces signal-to-noise ratio
(and thus timing resolution ;
through the jitter component) ] B E:z
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Charge sharing at long distances

e Selection: proton track on strip #6, “in-time” data within 1
ns time window of the main signal

e Constant, position-independent pmax (above noise) at
longer distance from hit — not predicted by 2D simulations
* Sharing or pick-up from the n* layer? Or cross-talk with other
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Laser study of charge sharing

e 500um-pitch/200pum-metal sensor differs from others in
terms of charge sharing, but still provides < 20um position
resolution between metal strips

H 80 T T T T T T T T T
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Role of strip length in charge sharing

0.5cm

lcm

)
E * Traditionally, research focus lies on
E) identifying and optimal strip pitch and metal width
@) . o
: » Strip length also affects charge sharing
g * Not detectable in 2D or quasi-3D simulations - preliminary 3D
% simulations appear to be able to replicate higher sharing for longer strips
?éc * Longer strips exhibit 80-140 % higher amplitude in the next neighbor
& and almost 200 % more sharing to the second neighbor
§ » Strip length correlates with (inter)strip resistance and (inter)strip
Q capacitance
<DE 40
3 _ | T Pitch 100 - length 0.5 cm . 0 Pitch 200 - length 0.5 cm 10— Pitch 300 - length 0.5 cm
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Multipitch strips: sensor capacitance

2.5cm 1cm 0.5cm

* For reference: capacitance of the full sensor, n* to
backplane (‘DC configuration’)

» No dependence on measurement frequency after bulk
has been depleted of charge carriers
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AC strip and interstrip capacitances

* Very different picture when measuring AC component(s):
AC strip electrode to backplane, or between AC strips

» Frequency dependence, and inverse correlation of frequency and
capacitance

* Depletion is still observed: contribution to these
capacitances not only by surface, metal or dielectric

* Interstrip capacitance is larger than strip capacitance itself
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Strip metal resistance [Ohm]

Strip metal resistance [Ohm]
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Capacitances as function of strip length and width
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* C. Madrid et al, https://arxiv.org/abs/2211.09698 and data shown in conversation

Capacitances as function of strip length and width

* Strip length and width increase both strip and interstrip

capacitances
* Nearly exponential increase with strip length
 Strip resistance increases with length as well

* Impact of strip width (in this case, directly connected to the
pitch) less extreme
 Strip resistance is reduced for wider metal

Interpretation of the obtained resistances corresponding
toa C,-R,/ C-R, model is not well understood yet

Increased strip capacitance seems to correlate with
higher position-independent response — potentially
cross-talk and pick-up are increased in larger strips *

18



https://arxiv.org/abs/2211.09698

Electrode shape and capacitance

 Emphasis on electrode shape and geometry in FBK RSD2*
e \Various shapes: strips, regular rectangles, circles, crosses, stars...
* Geometry: electrodes arranged on a square grid or on triangles

* Metallization: e.g. cutting out the metal on strips, leaving a
“frame” instead of a fully metallized strip

» Direct impact on electrode capacitance

=@~ 50 um, frame

10

Capacitance [pF]
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*M. Mandurrino et al, 39th RD50 Workshop, November 2021 (https://indico.cern.ch/event/1074989/contributions/4602006/) 19
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FBK RSD2 exotic geometries

e 500 um pitch pad array with unconventional
metal shapes

» Reduction of AC pad capacitance by using metal lines
instead of full metallization?

» Impact on signal?

» Exploration of asymmetric metal (microstrips, H-bars)
for enhanced resolution in one dimension

m 20



FBK RSD2 exotic geometries

e Capacitances scale well with metal area

* Already small change in metal line width
affects the measured capacitance
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Square 94

Microstrip 299
Cage 1 726
Cage 2 801
Cage 3 621
H-bar 1 639
H-bar 2 493
H-bar 3 329
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FBK RSD2 exotic geometries

e Square pads: uniform response in x and y

e Cages: uniform response in x and y as well,
but 8

= 900 ‘ | : 45@
i H : 5 a0 &
e ... broader maximum amplitude profile % 200 w— =
e ...cage outer lines contain the (large) s
Signal 400

300

e ...reduced capacitance by a factor of
~2-2.5 compared to fully metallized pad
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FBK RSD2 exotic geometries

* Microstrips and H-bar pads: broader
maximum amplitude profile along the
elongated dimension

* Additional metal line ‘cap’ provides more
homogeneous signal along H-bar pads!

* Similar to cages, but visible also in one dimension
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Summary |

Thanks to signal sharing, AC-LGADs can achieve remarkable position
resolution even with large and widely spaced electrodes

» Less than 1/20 of the pitch — e.g. ~20 um at 500 um pitch
» Simultaneously, 25-35 ps timing resolution

Reconstruction with multiple strips beneficial for position resolution, but is
not preferred for timing

Charge sharing in AC-LGADs is influenced by several factors:

Metal electrode:
* Induction of signal on neighboring electrodes is observed
» Strip length and width affect charge sharing — pitch appears less critical

* Understanding of the interaction of various capacitances and resistances in the
sensor to be improved, drawing also on circuit and 3D sensor simulations

* “Advanced manipulation” of the electrode shape may be interesting for
targeted application

Dielectric: not well quantified, capacitance is dominated by the Si area and
volume

n* layer resistivity (cf. backup slide): higher resistivity reduces sharing
» Limited by feasible implantation dose, avoiding depletion of the n+ layer
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Example of future experiments: PIONEER

* New pion decay experiment approved at PSI, data
taking to be started in 2028 - first beam time
completed in May-June 2022

* Design baseline for the Active TARget: 2x2 cm? area
with 48 planes of 120 um thick AC-LGAD strips, pitch
ca. 200 um

e Large energy deposition by stopping particles: need
sufficient charge sharing to provide good spatial
resolution, but not too much in order not to occupy
large areas of the sensor from a single hit

J. Ott et al, AC-LGAD 4D tracking and electrode geometry, Pixel2022

| ATAR |
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PIONEER: Studies of Rare Pion Decays, https://arxiv.org/abs/2203.01981 (2022)
S. M. Mazza, An LGAD-Based Full Active Target for the PIONEER Experiment, Instruments 2021, 5(4), 40 25
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EPIC detector at the Electron-lon Collider

e EIC Detector 1: recently issued recommendation, based on two proto-
collaborations

» Emerged as EPIC Detector collaboration in summer 2022

* Design includes AC-LGADs for time-of-flight particle ID, t,
determination and timing, and serving as additional layer in
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EPIC detector at the Electron-lon Collider

EIC Detector 1: recently issued recommendation, based on two
proto-collaborations

» Emerged as EPIC Detector collaboration in summer 2022
Design includes AC-LGADs for time-of-flight particle ID, t,
determination and timing, and serving as additional layer in
Tracking

» Efforts organized in the TOF-PID working group, and eRD112/LGAD
consortium

Radiation hardness of timing detectors not very challenging -
more important:

* Combination of precise temporal and spatial resolution: 25 ps and

30 um / hit

* Low material budget
Current sensor design baseline:

e Barrel: strips, 500 um pitch and 1 cm length

* Hadronic endcap (and Roman Pots): pads, 500 x 500 um

27
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Summary |l

Extensive ongoing research on AC-LGADs towards precision timing and 4-
dimensional tracking in future colliders and experiments

» Efforts will provide valuable information for adjusting the properties of future
AC-LGAD sensors to their targeted applications

» Including development of readout electronics!

Strip sensors are more sought after for larger areas: understanding the
mechanisms and limiting the charge sharing in long strips is important for
both aforementioned projects

Pad sensors: reconstruction more complex; tradeoff between larger signal
on one hand, and reduced resolution under the metal on the other

Precise timing and position resolution and fast charge collection time is
also attractive to other fields, such as beam monitoring, photon counting
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J. Ott et al, AC-LGAD 4D tracking and electrode geometry, Pixel2022
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Impact of n+

e Charge sharing in terms of pmax fraction, and subsequently position
resolution can be determined in the same way for pad sensors

B2 and C2 refer here to different n* implant doses*

» Effect of n* resistivity on is significant

» n*resistivity is another parameter to tune charge sharing (to the
requirements of specific applications)

Impact of n* implant dose on position resolution
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Signal pulse shapes

Continuation to slide 10 with normalized pulses and tmax-pmax plot

* Signal in second neighbors is

observed, but with lower 2:
amplitude, wider spread in pmax o
and peak time tmax s ]
e Pulse shape (when amplitude is E L]

normalized) is in fact not ~100]
distinctly different 120
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Separation of real signals: In-time vs out-of-time

Addition on in-time/out-of time plot, slide 12

Smaller time window reduces noise contribution to signal

The choice of model used to describe the signal (mean, Landau,
Gaussian) does not have a strong impact on signal/noise separation

Even at large distances from the triggered channel, in-time signal
pulse heights are above the noise floor
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Strip length and width

. um
[ ]
) pm .
. rd
um _
P d
rd
7 —A
P4 . - - . -.
- ‘.. - - - -
©
C 1 1 1 1
1 1.5 2 2.5 3
C .
'z Strip length [cm]
@)
©
| .
)
..q m
«
-Qc N
N
-EFIm b LN
1
O
<
©
b
W
i)
i)
-
L
25 50 75 100 125 150 175

Strip width [um]

Same as slide 17, just log-y axis
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