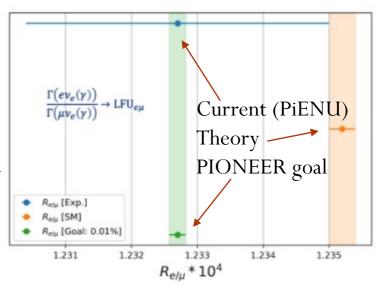
12-16 December 2022

La Fonda Hotel | Santa Fe, New Mexico, USA

TOPICS: Pixel detectors in nuclear and particle physics, astrophysics, bioscience, and x-ray science, with emphasis on pixel sensor technology and device design, front-end readout electronics, radiation effects on devices, mechanics and integration, calibration, and data processing.

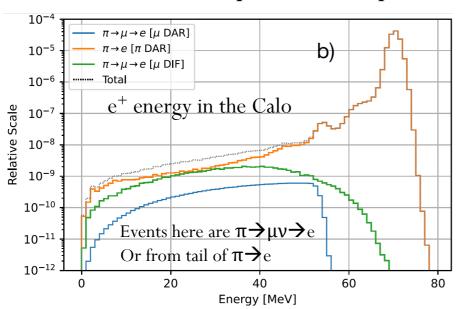


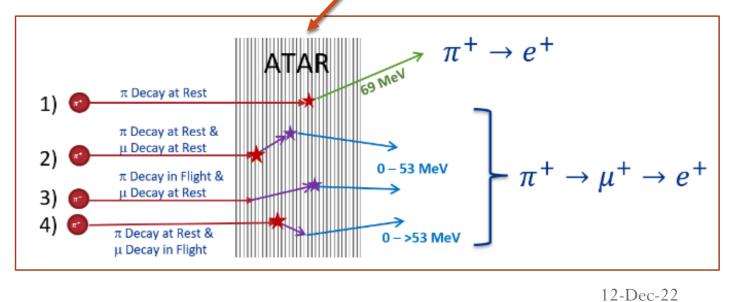
An LGAD-based fully active target for the PIONEER experiment

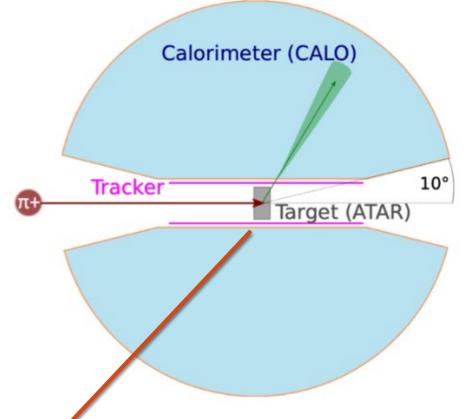

Dr. Simone M. Mazza (UCSC) on behalf of the PIONEER collaboration PIXEL 2022, Dec. 2022, Santa Fe, NM (US)

PIONEER

- **PIONEER** is a next generation rare Pion decay experiment
 - Measurement of charged lepton flavor universality $\mathbf{R}_{\mathbf{e}/\boldsymbol{\mu}} : \frac{\Gamma(\pi \to ev(\gamma))}{\Gamma(\pi \to \mu v(\gamma))}$
 - Ratio of pion decay to electrons and muons
 - Improving the precision from past experiments by an order of magnitude, making it comparable with SM calculation (a deviation would point to LFUV)
- Further physics goals
 - Increase precision by an order of magnitude of **Pion beta decay branching** fraction $R_{\pi\beta}$: B($\pi^+ \rightarrow \pi^0 e^+ \nu$), theoretically cleanest measurements of Vud
 - These measurements are sensible to new physics up to thousands of TeV
 - Searches for exotic physics (e.g. Axion-like particles)
- PIONEER will take place at PSI (Switzerland), π e1 or π e5 BLs
 - Proposal approved with high priority by the PSI committee in 2022
 - **Phased effort**: Phase I aimed at $R_{e/\mu}$ and phase II/III aimed at $B(\pi^+ \rightarrow \pi^0 e^+ \nu)$
- PIONEER encompasses groups from PIENU, PiBeta, muon g-2, ATLAS and it's a steadily growing collaboration (see https://arxiv.org/abs/2203.01981)
 - First PIONEER workshop at UCSC in Oct 2022: <u>https://indico.cern.ch/event/1175216/</u>

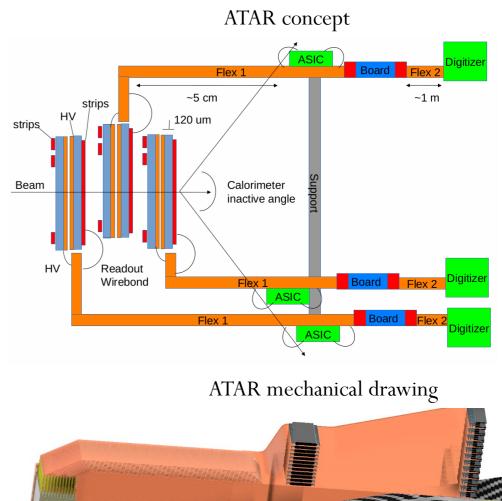


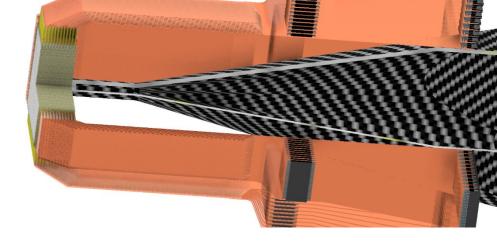

https://arxiv.org/abs/2203.01981



PIONEER detector design

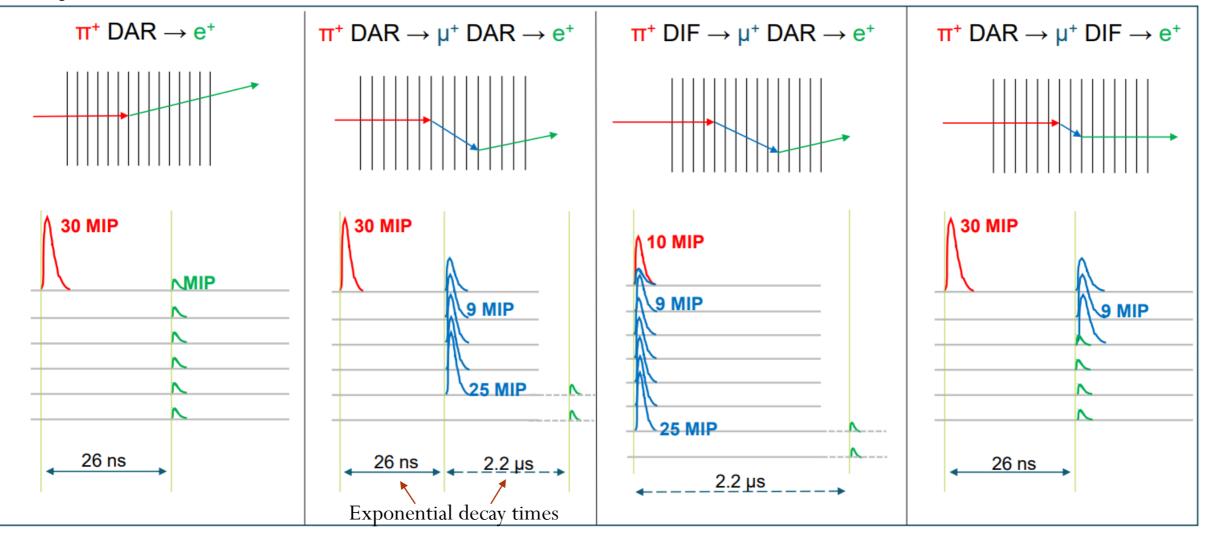
- Three main detectors:
 - Active Target (ATAR) with fast timing and high segmentation to identify and tag decays
 - **Calorimeter** with high energy resolution (1%) and 25 X_0 (liquid Xe or LYSO alternative)
 - Low mass tracker (μ -RWELL) in between to track positrons
- Goal (phase I): separation of energy spectra of $\pi \rightarrow e\nu$ and $\pi \rightarrow \mu\nu \rightarrow e\nu\nu\nu$
- **Pions stop** or decay in **flight in an active target** where decay products are tagged
 - Energy deposited by each particle is very different e^+ is a MiP, pion/muon up to 100 MiP!
- Final state positrons are tracked and the total energy is measured in a 3π calorimeter
 - e+ energy in the calorimeter from 2 ($\pi \rightarrow e\nu$) vs 4 ($\pi \rightarrow \mu\nu \rightarrow e\nu\nu\nu$) body decay
 - However, the 2-body energy tail overlaps with 4-body energy spectrum
- ATAR is crucial to tag decays to recognize events in the overlapping energy spectra!
 - Needed to achieve to x10 improvement in precision





ATAR design

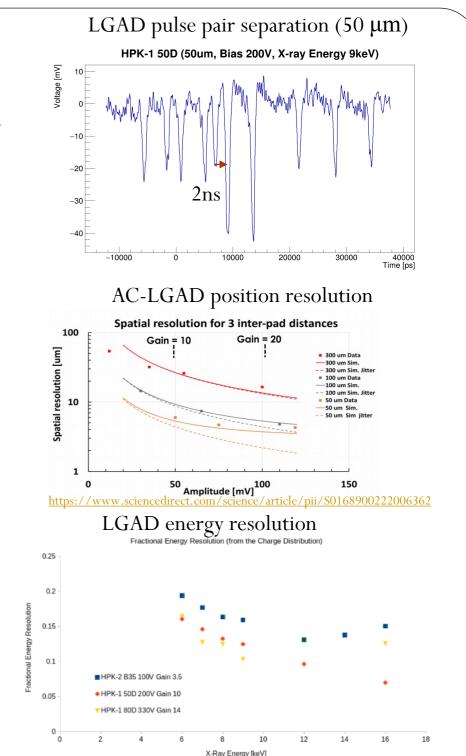
- Full silicon active target (ATAR): ~2x2 cm area of silicon, ~6 mm thick
 - **High granularity** in (X,Y, Z), **fast full collection time**, good energy response, high dynamic range
- The chosen sensor for the ATAR is an high granularity LGAD technology (AC-LGADs or TI-LGADs)
 - <u>https://indico.cern.ch/event/1175216/contributions/5064170/</u>
- Alternative design is being studies with standard silicon sensors
 - https://indico.cern.ch/event/1175216/contributions/5064174/
- ATAR initial design
 - 48 layers of 120um thick sensors, 200 um pitch strips
 - Layers have to be as close as possible
 - Compromise between granularity, total active area, timing and dead material
- Readout flexes alternating on the four sides to allow space for the wire bonds
 - First (5 cm) flex carries the un-amplified signal from sensor to ASIC with fast analog amplification mounted on the flex
- The **ATAR signals will be fully digitized** in a region of interest (ROI, temporal or spatial) for each event
 - Event reconstruction will use full waveforms from several channels



Event Reconstruction

- Complex event reconstruction to detect all types of pion decays
- Reconstruction techniques using machine learning
- Expertise from BNL on LArTPC event reconstruction

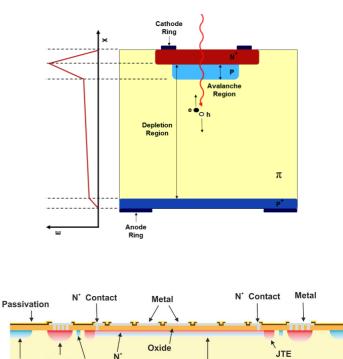
Reminder: to reach the target level of precision for PIONEER it is crucial to recognize $\pi \rightarrow e$ from $\pi \rightarrow \mu \rightarrow e$ events when final e⁺ energy is the same!

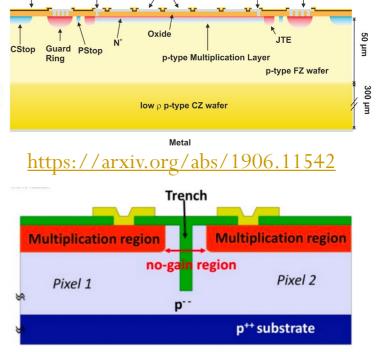

5

https://indico.cern.ch/event/1175216/contributions/5064176/ https://indico.cern.ch/event/1175216/contributions/5064175/

12-Dec-22

ATAR challenges


- Recognize hits that are few ns apart with very different deposited energy while having high spatial granularity in X/Y/Z
- Good energy resolution on the hits
 - Able to recognize pions/muons deposits and measure the **energy lost by positron** in the ATAR (add to positron energy in the calorimeter)
 - Energy response of LGADs to be studied (preliminary around 10%)
- Low material around ATAR to reduce impact on positron energy, send un-amplified signal across a short flex
 - First prototype flex was produced and tested with prototype sensors
- Amplifier and digitizer with large dynamic range (~2000)
 - Reduce cross talk to avoid non-MiP events covering MiP events
- Minimize blind regions and dead regions in between layers
 - E.g.: when Muon travels along one strip
- **Compactness**: challenge for mechanical support
- **Complicated trigger scheme** to be interfaced with global trigger

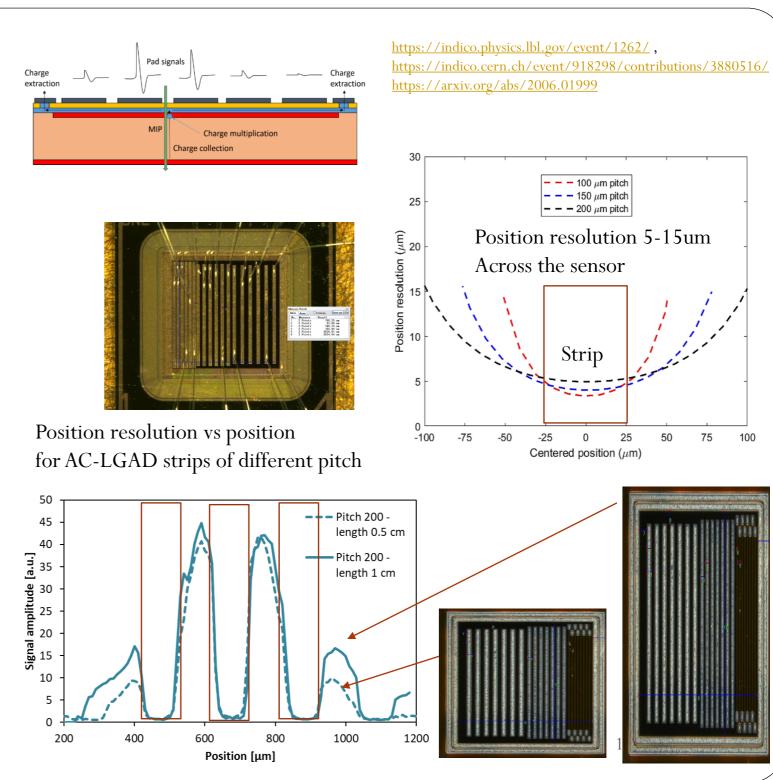


Sensors

Low Gain Avalanche Detectors (LGADs)

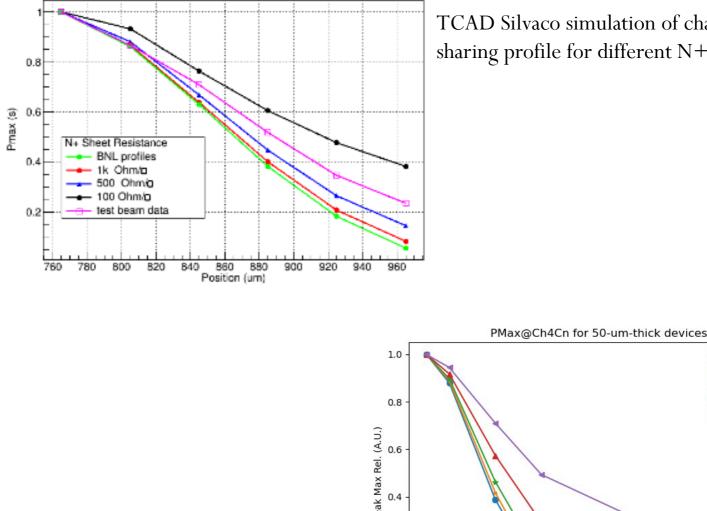
- LGADs: silicon detector with a highly doped multiplication layer
 - LGADs have intrinsic modest internal gain (10-50)
 - Great time resolution (20-30 ps) and fast charge collection time (1-2 ns)
- However granularity of LGADs is limited to the mm scale
 - Solution: high granularity LGAD prototypes
- AC-LGADs: multiplication layer and N+ resistive layer (BNL, FBK)
 - N+ layer is grounded through side connections
 - **Readout pads are AC-coupled** (Insulator layer between N+ and pads)
 - Allows for 100% fill factor and fine segmentation
- **TI-LGAD** with trench insulation between pads (FBK)
 - Proven to have very low IP gap: 5-10 um
- Other less developed prototypes: **DJ-LGADs**, DS-LGADs, iLGADs...
 - All prototypes have advantages and disadvantages to be evaluated

https://indico.cern.ch/event/861104/contributions/4514658/


10/12/2018

AC-LGAD studies

- Intrinsic **charge sharing** between strips
 - With a sparse pixelation of 200 um a <10 um hit precision can be achieved!
- The response of the sensors can be tuned by modifying several parameters
 - N+ layer resistivity, geometry, oxide thickness
- Experimental studies on a **BNL AC-LGAD prototype strip sensors** (50 um thick) with many geometries
- Same strip length and width, different pitches (studies made with FNALTB data)
 - Close strips show a slightly better resolution, however the channel count goes up
- Same geometry but with different lengths (study made with focused IR laser TCT)


9

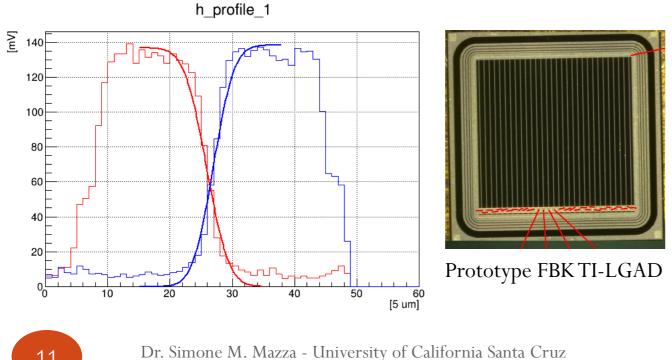
• Longer strips show increased charge sharing profile



AC-LGAD device simulation

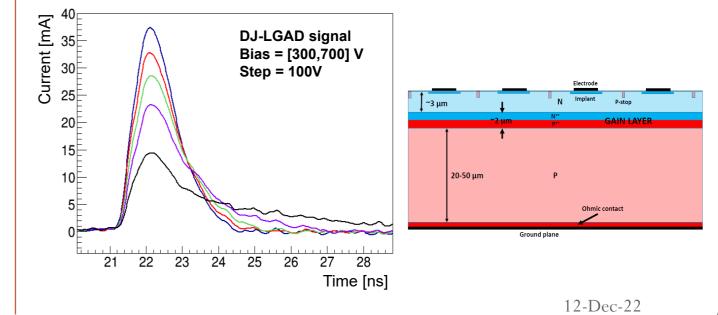
- **TCAD** simulations to study AC-LGAD parameters variations
 - Studies done with TCAD Silvaco and Sentaurus
- Study the effect of the N+ doping concentration to the charge sharing profile
 - More resistive N+ reduce the charge sharing
- Investigate strip geometry (pitch, length, width) effect on charge sharing
 - Longer strip increase the charge sharing
- Sensors studied are 50um thick, simulation is crucial to understand the behavior of 120um thick sensors for the baseline design
 - For most simulations TCAD in 3D mode is necessary to have realistic results (2D approximation is not enough)

TCAD Silvaco simulation of charge sharing profile for different N+ resistivity

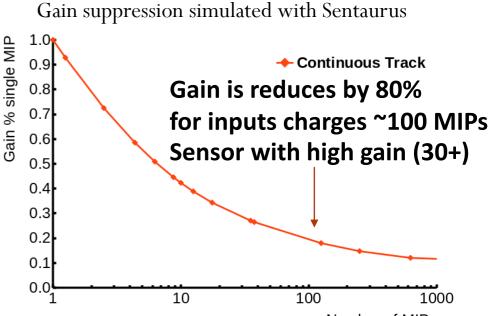


Dr. Simone M. Mazza - University of California Santa Cruz

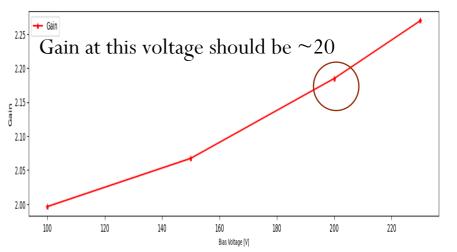
Alternative LGAD technologies


Trench insulated LGADs (TI-LGAD)

- First prototypes successfully produced by FBK:
 - https://indico.cern.ch/event/861104/contributions/4514658/
- Very good performance observed!
 - IP gap 5-10 um or less
 - No cross talk
 - Good gain
- However, precision is limited to pitch/ $\sqrt{12}$


Deep-Junction LGAD (DJ-LGAD)

- Gain layer is buried, so the top can be segmented as in normal silicon detectors
 - <u>https://arxiv.org/abs/2101.00511</u>
- First production completed by Cactus material in collaboration with BNL and UCSC
 - Promising performance (gain of \sim 5) and good pad insulation (few um IP gap)


Issue – gain saturation

- LGAD gain suppression mechanism needs to be fully understood (<u>https://indico.cern.ch/event/983068/contributions/4223231/</u>)
 - Gain suppression observed experimentally with large energy depositions
 - e+/pions/muons will deposit a **broad range of charge in the ATAR**
- Effort to try and minimize this effect in the ATAR
- Explore and characterize the gain suppression effects using TCAD simulation
 - Simulate significant gain loss for high gain detector and high deposition
 - Simulation shows that with a low gain sensor the gain reduction is less
 - Gain suppression can be reduced with adjustment in the sensor design
 - See: <u>https://indico.bnl.gov/event/17072/contributions/70497/</u>
- Gain suppression studied also with **alpha particles**
 - Deposition of ~100 MiP
 - High gain suppression observed for high gain sensor
 - Several types of gain layer design under study

Number of MIP

Gain suppression observed with alpha particles

12-Dec-22

Alternative designs

- Alternative sensor design: double sided detector with AC strips on one side and DC perpendicular strips in the other
 - Better tracking (X-Y position information) and better energy reading from DC-pads
 - Channel density might be too high (need 2x channels)
- Alternative detector design with PiN (no gain)
 - Same geometry but based on PiN silicon sensors

Pros

- PIN is known to be linear in energy response to energy deposition from 1 to 100 MIP
 - Excellent stopping π/μ separation
- With the charge collection signal, much easier to calibrate the energy response (uniform, stable and topology independent)

Cons

 Need a working design of pre-amp electronics to achieve > 9:1 signal-to-noise ratio for MIP signal, which requires more power

E-Field

120 um

Readout strips on

both sides of the substrate

Strip

100 un

100 um

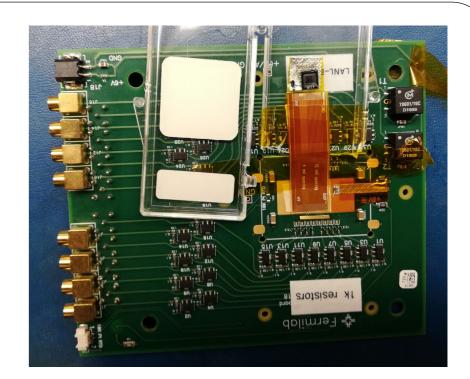
2 mm 0x stri

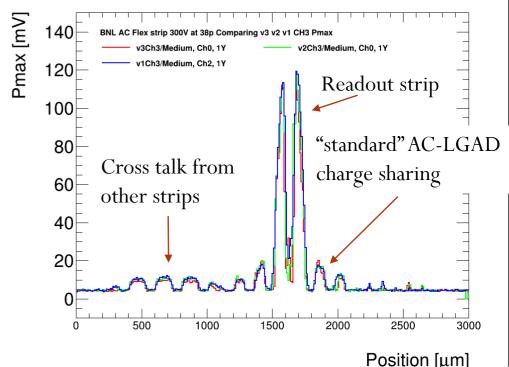
Readout

Chip

Readout Chip

- $-\,$ With FAST, the S/N $^{\sim}$ 5:1 for MIP signal
- Also have impact in timing resolution (to be elaborated in details)

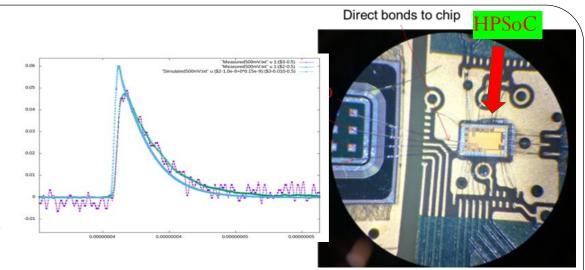



https://indico.cern.ch/event/1175216/contributions/5064174/attachments/2524418/4341713/Alternative_Design_ATAR.pdf

Readout

Flex prototype run

- Transfer of **raw signals** from the ATAR sensors **by flex cable**
- So that readout chips do not need to be positioned in the beam or in the calorimeter acceptance
 - Prototypes flexes produced: 3-7 cm long, 100 and 300 μm trace pitch
- **Test of response** by connecting to sensor and analog readout board, compare with direct bonding
 - Bonding of a sensor directly to the flex cable is mechanically challenging
- Charge sharing with neighbouring strip, and baseline noise of channels are increased when connected to the flex
- Long-range pick-up from strip connected to the flex
 - Attempts to reduce this by spacing connections further apart, grounding traces in between (red line): slight improvement, but not solved
- Need flex re-design foreseen with the aid of simulation
 - (e.g. Hyperlinx software)

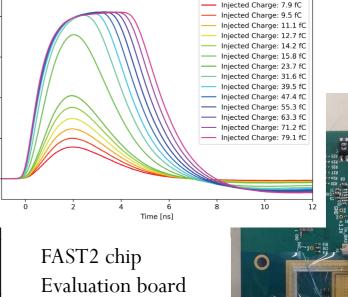

Front-end amplifier

- ATAR will have **separate amplifier and digitizer stage**
 - Needs both an analog ASIC and a digitizer chip
- There are several ongoing efforts to produce a new type of timing chip
 - For PIONEER the following characteristics are needed: **good bandwidth** (~1GHz), **fast return to zero** to have good pulse pair separation, **large dynamic range** (pions/muons and electrons).
- UCSC is working on three ASICs that are being produced for other projects
 - Not aimed at PIONEER but could be viable choices
 - Power target ~ 1 mW per channel
 - FAST (INFN Torino), HPSoC (NALU scientific), ASROC (Anadyne)
 - Funded by SBIR grants and INFN

16

• Front-end amplifier for PiNs also in development

Institution	Name	Technology	Output	# of Chan	Funding	Specific Goals	Status
INFN Torino	FAST	110 nm CMOS	Waveform & TDC	20	INFN	Large Capacitance TDC	Testing
NALU Scientific	HPSoC*	65 nm CMOS	Waveform	5 (Prototype) > 81 (Final)	DoE SBIR	Digital back-end	Testing
Anadyne Inc	ASROC**	Si-Ge BiCMOS	Discrim.	16	DoE SBIR	Low Power	Simulations



400

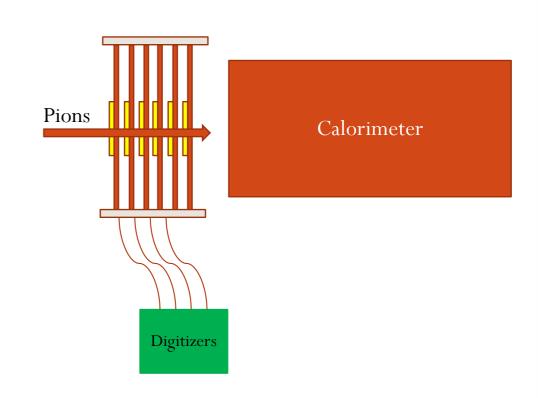
300

Amplitude | 007

100

12-Dec-22

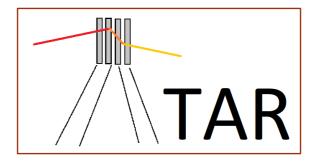
Digitizer stage


- Back-end is a digitizer chip: ~5000 channels to be digitized
 - Commercial solution readily available (e.g. DRS4), however it would be too expensive
 - Not all channels can be digitized for each event, need good triggering scheme
- HD-SoC from Nalu Scientific in evaluation at UCSC: 32 channel, 1Gs/s digitizer chip
 - Complex triggering capabilities
 - Next version: 64 channels
 - Collaboration with Nalu Scientific to understand the triggering capabilities of the chip

Conclusions

PIONEER v0.5

- Current plan is to build a v0.5 of the experiment to take data at PSI by 2027 (PSI shutdown)
 - Limited ATAR prototype (less channels, less layers)
 - ~10 layers, 16 channels per layer
 - Small Calorimeter with limited acceptance
- Goal of having a **first physics measurement** before the PSI shutdown (2027)
- Plan to have an ATAR prototype in the beam by 2025
 - BNL is producing the first prototype 120um thick sensors (expected spring 2023)
 - A board is being designed (UW+UCSC) based on the FAST2-3 analog chip. Compact stackable design to keep the detector planes close together
 - ATAR digitization: either HD-SoC or wavedream boards
- Calorimeter prototype being designed as well



Conclusions

- **PIONEER** is a next generation rare Pion decay experiment to measure $R_{e/\mu}$ and Pion beta decay branching fraction with **unprecedented precision**
- PIONEER's active target (ATAR) is a very ambitious detector
 - High granularity, high density and good timing capabilities
 - Need large dynamic range and good energy resolution
 - Many challenges still need to be solved
- Baseline technology for sensors: AC-LGADs
 - But other high density LGADs are being evaluated (TI-LGAD, DJ-LGAD)
 - Alternative design based on standard silicon is being studied
- Readout and electronics development in progress
- Plans to have a working PIONEER prototype (PIONEER v0.5) ready in a couple years to study pion decays at PSI
 - Currently in the process of applying for funding
- PIONEER is a growing collaboration, if you're interested let us know!

	23	24	25	26	27	28	29	30	31
R&D ATAR, Calo, Electronics									
Beamline tests & test beam									
ATAR test concept run									
Conceptual Design Report*									
Phase 0.5 production									
Phase 0.5 data taking									
Technial Design Report*									
PSI Shutdown									
Main Production									
Commissioning									
Phase 1 Data Taking									

Thanks for the attention

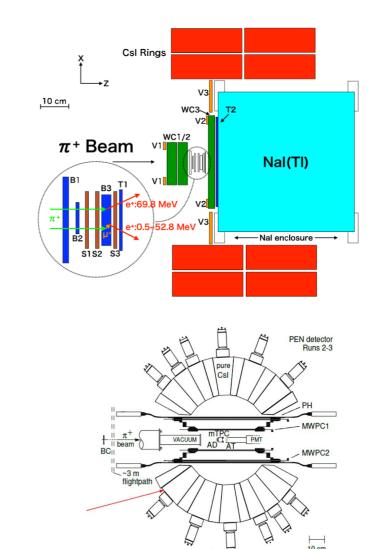
Many thanks to the SCIPP group students and technicians!

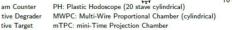
Thanks to the FBK and BNL teams for producing and providing the sensors for this study

This work was supported by the United States Department of Energy, grant DE-SC0010107

This work was partially performed within the CERN RD50 collaboration

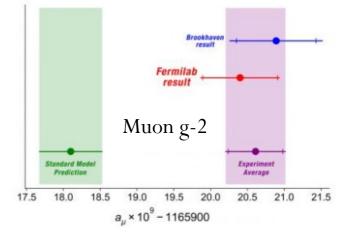
• Rare pion decay experiments showed **significant results in the past decades**

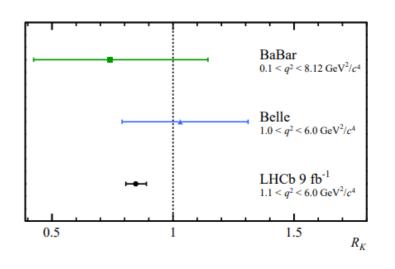

Past pion experiments


- **PIENU** (TRIUMF)/**PEN** (PSI) best measurement up to date of $\mathbf{R}_{e/\mu}$
 - $R_{e/\mu}$: pion to electron/muon decay ratio
 - Precision measurement of lepton-flavor universality (LFU) for electron-muon
 - Foreseen final uncertainty (PEN/PIENU) < 0.1% (current 0.25%)
 - Located at the pion beam lines at TRIUMF (PIENU, https://pienu.triumf.ca/) and PSI (PEN, https://inspirehep.net/experiments/1511062)
- PiBeta (PSI) has the best measurement of Pion beta decay branching fraction $B(\pi^+ \rightarrow \pi^0 e^+ \nu)$
 - Final uncertainty 0.64%

23

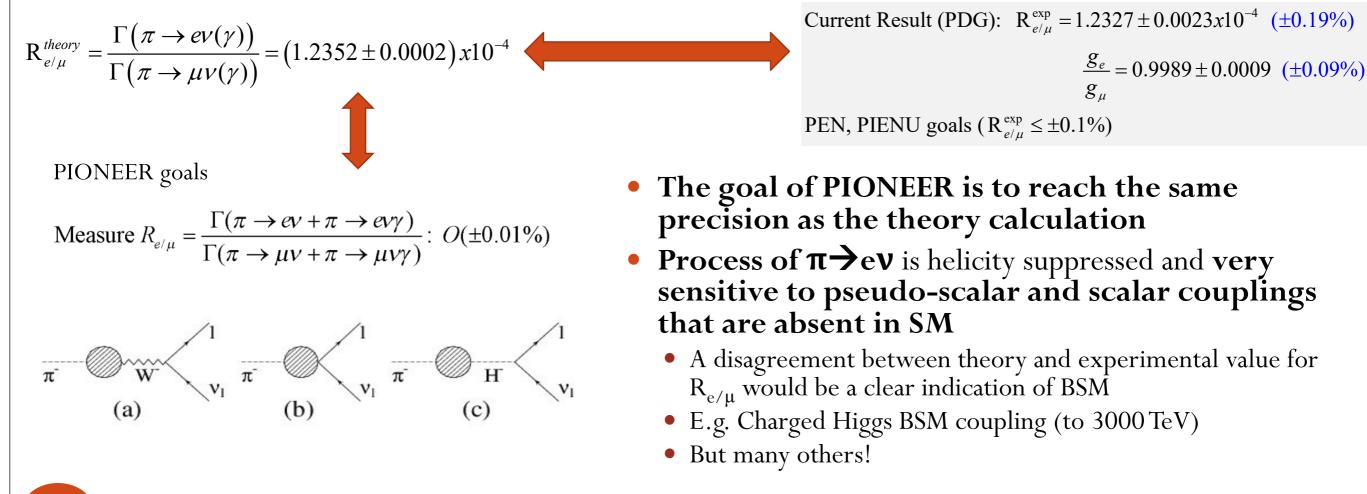
• Located at PSI (<u>https://inspirehep.net/experiments/1108722</u>)





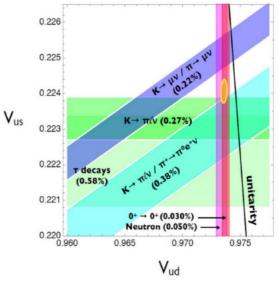
Recent results on Flavor universality tensions

- Topic of Lepton flavor universality (LFU) violation is of great interest these days
 - Several high precision measurements of accurately predicted SM processes show possible indications of violating LFU
 - Charged LFU was tested at $O(10^{-3})$ in π, τ and K decays
- Furthermore recent results showed indication of CKM non-unitarity
- Muon g-2 recent result: 4.2 σ deviation from theory
 - https://news.fnal.gov/2021/04/first-results-from-fermilabs-muon-g-2-experiment-strengthen-evidence-of-new-physics/
- **B** decays: $B \rightarrow D^*\tau \nu/B \rightarrow D^*\mu\nu$; $B \rightarrow K^*\mu \mu/B \rightarrow K^*ee$
 - R(D(*)),R (K*), R(K): (3-4 σ deviation from expected SM LFU)
 - Showing a O(10%) deviations from universality
 - With both heavy quarks and leptons involved
 - (e.g. recent LHCb results on R(K) <u>https://arxiv.org/abs/2103.11769</u>)



12-Dec-22

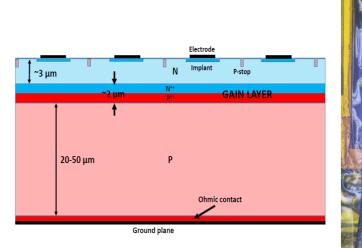
PIONEER main physics goals ($R_{e/\mu}$)

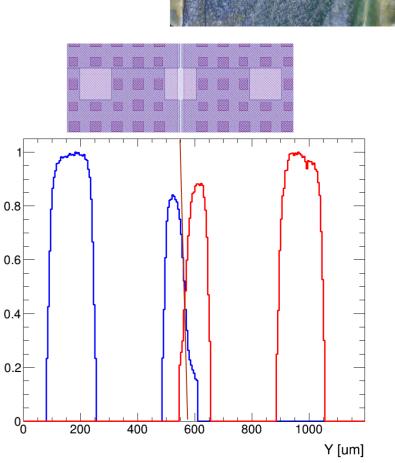

- Precision measurement of charged lepton flavor universality $(R_{e/\mu})$
- SM theory calculation is precise to O(10E-4)
- But current theory calculation is still one order of magnitude away from experimental measurement

PIONEER main physics goals ($R_{\pi\beta}$)

- Precise measurement of **Pion beta decay** branching fraction $\mathbf{R}_{\pi\beta}$: $\mathbf{B}(\pi^+ \rightarrow \pi^0 e^+ \nu)$
 - Important to test CKM unitarity
 - It is a **clean Vud measurement**
 - New constrain in the (Vus Vud) plane
- Current precision 0.64 % (PIBETA)
 - PIONEER precision goal: 0.2-0.05 % (Phase II-III)
- Additional physics searches are also foreseen
 - Such as Axion Like Particles (ALPs), Majorons and massive neutrino searches


Measure $R_{\pi\beta} = \frac{\Gamma(\pi^+ \to \pi^0 e^+ v)}{\Gamma(\pi^+ \to all)}$: $O(\pm 0.2\% \to \pm 0.05\%)$




Improve search sensitivities by an order of magnitude e.g. $\pi \to ev_H; \pi \to \mu v_H; \pi \to e / \mu v v \overline{v}; \pi \to e / \mu v X$

Alternative LGAD technologies

- Deep-Junction LGAD (DJ-LGAD)
- Gain layer is buried, so the top can be segmented as in normal silicon detectors
 - <u>https://arxiv.org/abs/2101.00511</u>
- **First production completed** by Cactus material in collaboration with BNL and UCSC
 - Promising performance (gain of \sim 5) and good pad insulation

