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PIONEER
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 PIONEER is a next generation rare Pion decay experiment
 Measurement of charged lepton flavor universality Re/μ :
 Ratio of pion decay to electrons and muons
 Improving the precision from past experiments by an order of magnitude, making 

it comparable with SM calculation (a deviation would point to LFUV)
 Further physics goals
 Increase precision by an order of magnitude of Pion beta decay branching 

fraction Rπβ: B(π+→π0e+ν), theoretically cleanest measurements of Vud
 These measurements are sensible to new physics up to thousands of TeV
 Searches for exotic physics (e.g. Axion-like particles)

 PIONEER will take place at PSI (Switzerland), πe1 or πe5 BLs
 Proposal approved with high priority by the PSI committee in 2022
 Phased effort: Phase I aimed at Re/μ and phase II/III aimed at B(π+π0e+ν)

 PIONEER encompasses groups from PIENU, PiBeta, muon g-2, ATLAS and 
it’s a steadily growing collaboration (see https://arxiv.org/abs/2203.01981)

 First PIONEER workshop at UCSC in Oct 2022: https://indico.cern.ch/event/1175216/

https://arxiv.org/abs/2203.01981
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PIONEER detector design
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πeν energy tail 

e+ energy in the Calo

 Three main detectors:
 Active Target (ATAR) with fast timing and high segmentation to identify and tag decays
 Calorimeter with high energy resolution (1%) and 25 X0 (liquid Xe or LYSO alternative)
 Low mass tracker (μ-RWELL) in between to track positrons

 Goal (phase I): separation of energy spectra of πeν and πμνeννν
 Pions stop or decay in flight in an active target where decay products are tagged

 Energy deposited by each particle is very different e+ is a MiP, pion/muon up to 100 MiP!
 Final state positrons are tracked and the total energy is measured in a 3π

calorimeter
 e+ energy in the calorimeter from 2 (πeν) vs 4 (πμνeννν) body decay
 However, the 2-body energy tail overlaps with 4-body energy spectrum 

 ATAR is crucial to tag decays to recognize events in the overlapping energy spectra!
 Needed to achieve to x10 improvement in precision

Events here are πμνe
Or from tail of πe



ATAR design
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 Full silicon active target (ATAR): ~2x2 cm area of silicon, ~6 mm thick
 High granularity in (X, Y, Z), fast full collection time, good energy response, 

high dynamic range
 The chosen sensor for the ATAR is an high granularity LGAD 

technology (AC-LGADs or TI-LGADs)
 https://indico.cern.ch/event/1175216/contributions/5064170/

 Alternative design is being studies with standard silicon sensors 
 https://indico.cern.ch/event/1175216/contributions/5064174/

 ATAR initial design
 48 layers of 120um thick sensors, 200 um pitch strips
 Layers have to be as close as possible
 Compromise between granularity, total active area, timing and dead material

 Readout flexes alternating on the four sides to allow space for the wire bonds
 First (5 cm) flex carries the un-amplified signal from sensor to ASIC with 

fast analog amplification mounted on the flex
 The ATAR signals will be fully digitized in a region of interest (ROI, 

temporal or spatial) for each event
 Event reconstruction will use full waveforms from several channels

ATAR concept

ATAR mechanical drawing

https://indico.cern.ch/event/1175216/contributions/5064170/
https://indico.cern.ch/event/1175216/contributions/5064174/


Event Reconstruction
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https://indico.cern.ch/event/1175216/contributions/5064176/
https://indico.cern.ch/event/1175216/contributions/5064175/

 Complex event reconstruction to detect all types of pion decays
 Reconstruction techniques using machine learning
 Expertise from BNL on LArTPC event reconstruction

Exponential decay times

Reminder: to reach the target level of 
precision for PIONEER it is crucial to 
recognize πe from πμe events 

when final e+ energy is the same!

https://indico.cern.ch/event/1175216/contributions/5064176/
https://indico.cern.ch/event/1175216/contributions/5064175/


ATAR challenges 
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 Recognize hits that are few ns apart with very different deposited 
energy while having high spatial granularity in X/Y/Z

 Good energy resolution on the hits
 Able to recognize pions/muons deposits and measure the energy lost by 

positron in the ATAR (add to positron energy in the calorimeter)
 Energy response of LGADs to be studied (preliminary around 10%)

 Low material around ATAR to reduce impact on positron energy, 
send un-amplified signal across a short flex
 First prototype flex was produced and tested with prototype sensors

 Amplifier and digitizer with large dynamic range (~2000)
 Reduce cross talk to avoid non-MiP events covering MiP events

 Minimize blind regions and dead regions in between layers
 E.g.: when Muon travels along one strip

 Compactness: challenge for mechanical support
 Complicated trigger scheme to be interfaced with global trigger

2ns

LGAD pulse pair separation (50 μm)

AC-LGAD position resolution

LGAD energy resolution
https://www.sciencedirect.com/science/article/pii/S0168900222006362

https://www.sciencedirect.com/science/article/pii/S0168900222006362


Sensors
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Low Gain Avalanche Detectors (LGADs)
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 LGADs: silicon detector with a highly doped multiplication layer
 LGADs have intrinsic modest internal gain (10-50)
 Great time resolution (20-30 ps) and fast charge collection time (1-2 ns)

 However granularity of LGADs is limited to the mm scale
 Solution: high granularity LGAD prototypes

 AC-LGADs: multiplication layer and N+ resistive layer (BNL, FBK)
 N+ layer is grounded through side connections 
 Readout pads are AC-coupled (Insulator layer between N+ and pads)
 Allows for 100% fill factor and fine segmentation

 TI-LGAD with trench insulation between pads (FBK)
 Proven to have very low IP gap: 5-10 um

 Other less developed prototypes: DJ-LGADs, DS-LGADs, iLGADs…
 All prototypes have advantages and disadvantages to be evaluated https://indico.cern.ch/event/861104/contributions/4514658/

https://arxiv.org/abs/1906.11542

https://indico.cern.ch/event/861104/contributions/4514658/
https://arxiv.org/abs/1906.11542


AC-LGAD studies
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 Intrinsic charge sharing between strips
 With a sparse pixelation of 200 um a <10 um 

hit precision can be achieved!
 The response of the sensors can be 

tuned by modifying several parameters
 N+ layer resistivity, geometry, oxide thickness

 Experimental studies on a BNL AC-LGAD 
prototype strip sensors (50 um thick) 
with many geometries

 Same strip length and width, different pitches 
(studies made with FNAL TB data)
 Close strips show a slightly better resolution, 

however the channel count goes up
 Same geometry but with different lengths 

(study made with focused IR laser TCT)
 Longer strips show increased charge sharing 

profile

https://indico.physics.lbl.gov/event/1262/ , 
https://indico.cern.ch/event/918298/contributions/3880516/ , 
https://arxiv.org/abs/2006.01999

Position resolution vs position
for AC-LGAD strips of different pitch

Position resolution 5-15um
Across the sensor

Strip[

https://indico.physics.lbl.gov/event/1262/
https://indico.cern.ch/event/918298/contributions/3880516/
https://arxiv.org/abs/2006.01999


AC-LGAD device simulation
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 TCAD simulations to study AC-LGAD 
parameters variations
 Studies done with TCAD Silvaco and Sentaurus

 Study the effect of the N+ doping 
concentration to the charge sharing profile
 More resistive N+ reduce the charge 

sharing
 Investigate strip geometry (pitch, length, 

width) effect on charge sharing
 Longer strip increase the charge sharing

 Sensors studied are 50um thick, simulation is 
crucial to understand the behavior of 120um 
thick sensors for the baseline design
 For most simulations TCAD in 3D mode is 

necessary to have realistic results (2D 
approximation is not enough)

TCAD Silvaco simulation of charge 
sharing profile for different N+ resistivity

TCAD Sentaurus 3D simulation of charge 
sharing profile for different strip lengths



Alternative LGAD technologies
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 Trench insulated LGADs (TI-LGAD) 
 First prototypes successfully produced by FBK:

 https://indico.cern.ch/event/861104/contributions/4514658/

 Very good performance observed!
 IP gap 5-10 um or less
 No cross talk
 Good gain

 However, precision is limited to pitch/ 12

Prototype FBK TI-LGAD

 Deep-Junction LGAD (DJ-LGAD) 
 Gain layer is buried, so the top can be 

segmented as in normal silicon detectors
 https://arxiv.org/abs/2101.00511

 First production completed by Cactus 
material in collaboration with BNL and UCSC
 Promising performance (gain of ~5) and good 

pad insulation (few um IP gap)

DJ-LGAD signal
Bias = [300,700] V
Step = 100V

Time [ns]
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https://indico.cern.ch/event/861104/contributions/4514658/
https://arxiv.org/abs/2101.00511


Issue – gain saturation
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 LGAD gain suppression mechanism needs to be fully 
understood (https://indico.cern.ch/event/983068/contributions/4223231/)

 Gain suppression observed experimentally with large energy depositions
 e+/pions/muons will deposit a broad range of charge in the ATAR

 Effort to try and minimize this effect in the ATAR

 Explore and characterize the gain suppression effects using TCAD 
simulation
 Simulate significant gain loss for high gain detector and high deposition
 Simulation shows that with a low gain sensor the gain reduction is less
 Gain suppression can be reduced with adjustment in the sensor design
 See: https://indico.bnl.gov/event/17072/contributions/70497/

 Gain suppression studied also with alpha particles
 Deposition of ~100 MiP
 High gain suppression observed for high gain sensor
 Several types of gain layer design under study

Gain is reduces by 80% 
for inputs charges ~100 MIPs
Sensor with high gain (30+)

Gain suppression simulated with Sentaurus

Gain suppression observed with alpha particles

Gain at this voltage should be ~20

https://indico.cern.ch/event/983068/contributions/4223231/
https://indico.bnl.gov/event/17072/contributions/70497/


Alternative designs
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 Alternative sensor design: double sided detector 
with AC strips on one side and DC perpendicular strips 
in the other
 Better tracking (X-Y position information) and better 

energy reading from DC-pads
 Channel density might be too high (need 2x channels)

 Alternative detector design with PiN (no gain) 
 Same geometry but based on PiN silicon sensors

https://indico.cern.ch/event/1175216/contributions/5064174/attachments/2524418/4341713/Alternative_Design_ATAR.pdf

https://indico.cern.ch/event/1175216/contributions/5064174/attachments/2524418/4341713/Alternative_Design_ATAR.pdf


Readout
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Flex prototype run
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 Transfer of raw signals from the ATAR sensors by flex cable
 So that readout chips do not need to be positioned in the beam or 

in the calorimeter acceptance
 Prototypes flexes produced: 3 – 7 cm long, 100 and 300 µm trace pitch

 Test of response by connecting to sensor and analog readout 
board, compare with direct bonding
 Bonding of a sensor directly to the flex cable is mechanically challenging

 Charge sharing with neighbouring strip, and baseline noise of 
channels are increased when connected to the flex

 Long-range pick-up from strip connected to the flex
 Attempts to reduce this by spacing connections further apart, 

grounding traces in between (red line): slight improvement, but not 
solved

 Need flex re-design foreseen with the aid of simulation 
 (e.g. Hyperlinx software)

Cross talk from 
other strips

Readout strip

“standard” AC-LGAD 
charge sharing



Front-end amplifier
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 ATAR will have separate amplifier and digitizer stage
 Needs both an analog ASIC and a digitizer chip

 There are several ongoing efforts to produce a new type of timing chip
 For PIONEER the following characteristics are needed: good bandwidth 

(~1GHz), fast return to zero to have good pulse pair separation, large 
dynamic range (pions/muons and electrons).

 UCSC is working on three ASICs that are being produced for other projects
 Not aimed at PIONEER but could be viable choices 
 Power target ~ 1 mW per channel
 FAST (INFN Torino), HPSoC (NALU scientific), ASROC (Anadyne)
 Funded by SBIR grants and INFN

 Front-end amplifier for PiNs also in development

Institution Name Technology Output # of Chan Funding Specific Goals Status

INFN 
Torino

FAST 110 nm CMOS Waveform
& TDC

20 INFN Large Capacitance 
TDC

Testing

NALU 
Scientific

HPSoC* 65 nm CMOS Waveform 5 (Prototype)
> 81 (Final)

DoE SBIR Digital back-end Testing

Anadyne
Inc

ASROC** Si-Ge BiCMOS Discrim. 16 DoE SBIR Low Power Simulations

HPSoC

FAST2 chip
Evaluation board



Digitizer stage
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 Back-end is a digitizer chip: ~5000 channels to be digitized 
 Commercial solution readily available (e.g. DRS4), however it would be too expensive
 Not all channels can be digitized for each event, need good triggering scheme

 HD-SoC from Nalu Scientific in evaluation at UCSC: 32 channel, 1Gs/s digitizer chip
 Complex triggering capabilities
 Next version: 64 channels
 Collaboration with Nalu Scientific to understand the triggering capabilities of the chip

HD-SoC
evaluation board



Conclusions
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PIONEER v0.5
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 Current plan is to build a v0.5 of the experiment to 
take data at PSI by 2027 (PSI shutdown)
 Limited ATAR prototype (less channels, less layers)
 ~10 layers, 16 channels per layer
 Small Calorimeter with limited acceptance

 Goal of having a first physics measurement before the 
PSI shutdown (2027)

 Plan to have an ATAR prototype in the beam by 2025
 BNL is producing the first prototype 120um thick sensors 

(expected spring 2023)
 A board is being designed (UW+UCSC) based on the FAST2-3 

analog chip. Compact stackable design to keep the detector planes 
close together

 ATAR digitization: either HD-SoC or wavedream boards
 Calorimeter prototype being designed as well

Digitizers

CalorimeterPions



Conclusions
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 PIONEER is a next generation rare Pion decay experiment to measure 
Re/μ and Pion beta decay branching fraction with unprecedented 
precision

 PIONEER’s active target (ATAR) is a very ambitious detector
 High granularity, high density and good timing capabilities
 Need large dynamic range and good energy resolution
 Many challenges still need to be solved

 Baseline technology for sensors: AC-LGADs
 But other high density LGADs are being evaluated (TI-LGAD, DJ-LGAD)
 Alternative design based on standard silicon is being studied

 Readout and electronics development in progress

 Plans to have a working PIONEER prototype (PIONEER v0.5) ready in a 
couple years to study pion decays at PSI
 Currently in the process of applying for funding

 PIONEER is a growing collaboration, if you’re interested 
let us know!
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Past pion experiments
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 Rare pion decay experiments showed significant results in the 
past decades

 PIENU (TRIUMF)/PEN (PSI) best measurement up to date of Re/μ
 Re/μ : pion to electron/muon decay ratio

 Precision measurement of lepton-flavor universality (LFU) for electron-muon
 Foreseen final uncertainty (PEN/PIENU) < 0.1% (current 0.25%)
 Located at the pion beam lines at TRIUMF (PIENU, https://pienu.triumf.ca/) and  

PSI (PEN, https://inspirehep.net/experiments/1511062)

 PiBeta (PSI) has the best measurement of Pion beta decay 
branching fraction B(π+π0e+ν)
 Final uncertainty 0.64%
 Located at PSI (https://inspirehep.net/experiments/1108722)

https://pienu.triumf.ca/
https://inspirehep.net/experiments/1511062
https://inspirehep.net/experiments/1108722


Recent results on Flavor universality tensions
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 Topic of Lepton flavor universality (LFU) violation is of 
great interest these days
 Several high precision measurements of accurately predicted SM processes 

show possible indications of violating LFU 
 Charged LFU was tested at O(10-3) in π, τ and K decays

 Furthermore recent results showed indication of CKM non-unitarity

 Muon g-2 recent result: 4.2 σ deviation from theory
 https://news.fnal.gov/2021/04/first-results-from-fermilabs-muon-g-2-experiment-strengthen-evidence-of-new-physics/

 B decays: B → D*τ ν/B → D*µν;  B →K*µ µ/ B →K*ee
 R(D(*)),R (K*), R(K):  (3-4 σ deviation from expected SM LFU)
 Showing a O(10%) deviations from universality
 With both heavy quarks and leptons involved
 (e.g. recent LHCb results on R(K) https://arxiv.org/abs/2103.11769)

Muon g-2

https://news.fnal.gov/2021/04/first-results-from-fermilabs-muon-g-2-experiment-strengthen-evidence-of-new-physics/
https://arxiv.org/abs/2103.11769


PIONEER main physics goals (Re/μ)
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 Precision measurement of charged lepton flavor universality (Re/μ)
 SM theory calculation is precise to O(10E-4) 
 But current theory calculation is still one order of magnitude away from experimental measurement
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PIONEER goals
 The goal of PIONEER is to reach the same 

precision as the theory calculation
 Process of πeν is helicity suppressed and very 

sensitive to pseudo-scalar and scalar couplings 
that are absent in SM
 A disagreement between theory and experimental value for 

Re/μ would be a clear indication of BSM
 E.g. Charged Higgs BSM coupling (to 3000 TeV)
 But many others!



PIONEER main physics goals (Rπβ)
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 Precise measurement of Pion beta decay 
branching fraction Rπβ :B(π+→π0e+ν)
 Important to test CKM unitarity
 It is a clean Vud measurement
 New constrain in the (Vus –Vud) plane

 Current precision 0.64 % (PIBETA)
 PIONEER precision goal: 0.2-0.05 % (Phase II-III)

 Additional physics searches are also foreseen 
 Such as Axion Like Particles (ALPs), Majorons and 

massive neutrino searches



Alternative LGAD technologies
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DJ-LGAD signal
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 Deep-Junction LGAD (DJ-LGAD) 
 Gain layer is buried, so the top can be segmented as in 

normal silicon detectors
 https://arxiv.org/abs/2101.00511

 First production completed by Cactus material in 
collaboration with BNL and UCSC
 Promising performance (gain of ~5) and good pad insulation

https://arxiv.org/abs/2101.00511
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