Tracker Alignment in CMS: interplay with pixel local reconstruction

Ana Ventura Barroso, (DESY) on behalf of the CMS Collaboration

PIXEL 2022

International Workshop on Pixel Detectors for Particles and Imaging 12-16 December 2022, Santa Fe, New Mexico, US

OVERVIEW

- The LHC and Run 3
- The CMS tracker
- Tracker alignment
- Interplay with pixel local reconstruction
- Alignment results
- Conclusions

INTRODUCTION

LARGE HADRON COLLIDER

LHC started Run 3 July 2022
Proton-proton collisions at 13.6 TeV achieved

Finished data taking for 2022 on November

Compact Muon Solenoid experiment (CMS) is a generalpurpose detector

Delivered integrated luminosity to CMS by the end of 2022 data taking

CMS

TRACKER DETECTOR
During the Long Shutdown period (2019-2022) CMS was refurbished and repaired

What?

- Cope with radiation damages
- Perform in optimal conditions during

Run 3 data taking

- PIXEL tracker extracted from CMS experimental cavern and kept cold
- Repaired (upgrade power supplies, replace damaged modules,...)
- Replacement of the innermost layer in BPIX
- Reinstalled in 2021

CMS

PIXEL TRACKER DETECTOR

TRACKER ALIGNMENT

GOAL

Determine with enough precision the position and orientation of all the modules of the tracker (20 k with 6 degrees of freedom), being of few μm in the pixel tracker

	Misaligned modules
	4
	-
	-
	$\cdots \cdots \cdots$
	'
	,
	\therefore
	$B y=3.8 T$

----- real track (j)
__ fitted trajectory (j)

- predicted hit ($f_{i j}$)
- measured hit ($m_{i j}$)
— residual $\left(r_{i j}\right)$

p : Global alignment parameters
q_{j} : Local track parameters

Usage of tracks to align the modules following a Track-based alignment approach

Global fit of all parameters

Minimisation of sum of squares of normalised track-hit residuals

$$
\chi^{2}(p, q)=\sum_{j}^{\text {tracks }} \sum_{i}^{\text {hits }}\left(\frac{m_{i j}-f_{i j}\left(p, q_{j}\right)}{\sigma_{i j}^{m}}\right)^{2}
$$

TRACKER ALIGNMENT

TIME DEPENDENCE

Tracker needs to be realigned frequently

Time variations

$$
\text { half-barrels and half-disks (} \mathrm{mm} \text {) }
$$

- Magnet cycles: Magnet switch on and off for maintenance reasons

Sensors $\left(10^{-1} \mathrm{~mm}\right)$

- Temperature variations: Cooling operations \rightarrow after switching off and on the detector
- Ageing of the modules: Change of the Lorentz drift due to high radiation environment

Sensors (few μm)

TRACKER ALIGNMENT

TIME DEPENDENCE

Tracker needs to be realigned frequently

Time variations

$$
\text { half-barrels and half-disks (} \mathrm{mm} \text {) }
$$

- Magnet cycles: Magnet switch on and off for maintenance reasons
- Temperature variations: Cooling operations \rightarrow after switching off and on the detector

Ageing of the modules: Change of the Lorentz drift due to high radiation environment

Sensors (few μm)

RADIATION DAMAGE

LORENTZ DRIFT

Lorentz angle ($\theta_{L A}$)

CMS Preliminary (2022) 13.6 TeV

During the track reconstruction, the Lorentz angle has to be taken into account to properly estimate the hit position
$\Delta x^{\prime} \propto \tan \theta_{L A}$

RADIATION DAMAGE

CLUSTER PROPERTIES IN BARREL PIXEL
Radiation damage introduces charge efficiency loss

Recovered by raising the bias voltage

RADIATION DAMAGE

CLUSTER PROPERTIES IN BARREL PIXEL
Radiation damage introduces charge efficiency loss

MONITORING TRACKING PERFORMANCE

To account for shifts in the different components of the pixel detector during data taking

Automated alignment workflow that provides an update of the alignment parameters within 48 hours

Alignment of the pixel while the strip is fixed

Low Granularity Prompt Calibration Loop (LG PCL)

Track-based alignment at the level of half barrels and cylinders

36 alignment parameters

High Granularity Prompt Calibration Loop (HG PCL)

Track-based alignment at the level of ladders and panels
5 k alignment parameters
Replace some of the manual HG alignments after new pixel calibrations

MONITORING TRACKING PERFORMANCE
 ALIGNMENTS GEOMETRY

Alignment during data taking (black)

- Automated online alignment
- LG PCL

Mid-year re-reconstruction (red)

- Offline alignment with 120 M collision tracks during pp collisions at $\sqrt{s}=13.6 \mathrm{TeV}$ and 8.5 M cosmic rays at 3.8T magnetic field
-First period of data taking (up to $\sim 8 f b^{-1}$) derived at level of single modules
-Second period (from $\sim 8 \mathrm{fb}^{-1}$ to $\sim 11 \mathrm{fb}^{-1}$) HG PCL
End-of-the year re-reconstruction (blue)
- Automated online alignment
- HG PCL

MONITORING TRACKING PERFORMANCE

DISTRIBUTION OF MEDIAN RESIDUALS

Hit prediction obtained by fitting the track from all hits except the one under study

\rightarrow
Obtain track-hit residual
\rightarrow

$$
r_{i j}\left(p, q_{j}\right)=m_{i j}-f_{i j}\left(p, q_{j}\right)
$$

Width
measure of the local precision of the alignment results

Mean
deviations from zero indicate possible bias due to change of conditions

Histogram of the median of the distribution

MONITORING TRACKING PERFORMANCE

DISTRIBUTION OF MEDIAN RESIDUALS

Online alignment with LG PCL at the beginning of data taking (black)

Deviation from zero

Change of conditions

Corrected by the offline alignment after reprocessing (red)

Higher granularity alignment (blue) deployed for online alignment

HG PCL + Pixel calibration updates recover from the change of conditions during data taking

TRACKER ALIGNMENT

SENSITIVITY TO LORENTZ DRIFT

Sign of the Lorentz Angle (LA) shift depends on the orientation of the E field

BPIX modules arranged in ladders $\longrightarrow |$| Facing inward |
| :--- |
| Facing outward |

Opposite shift in the hit position for inward and outward modules
$\Delta \mu=$ difference in the mean of the inward and outward residuals distributions

Monitor Lorentz drift

MONITORING TRACKING PERFORMANCE

DISTRIBUTION OF MEDIAN RESIDUALS

Online alignment with LG PCL at the beginning of data taking (black) and offline alignment after reprocessing (red)

Deviation from zero
Online HG PCL corrects position bias developed during data-taking and uncorrected by local reconstruction

MONITORING TRACKING PERFORMANCE

DISTRIBUTION OF MEDIAN RESIDUALS

BPIX layer 1 more affected

Closer to the interaction point

Online alignment with LG beginning of data taking (blacl alignment after reprocessing (re

Deviation from zero

CONCLUSIONS

Relevance of the Interplay between pixel local reconstruction and tracker alignment
Ageing and Lorentz angle effect in silicon modules is monitored as a function of time using trends of distributions of the median of the residuals

The HG PCL has shown as being extremely efficient at absorbing effect of radiation damage reducing the need for manual updates of the alignment conditions and improving the quality of the alignment in the prompt reconstruction

HG PCL online shows stable performance in Run 3

> THANK YOU FOR YOUR ATTENTION!

BACK-UP

BACK-UP

HIERARCHY

BACK-UP

CMS PIXEL SENSOR

Module consists of a sensor connected to 16 front-end readout chips (ROCs)

Data routed on a High Density Interconnect (HID), glued to the sensor and wire-bonded to the ROCs

Managed by an ASIC, Token Bit Manager (TBM)
n-in-n planar silicon sensors
Active are of $16.2 \times 64.8 \mathrm{~mm} 2$
Cross section of a pixel detector module for BPIX L2-
4 cut along the short side of the module

JINST 16 P02027

BACK-UP

TACKER DETECTOR UPDATES DURING LS2

General detector maintenance
Replace DCDCs with fixed version
Fix problematic connections
Replace damaged modules (mostly BPIX layer 2)
Re-evaluate HV granularity in FPIX
Upgrade power supplies from 600 V to 800 V

RECONSTRUCTION

LOCAL AND GLOBAL RECONSTRUCTION

Using detector readout information to reconstruct local hit candidates

- Digitization of signals generated by charged particles traversing the pixel detector
- Select signal, pixel with a charge above the signal-over-noise threshold
- Neighbouring signals are grouped together forming clusters
- The shape of the clusters and the signal charge determine the hit position and its uncertainty in the local coordinate system of each module

DESY. | PIXEL2022 | 12-16.12.2022 | Ana Ventura Barroso

Global reconstruction
Combining hits produced from the local reconstruction to form tracks - Seed generation

- Track finding
- Track fitting
- Track selection

TRACKER ALIGNMENT

GOAL

Charged particles cross the tacker

Produce tracks

Ideal geometry assumed

Wrong estimation

Modules position corrected
after alignment

Correct estimation

MONITORING TRACKING PERFORMANCE

DISTRIBUTION OF MEDIAN RESIDUALS

FPIX disc 1 more affected V
Closer to the interaction point

MONITORING TRACKING PERFORMANCE

DISTRIBUTION OF MEDIAN RESIDUALS

Closer to the interaction point

MONITORING TRACKING PERFORMANCE

DISTRIBUTION OF MEDIAN RESIDUALS

Closer to the interaction point

MONITORING TRACKING PERFORMANCE

PRIMARY VERTEX RECONSTRUCTION

Primary vertex position reconstructed excluding the track under study from a sample of tracks

Calculate the unbiased track residual in the transverse $\left(d_{x y}\right)$ and longitudinal $\left(d_{z}\right)$ planes

$$
d_{x y}(P V)=\left[(b-v) \times \hat{p}_{T}\right] \cdot \hat{z}
$$

$$
d_{z}(P V)=\left[\left(\frac{(b-v) \times \hat{p}_{T}}{p_{T}} p\right)-(b-v)\right] \cdot \hat{z}
$$

Distributions are expected to be flat and compatible with zero for an ideally aligned tracker

MONITORING TRACKING PERFORMANCE

DISTRIBUTION OF MEDIAN RESIDUALS

Online alignment with LG PCL at the beginning of data taking (black)

Deviation from zero

Shift on LA

Residual effect corrected by
\qquad aligning with a finer granularity

HG PCL + Pixel calibration updates recover from radiation damage

Higher granularity alignment (blue) deployed for online alignment

