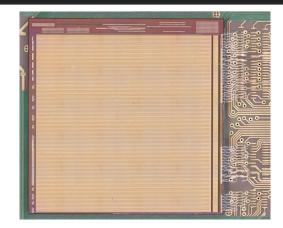
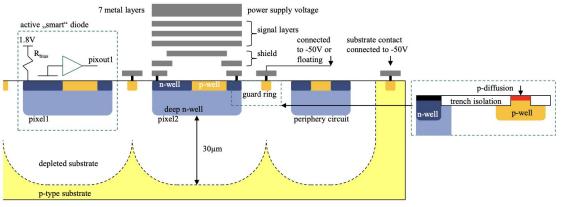


ATLASPIX3 modules for experiments at e⁺e⁻ colliders

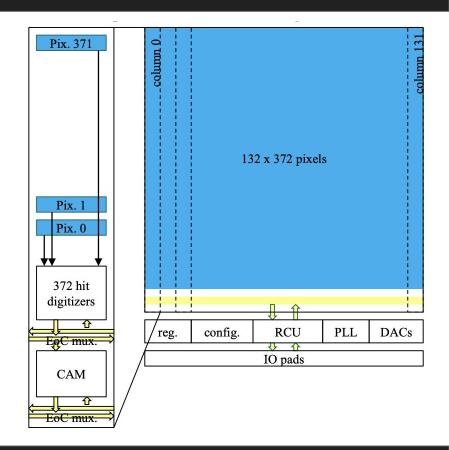
Riccardo Zanzottera for INFN and U.Milano, KIT, IHEP, RAL, U.Lancaster, U.Bristol, U. Liverpool, U.Edinburgh, U.Tsinghua, U.South China


Outlines

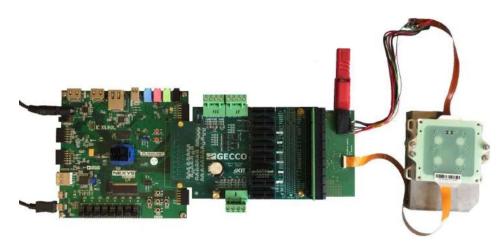

- ATLASPIX3
 - general features
 - quad modules
 - serial powering
- Detector concept for e⁺e⁻ colliders
 - system considerations
 - mechanical system

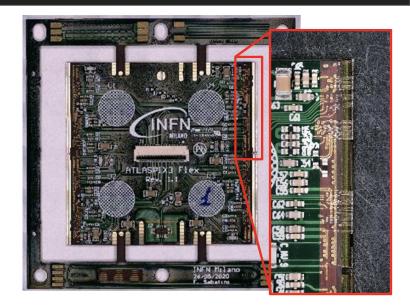
ATLASPIX3 - Features

- ATLASPIX3 general features
 - Depleted Monolithic Active Pixel Sensor (DMAPS)
 - HVCMOS technology
 - full-reticle size **20**×**21 mm**² monolithic pixel sensor
 - **TSI 180 nm process** on 200 Ωcm substrate
 - 132 columns of 372 pixels
 - pixel size 50×150 μ m² (25×150 μ m² on recent prototypes)
 - breakdown voltage ~-60 V
 - up to **1.28 Gbps downlink**
 - 25 ns timestamping
- INFN, KIT, China, UK collaboration



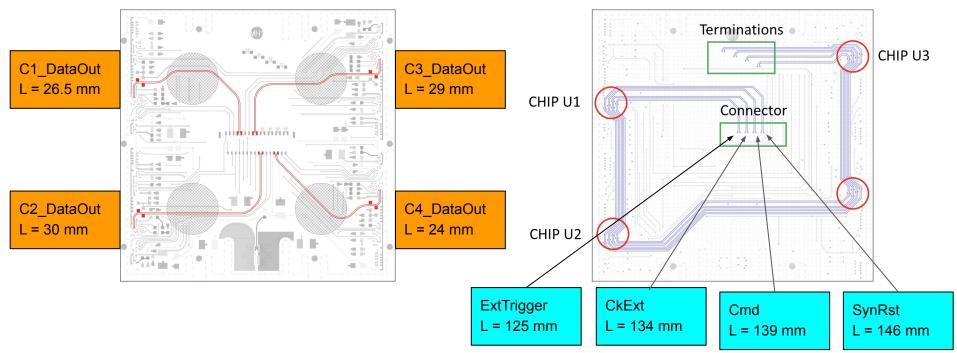
ATLASPIX3 - Chip architecture


- Chip architecture
 - organized in 132 columns, each with 372 pixels, 372 hit digitizers (HDs), 80 content addressable memory cells (CAM) and two end-of-column multiplexers (EoC mux)
 - digital part (HDs, CAM, EoCs) in chip periphery, separated from analog pixels electronic (CSA and comparator)
 - chip periphery also contains the readout control unit (RCU), the clock generator, configuration registers, DACs, linear regulators and IO pads
 - triggerless and triggered readout
 - two EoCs
 - 372 hit buffers for triggerless RO
 - 80 trigger buffers for triggered RO



ATLASPIX3 - Quad modules

- Multi-chip module assembly
 - aggregates electrical services and connection for multiple sensors
 - quad module, inspired by ITk pixels
 - implemented interface to readout system
 - developed software for module

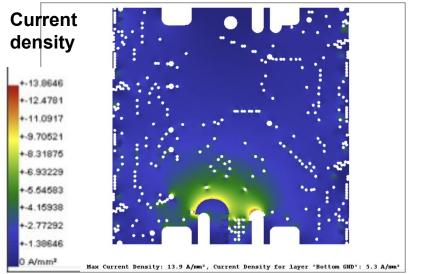


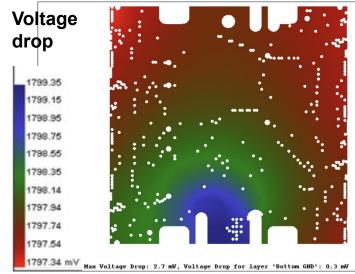
ATLASPIX3 Quads - Flex topology

4 LAYERS STACK-UP

OUTPUT lines TOP layer

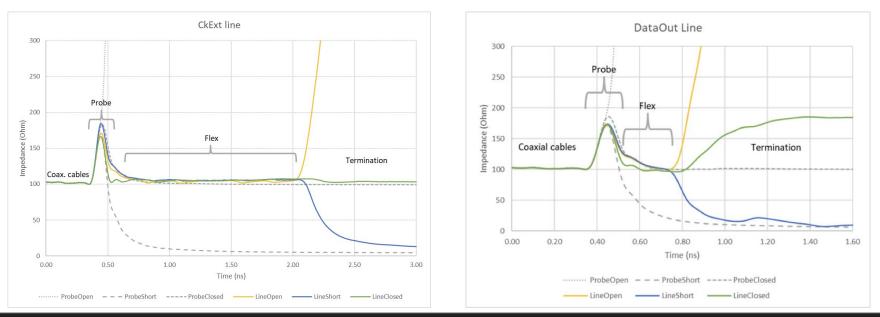
INPUT lines INNER layer




Pixel2022-15/12/2022

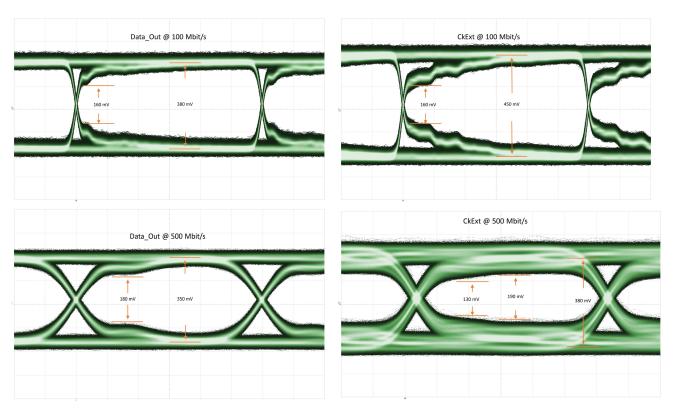
ATLASPIX3 Quads - Flex Power integrity

- **Power Integrity simulation** for VDD (GND as reference)
 - max Voltage Drop 2.7mV
 - max Current Density 13.9A/mm²
 - max Via Current 137.0mA
 - "circular" arrangement of the Vias to minimize current density



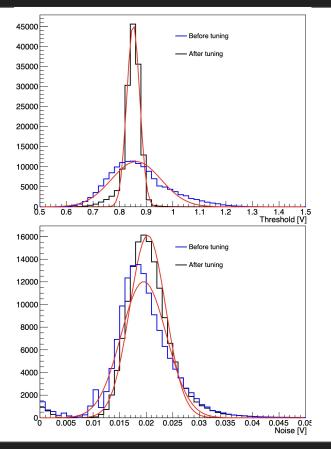
Pixel2022-15/12/2022

ATLASPIX3 Quads - Flex Impedance


- Flex impedance
 - measurements with **TDR**
 - CkExt line (Input line)
 - DataOut line (Output line)
 - $\circ~~$ 100 Ω Stack-Up impedance as designed

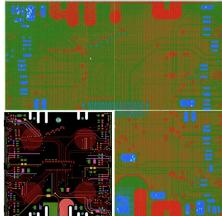
Pixel2022-15/12/2022

ATLASPIX3 Quads - Flex Eye diagram


- Eye diagram for CkExt and DataOut
 - at 100/500 Mbit/s and 400 mV
 - good opening for Output lines
 - opening less +/- 100 mV for Input lines at high frequency

Pixel2022-15/12/2022

ATLASPIX3 Quads - Threshold and Noise


- **Test signal circuit** in chip periphery
 - injection of determined charge in n-well
 - discharge of a metal capacitor
 - regulated by an on-chip DAC with 8 bits
- Tuning circuit
 - 3-bit differential current-steering DAC
 - SRAM cells to store the DAC value
- Thresholds and noise measurements with S-Curve method
 - mean threshold 870 mV (~2500 e-)
 - threshold dispersion from 100 mV to 20 mV after tuning
 - mean noise 20 mV (~60 e-)

ATLASPIX3 Quads - Operation test

- Amptek Mini-X2 with silver anode, max energy 50 kV
 - Rate range: ~1.5 x 10^4 hits/s to ~ 3.4 x 10^4 hits/s 0
 - Components on the PCB can be easily identified Ο
- Two modules used for the **testbeam** 4-10 april at **DESY**
 - Module's operativity demonstrated Ο
 - telescope results in poster "First Results of ATLASPix 3.1 DESY 0 Testbeam"

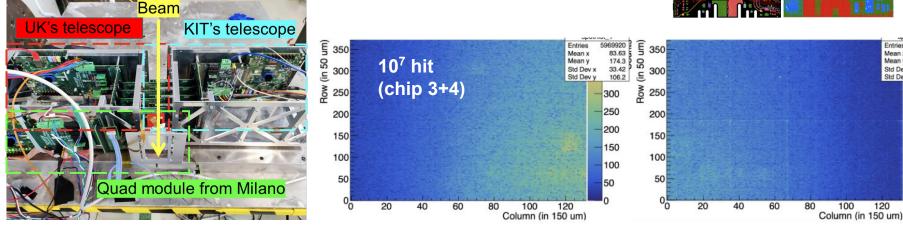
Std Dev x

Std Dev v

120

33.41

106.9

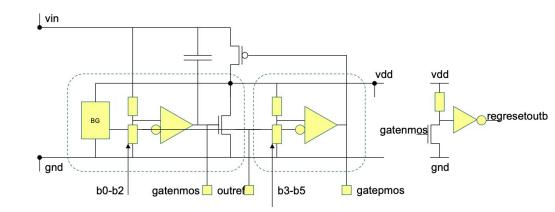

300 250

200

150

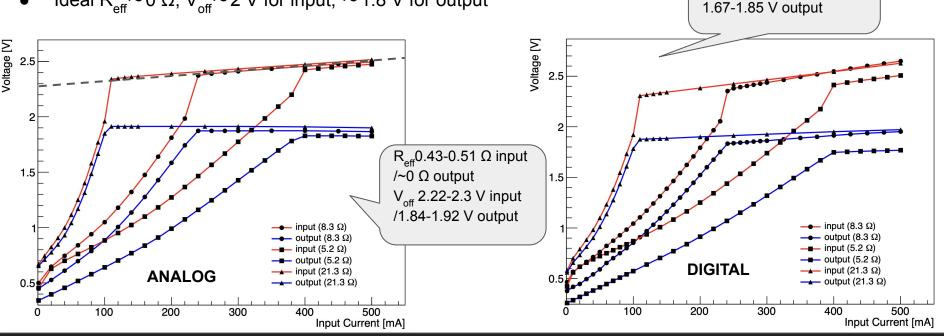
100

50



Pixel2022-15/12/2022

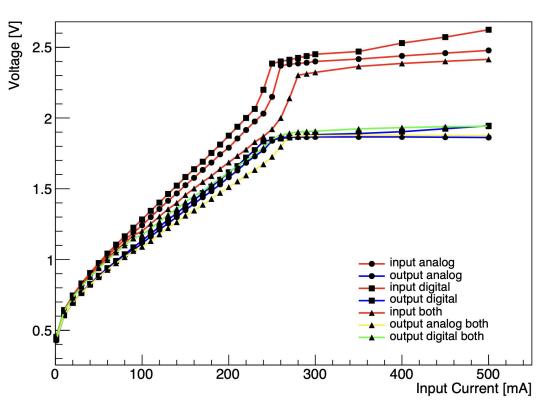
ATLASPIX3 - Serial powering


- Version ATLASPIX3.1 has possibility for serial powering through two shunt/low dropout regulators
 - digital and analog (VDDD/A)
 - **3 bits** to tune threshold of shunt regulator
 - 3 bits to tune VDD
 - gatenmos, outref, gatepmos are for monitoring
 - regresetoutb can be used as power on reset
- Possibility to use a single power supply for all the 6 alimentation needed to operate the chips

ATLASPIX3 - Serial powering

- Turn-on curves (input and output) for digital and analog regulators
- Different external resistive loads
- Linear part after the power on fitted with V_{off}+I*R_{eff}
- Ideal $R_{eff} \sim 0 \Omega$, $V_{off} \sim 2 V$ for input, $\sim 1.8 V$ for output

Pixel2022-15/12/2022


R.Zanzottera-ATLASPIX3 modules for experiments at e+e- colliders 13

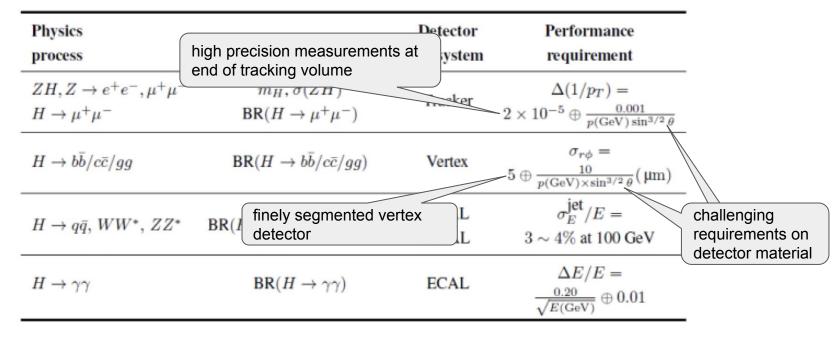
R_{eff}0.8-1.1 Ω input/ 0.2-0.5 Ω output

V_{off}2.05-2.22 V input/

ATLASPIX3 - Power consumption

- Analog and digital regulators output connected to the chip
- Full chip **turn-on**

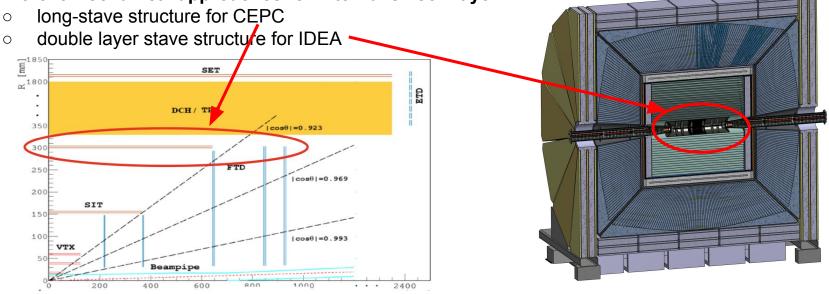
• ~300 mA


Input voltage

○ ~2.3 V

- Power consumption
 - ~690 mW/chip
 - ~175 mW/cm²

e+e- Detector Requirements



- Similar approaches for ILC, CLIC, FCCee, CepC:
 - High resolution **pixel vertex detector**
 - Either full silicon tracker or central gas chamber+Si wrapper

Detector concepts

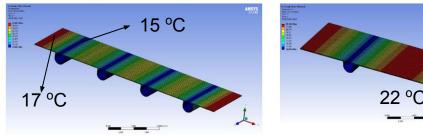
- Different detector concepts
 - CEPC CDR baseline concept
 - IDEA concept
- ATLASPIX3 is suitable for tracker layers in front of the Central Gas Chamber and silicon wrapper outside the Central Gas Chamber
- Different mechanical approaches for internal silicon layer

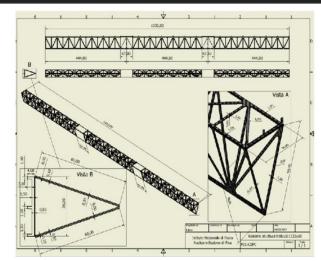
Pixel2022-15/12/2022

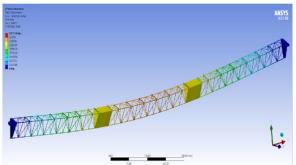
ATLASPIX3 - System considerations

- Complete system consists of 900.000 cm² area / 4 cm² chip = 225k chips (56k quad-modules)
 - o aggregation of several modules for data and services distribution is essential
 - inner tracker will be 5--10% of this
- Data rate constrained by the inner tracker
 - average rate $10^{-4} 10^{-3}$ particles cm⁻² event⁻¹ at Z peak
 - assuming 2 hits/particle, 96 bits/hit for ATLASPIX3
 - 640 Mbps link/quad-module (assuming local module aggregation) provides ample operational margin
 - 16 modules can be arranged into **10 Gbps fast links**: **3.5k links**
 - can also assume 100 Gbps links will be available: 350 links
- DAQ architecture
 - **triggerless readout** will fit the data transmission budget but requires off-chip re-ordering of data
 - triggered readout will be simpler and would also reduce the bandwidth occupancy
- Power consumption
 - ATLASPIX3 power consumption **170 mW/cm²** with serial powering
 - 680 mW/chip \rightarrow 2.7 W/module \rightarrow total FE power 150 kW
 - additional power for on detector aggregation and de-randomizations **~2W/link**

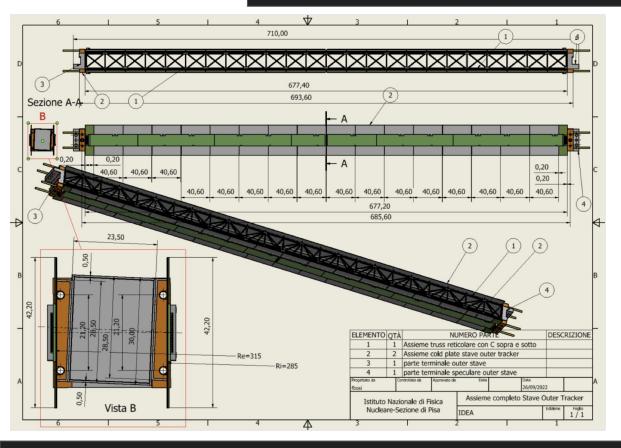
CEPC CDR baseline - Long-stave design


- Very long stave structure
 - **1330 mm** long
 - triangular truss shape from water jet cutting (similar developments as for Belle II upgrade studies)
 - glued together three single structures
 - FEA of structure rigidity: gravitational sag about 100 μm


2 pipes 0.3% X_o


15 °C

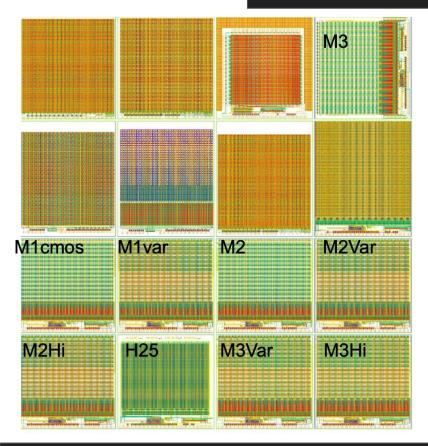
- Simulated two different cooling solutions
 - **2 pipes** (0.3% X₀)
 - **4 pipes** $(0.4\% X_0)$
- Prototype actually in construction



Pixel2022-15/12/2022

IDEA - Stave design

- Shorter stave structure
 - rectangular truss shape
 - double layer
 - **32 quads** modules per stave
 - cooling with 4 water pipes per stave
- Outer barrel structure
 - 48 staves
 - inner layer at 28.5 cm
 - outer layer at 31.5 cm
 - supported by the Drift Chamber
 - designed for power budget of ~2.63 kW
- Design is being finalized


Pixel2022-15/12/2022

- ATLASPIX3 is a full size detector providing most of the features needed by e+e- experiments
- Deployment on a real detector system requires the aggregration of data and services, for this purpose multi-chip modules have been realized and successfully tested
- Further integration requires to be able to chain multiple modules using the same serial-powering concept developed for the silicon trackers for HL-LHC
- Early tests on the shunt regulators implemented on the ATLASPIX3.1 chips are encouraging and make possible to proceed to a redesign of a module concept based on serial powering and the building of multi-module chains suitable for CepC and FCCee accelerators
- A prototype of the stave structure designed for CepC inner tracker is in construction

Future chip developments

- Improved sensor prototypes
 - Smaller pixel pitch
 - Less power consumption
 - different comparator and amplifier types
- Design of HLMC 55 nm HVCMOS technology
- Design of **a chip to chip data transmission** to be used in quad modules to further reduce material

Pixel2022-15/12/2022

Thanks for the attention!

Pixel2022-15/12/2022