Detector Challenges of the strong-field QED experiment LUXE at the European XFEL Arka Santra* on behalf of the LUXE Collaboration Weizmann Institute of Science

מכוז ויצמז למדע WEIZMANN INSTITUTE OF SCIENCE

Rehovot, Israel

Introduction

- Perturbative QED with small background field is well-understood, but there is much less understanding of QED in the regime of strong fields.
- +For very strong field, QED perturbation theory breaks down and becomes non-perturbative.
- At the Schwinger critical field: $\epsilon_{crit} = m_e^2 c^3 / e\hbar \simeq 1.32 \cdot 10^{18} \text{ V/m}$, vacuum breaks down and electron and positron pairs are produced spontaneously.
 - \mathbf{e}_{crit} not achievable in terrestrial laboratories unless use of lasers in certain rest frames the field of lasers can be enhanced by $\mathbf{v} \rightarrow \mathbf{x}$ the system's boost.
 - First experiment to try this: E144 @ SLAC in 1990s reached $\sim \epsilon_{crit}/4$.
 - ◆Present-day experiments (e.g. E320, Astra-Gemini) and planned (e.g. ELI-NP).
 - ◆ Propose to do this using European XFEL electron beam and high power laser: LUXE experiment based at DESY, Germany.
- LUXE will study non-perturbative and non-linear QED phenomena in the strong field regime (in the

transition region near and above $\epsilon_{\rm crit}$) in electron/photon beam and high power laser collisions.

Electric field ϵ

LUXE Experiment

+LUXE will run in electron (e^{-}) + laser (γ_I) mode where it will study the physics process ✦High-power laser Phase 0: laser power 40 TW $(1.3 \times 10^{20} \, \text{W/cm}^2)$ Phase 1: laser power 350 **TW** (1.2×10^{21} W/cm²) **+**Wavelength 800 nm **•**Repetition rate ~1 Hz

of non-linear Compton scattering. The non-linear trident process where the non-linear Compton scattering is followed by a pair production will also be studied.

 \bullet It will run in photon (γ) + laser mode to study the **non**linear Breit-Wheeler process.

 \bullet The signal rate varies from 10^{-2} to 10^{9} per bunch crossing.

Non-linear Compton scattering, followed by pair production: $e^- + n\gamma_L \rightarrow e^- + \gamma$, $\gamma \rightarrow e^+ + e^-$

Non-linear Breit-Wheeler: $\gamma_L + \gamma \rightarrow e^+ + e^-$

Photon detection system

+High number of photons ~ 10^9 .

- +Tungsten converter target (10 μ m) generates 10^4 - $10^5 e^+/e^-$ pairs.
- ◆Spectrometer:
 - ◆LANEX (Tb-doped Gadolinium Oxysulfide) scintillator screen in addition to CCD
 - cameras (for e^+/e^-).
- ◆Gamma beam profiler:
- \bullet Sapphire strips sensors (2x2 cm², 100 µm) thickness, 100 µm strip pitch). Very radiation hard material (up to 100 MGy). ◆<u>Backscattering calorimeter</u> to measure flux. ✦Consists of 8 lead glass blocks around beam axis with radius ~17 cm.

Almost linear dependence between the energy deposited and the number of incident photons.

Electron detection system

- +Very high event rate: up to 10^9 electrons.
- ◆<u>Scintillator screen:</u>
 - ◆Tb-doped Gadolinium Oxysulfide, radiation hard (up to 10 MGy). Imaging is done with CMOS camera.
 - +Signal/Background~100 and position resolution $\mathcal{O}(100 \,\mu\text{m})$ (at ~50 MeV).

♦ Cherenkov detector: ✦Consists of reflective straw tube channels filled with air

Calorimeter

Positron detection system

4 layers of pixel detector

- ◆<u>Pixel tracker:</u>
 - ✦Four layers of ALPIDE
 - sensors.
 - ◆ Developed by ALICE for the phase 1 upgrade.
 - \bullet Pixel size of 27 \times 29 μ m² with a spatial resolution of 5 μ m.
 - ♦Able to tolerate an ionization doze of 2.7 Mrad.

◆Calorimeter:

- \diamond 20 layers of 3.5 mm thick tungsten absorber plates (20 X_0).
- ◆Sensor planes placed in a 1 mm gap between absorber plates
 - \bullet Silicon wafers of 320 µm thickness.
 - +Each sensor has a surface of 7.56×5.19 cm² and consists of 150 pads.

as an active medium.

 \bullet Signal/Background > 1000. ♦Cherenkov threshold of 20 MeV.

Summary

- ◆The LUXE experiment will explore strong field non-perturbative QED predictions with the help of using the European XFEL electron beam and high power laser.
- \bullet All the detectors are designed keeping in mind the rate measurements: from 10^{-2} to 10^{9} per bunch crossing.
- ◆The experiment received a stage 1 critical approval from the DESY management. ◆Installation is foreseen in 2025 and data taking period from 2026.

References

1.Abramowicz, H., Acosta, U., Altarelli, M. et al. Conceptual design report for the LUXE experiment. Eur. Phys. J. Spec. Top. 230, 2445–2560 (2021). https://doi.org/10.1140/epjs/s11734-021-00249-z

* Corresponding author, <u>arka.santra@weizmann.ac.il</u>