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The HL-LHC will increase

* instantaneous luminosity 4X the current Run-2 value
(2.0to 7.5 x 1034 s'lcm2)

* pile-up to 4X the current value (~55 -- > 140 to 200)

* thus the radiation damage to the detectors

Need for Phase-2
upgrade of CMS
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Intro about the Phase-2 upgrade

The new CMS tracker detector

* will have its acceptance increased to |eta| <4
* low material budget (using carbon fiber mechanics, CO, cooling and serial power scheme)
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QOutline: Inner tracker sensor studies

Sizes: 50x50 um? vs 25x100 um?

Technology: 3D vs planar sensors Using PixelAV
Simulation of avalanche gain effect

PixelAV is an external
software to CMS Software,
which can perform a more
detailed simulation
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Introduction to PixalAV software

Charge deposition based on Bichsel pion-Si cross-sections

Bichsel: 1988+2005

E? o(E)

Delta-ray range using continuously slowing-down approach
with NIST ESTAR dEdx data

Multiple scattering and magnetic curvature of delta-rays

Carrier transport based on Runge-Kutta integration of

saturated drift
* E-field is coming from ISE TCAD simulation of a pixel cell

* Includes charge trapping, diffusion, induction on
implants

Electronics simulation: noise, linearity, thresholds, mis-
calibration
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Simulation of Phase-2 IT sensors

Using non-uniform E-fields (even for new sensors)

Carrier focusing at the n+ implant

Irradiation simulation based on models developed for 2018 Phase-1
detector (1e15 neq/cmz), but scale the fluence to the expected numbers

from the HL-LHC

Readout chip threshold is 1000 electrons for each cases

Cross talk with neighbors: Bias voltage:
* 25x100 um? has a 0.1 crosstalk * 25x100 um? start with 350 V

* 50x50 um? has O crosstalk * 50x50 um? start with 100 V
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Evaluation of simulations

Simulation is evaluated by comparing detector resolution vs track angle
e Using the same reconstruction algorithm as the CMS Software
* Taking the RMS of (expected hit position - measured hit position)
* The tails are important, so fitting a Gauss function is not appropriate
e This is performed in 2 charge bins:
¢ 0<Q/Q,.<1
* 1<Q/Qu<15

Another important parameter is the charge collection efficiency (CCE)
which is defined as the collected charge/all charges
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Size choice studies
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50x50 is better in z until radiation damage, after that 25x100 is better in both directions

25x100 performance on Layer-2 is similar in the end of HL-LHC as it was for the present
detector in 2018
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=> Decision: 25x100 um?



Technology studies

3D sensors collect charge on columnar implants that penetrate the substrate

=N

i':" 2022-12-13
OHNS HOPKINS SUre
KSR PORel TAMAS ALMOS VAMI




Changes needed for PixelAV

PixelAV used a segmented parallel plate capacitor model to estimate trapped
carrier induced signal --> uses symmetries that are not there in 3D sensors

Use Ramo - Shockley theorem instead

* Solve Laplace’s eq for system with VV; =V, anad
Vg = 0+allelectrodes V; = 0 |i # j]

* Charge on electrode j induced by carrier at x, is

Qj = QCQD(xc)/VO
* where @(x,)/V,is the weighting potential

electrode |

This is a general method that works for 3D sensors
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Changes needed for TCAD

TCAD 9.0 does not support to mesh across region boundaries to calculate
the weighting potential

* place equipotential conducting “contacts” on the inside surfaces of square
voids to represent the implants in a 2.5x2.5 pixel array

. . E-field 0.5x0.5 cell Weighting potential 2.5x2.5 cell
Region definition for 3D case .
Silicon *substrate’ { cuboid [ (0,0,0) (230,50,12.5) ]} Oxide "substrate” { polyhedron { polygon [ (230.0,96.0,0.0) (230.0,96.0,4.0) (230.0,104.0,4.0) (230.0,104.0,0.0) (230.0,196.0,0.0) (230.0,196.0,4.0) (230.0,204.0,4.0)

(230.0,204.0,0.0) (230.0,250.0,0.0) (230.0,250.0,8.5) (230.0,246.0,8.5) (230.0,246.0,12.5) (230.0,154.0,12.5) (230.0,154.0,8.5) (230.0,146.0,8.5) (230.0,146.0,16.5)
(230.0,154.0,16.5) (230.0,154.0,12.5) (230.0,246.0,12.5) (230.0,246.0,16.5) (230.0,250.0,16.5) (230.0,250.0,25.0) (230.0,204.0,25.0) (230.0,204.0,21.0)
(230.0,196.0,21.0) (230.0,196.0,29.0) (230.0,204.0,29.0) (230.0,204.0,25.0) (230.0,250.0,25.0) (230.0,250.0,33.5) (230.0,246.0,33.5) (230.0,246.0,37.5)
(230.0,154.0,37.5) (230.0,154.0,33.5) (230.0,146.0,33.5) (230.0,146.0,41.5) (230.0,154.0,41.5) (230.0,154.0,37.5) (230.0,246.0,37.5) (230.0,246.0,41.5)
(230.0,250.0,41.5) (230.0,250.0,50.0) (230.0,204.0,50.0) (230.0,204.0,46.0) (230.0,196.0,46.0) (230.0,196.0,54.0) (230.0,204.0,54.0) (230.0,204.0,50.0)
(230.0,250.0,50.0) (230.0,250.0,58.5) (230.0,246.0,58.5) (230.0,246.0,62.5) (230.0,154.0,62.5) (230.0,154.0,58.5) (230.0,146.0,58.5) (230.0,146.0,62.5)

(230.0,54.0,62.5) (230.0,54.0,58.5) (230.0,46.0,58.5) (230.0,46.0,62.5) (230.0,0.0,62.5) (230.0,0.0,54.0) (230.0,4.0,54.0) (230.0,4.0,50.0) (230.0,96.0,50.0)
(230.0,96.0,54.0) (230.0,104.0,54.0) (230.0,104.0,46.0) (230.0,96.0,46.0) (230.0,96.0,50.0) (230.0,4.0,50.0) (230.0,4.0,46.0) (230.0,0.0,46.0) (230.0,0.0,37.5)
(230.0,46.0,37.5) (230.0,46.0,41.5) (230.0,54.0,41.5) (230.0,54.0,33.5) (230.0,46.0,33.5) (230.0,46.0,37.5) (230.0,0.0,37.5) (230.0,0.0,29.0) (230.0,4.0,29.0)
(230.0,4.0,25.0) (230.0,96.0,25.0) (230.0,96.0,29.0) (230.0,104.0,29.0) (230.0,104.0,21.0) (230.0,96.0,21.0) (230.0,96.0,25.0) (230.0,4.0,25.0) (230.0,4.0,21.
(230.0,0.0,21.0) (230.0,0.0,12.5) (230.0,46.0,12.5) (230.0,46.0,16.5) (230.0,54.0,16.5) (230.0,54.0,8.5) (230.0,46.0,8.5) (230.0,46.0,12.5) (230.0,0.0,12.5)
(230.0,0.0,4.0) (230.0,4.0,4.0) (230.0,4.0,0.0) ] rectangle[(0.0,96.0,0.0) (230.0,96.0,4.0)] rectangle[(0.0,96.0,4.0) (230.0,104.0,4.0)] rectangle[(0.0,104.0,4.0)
(230.0,104.0,0.0)] rectangle[(0.0,104.0,0.0) (230.0,196.0,0.0)] rectangle[(0.0,196.0,0.0) (230.0,196.0,4.0)] rectangle[(0.0,196.0,4.0) (230.0,204.0,4.0)]
rectangle[(0.0,204.0,4.0) (230.0,204.0,0.0)] rectangle[(0.0,204.0,0.0) (230.0,250.0,0.0)] rectangle[(0.0,250.0,0.0) (230.0,250.0,8.5)] rectangle[(0.0,250.0,8.5)
(230.0,246.0,8.5)] rectangle[(0.0,246.0,8.5) (230.0,246.0,12.5)] rectangle[(0.0,154.0,12.5) (230.0,154.0,8.5)] rectangle[(0.0,154.0,8.5) (230.0,146.0,8.5)]
rectangle[(0.0,146.0,8.5) (230.0,146.0,16.5)] rectangle[(0.0,146.0,16.5) (230.0,154.0,16.5)] rectangle[(0.0,154.0,16.5) (230.0,154.0,12.5)] rectangle[(0.0,246.0,12.5)
(230.0,246.0,16.5)] rectangle{(0.0,246.0, 16.5) (230.0,250.0,16.5)] rectangle[(0.0,250.0,16.5) (230.0,250.0,25.0)] rectangle[(0.0,204.0,25.0) (230.0,204.0,21.0)]
rectangle[(0.0,204.0,21.0) (230.0,196.0,21.0)] rectangle{(0.0,196.0,21.0) (230.0,196.0,29.0)] rectangle[(0.0,196.0,29.0) (230.0,204.0,29.0)]

ElectrostaticPotentia rectangle[(0.0,204.0,29.0) (230.0,204.0,25.0)] rectangle((0.0,250.0,25.0) (230.0,250.0,33.5)] rectangle[(0.0,250.0,33.5) (230.0,246.0,33.5)]
1.0E-00 rectangle[(0.0,246.0,33.5) (230.0,246.0,37.5)] rectangle((0.0,154.0,37.5) (230.0,154.0,33.5)] rectangle[(0.0,154.0,33.5) (230.0,146.0,33.5)]
k rectangle[(0.0,146.0,33.5) (230.0,146.0,41.5)] rectangle((0.0,146.0,41.5) (230.0,154.0,41.5)] rectangle[(0.0,154.0,41.5) (230.0,154.0,37.5)]
8.0E-01 rectangle[(0.0,246.0,37.5) (230.0,246.0,41.5)] 0.0,246.0,41.5) (230.0,250.0,41.5)] rectangle[(0.0,250.0,41.5) (230.0,250.0,50.0)]
5 rectangle[(0.0,204.0,50.0) (230.0,204.0,46.0)] rectangle{(0.0,204.0,46.0) (230.0,196.0,46.0)] rectangle[(0.0,196.0,46.0) (230.0,196.0,54.0)]
6.0E-01 rectangle[(0.0,196.0,54.0) (230.0,204.0,54.0)] rectangle{(0.0,204.0,54.0) (230.0,204.0,50.0)] rectangle[(0.0,250.0,50.0) (230.0,250.0,58.5)]
. rectangle[(0.0,250.0,58.5) (230.0,246.0,58.5)] rectangle{(0.0,246.0,58.5) (230.0,246.0,62.5)] rectangle[(0.0,246.0,62.5) (230.0,154.0,62.5)]
rectangle[(0.0,154.0,62.5) (230.0,154.0,58.5)] rectangle((0.0,154.0,58.5) (230.0,146.0,58.5)] rectangle[(0.0,146.0,58.5) (230.0,146.0,62.5)]
4.0E-01 rectangle[(0.0,146.0,62.5) (230.0,54.0,62.5)] rectangle[(0.0,54.0,62.5) (230.0,564.0,58.5)] rectangle[(0.0,54.0,58.5) (230.0,46.0,58.5)] rectangle[(0.0,46.0,58.5)
i (230.0,46.0,62.5)] rectangle[(0.0,46.0,62.5) (230.0,0.0,62.5)] rectangle[(0.0,0.0,62.5) (230.0,0.0,54.0)] rectangle[(0.0,0.0,54.0) (230.0,4.0,54.0)]
&= 2.0E-01 rectangle[(0.0,4.0,54.0) (230.0,4.0,50.0)] rectangle[(0.0,96.0,50.0) (230.0,96.0,54.0)] rectangle[(0.0,96.0,54.0) (230.0,104.0,54.0)] rectangle[(0.0,104.0,54.0)
(230.0,104.0,46.0)] rectangle[(0.0,104.0,46.0) (230.0,96.0,46.0)] rectangle[(0.0,96.0,46.0) (230.0,96.0,50.0)] rectangle[(0.0,4.0,50.0) (230.0,4.0,46.0)]
— 0.0E+00 rectangle[(0.0,4.0,46.0) (230.0,0.0,46.0)] rectangle[(0.0,0.0,46.0) (230.0,0.0,37.5)] rectangle[(0.0,46.0,37.5) (230.0,46.0,41.5)] rectangle[(0.0,46.0,41.5)

(230.0,54.0,41.5)] rectangle[(0.0,54.0,41.5) (230.0,54.0,33.5)] rectangle[(0.0,54.0,33.5) (230.0,46.0,33.5)] rectangle[(0.0,46.0,33.5) (230.0,46.0,37.5)]
rectangle[(0.0,0.0,37.5) (230.0,0.0,29.0)] rectangle[(0.0,0.0,29.0) (230.0,4.0,29.0)] rectangle[(0.0,4.0,29.0) (230.0,4.0,25.0)] rectangle[(0.0,96.0,25.0)
(230.0,96.0,29.0)] rectangle[(0.0,96.0,29.0) (230.0,104.0,29.0)] rectangle[(0.0,104.0,29.0) (230.0,104.0,21.0)] rectangle[(0.0,104.0,21.0) (230.0,96.0,21.0)]
rectangle[(0.0,96.0,21.0) (230.0,96.0,25.0)] rectangle[(0.0,4.0,25.0) (230.0,4.0,21.0)] rectangle[(0.0,4.0,21.0) (230.0,0.0,21.0)] rectangle[(0.0,0.0,21.0)
(230.0,0.0,12.5)] rectangle[(0.0,46.0,12.5) (230.0,46.0,16.5)] rectangle[(0.0,46.0,16.5) (230.0,54.0,16.5)] rectangle(0.0,54.0,16.5) (230.0,54.0,8.5)]
rectangle[(0.0,54.0,8.5) (230.0,46.0,8.5)] rectangle[(0.0,46.0,85) (230.0,46.0,12.5)] 0.0,0.0,12.5) (230.0,0.0,4.0)] rectangle[(0.0,0.0,4.0) (230.0,4.0,4.0)]
rectangle[(0.0,4.0,4.0) (230.0,4.0,0.0)] rectangle[(0.0,4.0,0.0) (230.0,96.0,0.0)] polygon [ (0.0,4.0,0.0) (0.0,4.0,4.0) (0.0,0.0,4.0) (0.0,0.0,12.5) (0.0,46.0,12.5)
(0.0,46.0,8.5) (0.0,54.0,8.5) (0.0,54.0,16.5) (0.0,46.0,16.5) (0.0,46.0,12.5) (0.0,0.0,12.5) (0.0,0.0,21.0) (0.0,4.0,21.0) (0.0,4.0,25.0) (0.0,96.0,25.0) (0.0,96.0,21.0)
(0.0,104.0,21.0) (0.0,104.0,29.0) (0.0,96.0,29.0) (0.0,96.0,25.0) (0.0,4.0,25.0) (0.0,4.0,29.0) (0.0,0.0,29.0) (0.0,0.0,37.5) (0.0,46.0,37.5) (0.0,46.0,33.5) (0.0,54.0,33.5)
(0.0,54.0,41.5) (0.0,46.0,41.5) (0.0,46.0,37.5) (0.0,0.0,37.5) (0.0,0.0,46.0) (0.0,4.0,46.0) (0.0,4.0,50.0) (0.0,96.0,50.0) (0.0,96.0,46.0) (0.0,104.0,46.0) (0.0,104.0,54.0)
(0.0,96.0,54.0) (0.0,96.0,50.0) (0.0,4.0,50.0) (0.0,4.0,54.0) (0.0,0.0,54.0) (0.0,0.0,62.5) (0.0,46.0,62.5) (0.0,46.0,58.5) (0.0,54.0,58.5) (0.0,54.0,62.5) (0.0,146.0,62.5)
(0.0,146.0,58.5) (0.0,154.0,58.5) (0.0,154.0,62.5) (0.0,246.0,62.5) (0.0,246.0,58.5) (0.0,250.0,58.5) (0.0,250.0,50.0) (0.0,204.0,50.0) (0.0,204.0,54.0) (0.0,196.0,54.0)
(0.0,196.0,46.0) (0.0,204.0,46.0) (0.0,204.0,50.0) (0.0,250.0,50.0) (0.0,250.0,41.5) (0.0,246.0,41.5) (0.0,246.0,37.5) (0.0,154.0,37.5) (0.0,154.0,41.5) (0.0,146.0,41.5)
(0.0,146.0,33.5) (0.0,154.0,33.5) (0.0,154.0,37.5) (0.0,246.0,37.5) (0.0,246.0,33.5) (0.0,250.0,33.5) (0.0,250.0,25.0) (0.0,204.0,25.0) (0.0,204.0,29.0) (0.0,196.0,29.0)
(0.0,196.0,21.0) (0.0,204.0,21.0) (0.0,204.0,25.0) (0.0,250.0,25.0) (0.0,250.0,16.5) (0.0,246.0,16.5) (0.0,246.0,12.5) (0.0,154.0,12.5) (0.0,154.0,16.5) (0.0,146.0,16.5)
(0.0,146.0,8.5) (0.0,154.0,8.5) (0.0,154.0,12.5) (0.0,246.0,12.5) (0.0,246.0,8.5) (0.0,250.0,8.5) (0.0,250.0,0.0) (0.0,204.0,0.0) (0.0,204.0,4.0) (0.0,196.0,4.0)
(0.0,196.0,0.0) (0.0,104.0,0.0) (0.0,104.0,4.0) (0.0,96.0,4.0) (0.0,96.0,0.0) ] }
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Technology studies
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Sensors after
370 fbt perform

similarly to new
Sensors

At 2000 fb?
resolutions with

150 V are showing
the effect of
charge loss




Technology studies

Fluence 0 neg/cm? 3e15 n,,/cm? 17e15 n,/cm? | 17e15 ng,/cm?
Bias 40V /5V 100V 150V
Resolution (x/y) 56/139um |[59/14.3um 109/275um [9.8/22.5um
CCE 0.96 0.84 0.32 0.39

2000 fb! really needs 150V, otherwise significant cluster breakage is observed

3D sensors have great performance at high irradiation (comparable to current

detector performance)
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=> Decision: Use 3D In L1
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Simulation of avalanche gain effect

The avalanche gain effect is non-negligible for high HV values for the Phase-2
planar sensors, so we should simulate it correctly

Compare test beam data from DESY to PixelAV simulations
* Test beam data with irradiation of 4.0E15 n.,/cm* data (denoted as

“Data 40x”)
* PixelAV with the same procedure as earlier: by rescaling the 2018-based
simulation (this will be denoted as “PixelAV 40x”)

Data contains several HV setting, so for each point a new simulation was
created with the appropriate HV value, but same temperature (253K),
threshold, etc
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Pixel charge [e/ um]
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Peak and total charge comparisons
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PixelAV is good in describing both quantities for low HV.
For high HV we have the avalanche effect -- to be simulated
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First simulations of the gain factor in PixelAV

Change PixelAV to include a gain factor as an external parameter when collecting electrons
only [the induced charge from trapped carriers would not experience any gain]

Testing the code with gain = 1 leads to identical results to vanilla pixel AV

Make a scan for each samples with a gain factor variation, then choose the one that
describes the data the most
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Looking at the factors vs peak E-field

For V<600 PixelAV seems to be ok with the 5 i
default (gain=1.0) S 112 F —+ 4.0x10" ng/cm® after PixelAV matching
C -
| also gave all values an error of 0.01 B 1f  SEmechoninEl
: x2ndf=0.3096/5
1.08 b A=1.526x10°
: : - b=2.898x10" V/cm

Literature suggest the function g(E), 106 L

b\ . - i
where A - exp (— E) is the coefficient of the .
impact ionization for electrons/holes, b is the
parameter for the breakdown E-field 1.02 -
Serezhkin, Y.N., Shesterkina, A.A. Carrier multiplication in 1r [ ‘ [
silicon P-N junctions. Semiconductors 37, 1085—-1089 (2003). Cssas Cosanlyinelsaaelaas slas eilan dxio®
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Validation with 5.3E15 data

As a validation of the procedure, | i -
used test beam data with s |
irradiation of 5.3E15 ne,/cm? and -
run simulations in which | included 5
the avalanche gain effect. g 20
15
PixelAV with avalanche gain effect is _
better at describing the test beam 10

data
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Let’s use CMS (CMSSW)
full simulations!
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Tracking pertformance
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Heavy flavor tagging performance
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Conclusions

Introduction to HL-LHC and CMS Phase-2 IT project
Introduction to PixelAV and its use to simulate sensors

Studied different sensor sizes and sensor technologies

Developed PixelAV to simulate 3D sensors and avalanche gain effect

Compared simulations to DESY test beam data

Studied tracking and heavy flavor tagging in CMSSW
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