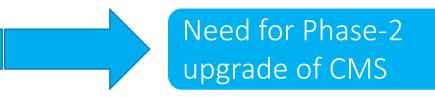
Simulated performance and calibration of CMS Phase-2 Upgrade Inner Tracker sensors

<u>Tamas Almos VAMI</u>¹, Morris Swartz¹

¹ Johns Hopkins University

Intro about the Phase-2 upgrade

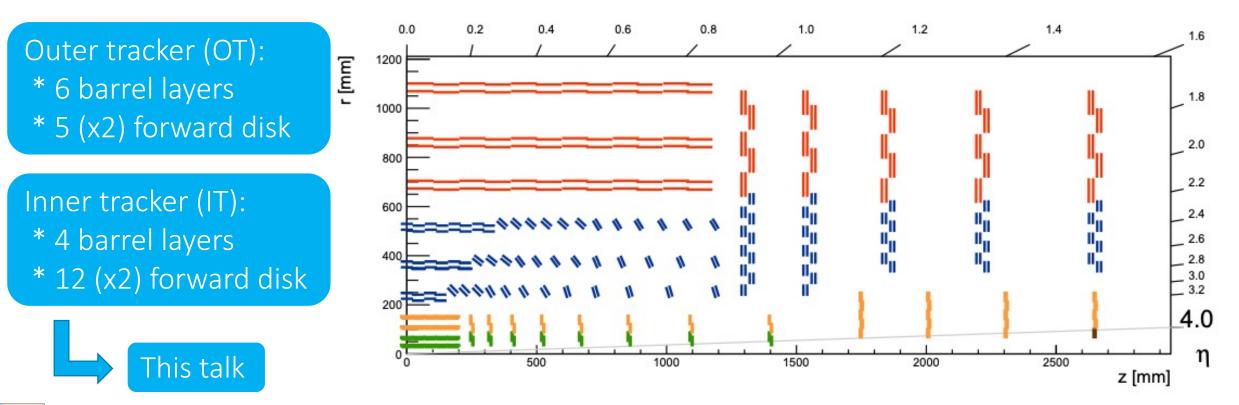


The HL-LHC will increase

* instantaneous luminosity 4X the current Run-2 value
(2.0 to 7.5 x 10³⁴ s⁻¹cm⁻²)

* pile-up to 4X the current value (~55 -- > 140 to 200)

* thus the radiation damage to the detectors



Intro about the Phase-2 upgrade

The new CMS tracker detector

* will have its acceptance increased to |eta| < 4

* low material budget (using carbon fiber mechanics, CO₂ cooling and serial power scheme)

Outline: Inner tracker sensor studies

Sizes: 50x50 um² vs 25x100 um²

Technology: 3D vs planar sensors

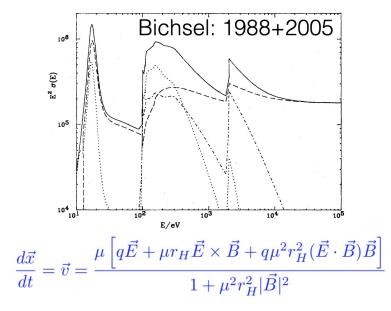
Simulation of avalanche gain effect

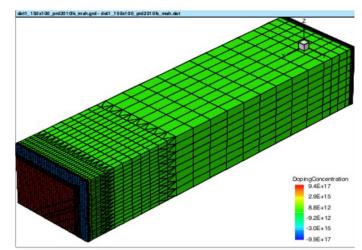
Using PixelAV

PixelAV is an external software to CMS Software, which can perform a more detailed simulation

Introduction to PixalAV software

Charge deposition based on Bichsel pion-Si cross-sections


Delta-ray range using continuously slowing-down approach with NIST ESTAR dEdx data


Multiple scattering and magnetic curvature of delta-rays

Carrier transport based on Runge-Kutta integration of saturated drift

- E-field is coming from ISE TCAD simulation of a pixel cell
- Includes charge trapping, diffusion, induction on implants

Electronics simulation: noise, linearity, thresholds, miscalibration

Simulation of Phase-2 IT sensors

Using non-uniform E-fields (even for new sensors)

Carrier focusing at the n+ implant

Irradiation simulation based on models developed for 2018 Phase-1 detector (1e15 n_{eq} /cm²), but scale the fluence to the expected numbers from the HL-LHC

Readout chip threshold is 1000 electrons for each cases

Cross talk with neighbors: * 25x100 um² has a 0.1 crosstalk * 50x50 um² has 0 crosstalk Bias voltage: * 25x100 um² start with 350 V * 50x50 um² start with 100 V

Evaluation of simulations

Simulation is evaluated by comparing detector resolution vs track angle

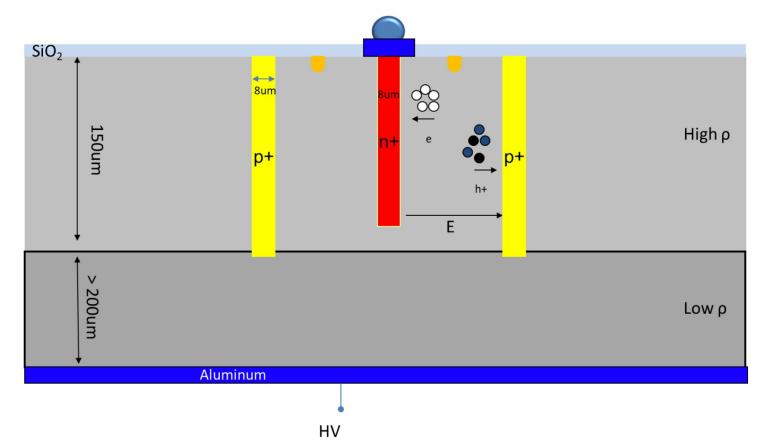
- Using the same reconstruction algorithm as the CMS Software
- Taking the RMS of (expected hit position measured hit position)
 - The tails are important, so fitting a Gauss function is not appropriate
- This is performed in 2 charge bins:
 - $0 < Q/Q_{avg} < 1$
 - 1 < Q/Q_{avg} < 1.5

Another important parameter is the charge collection efficiency (CCE) which is defined as the collected charge/all charges

Size choice studies

Unirradiated case

L2@3000 fb-1: 1000e threshold

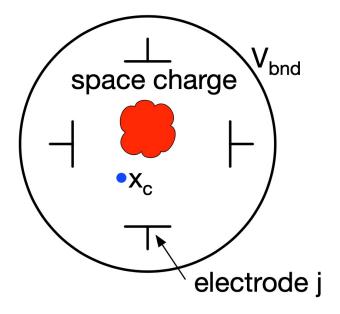

50x50 is better in z until radiation damage, after that 25x100 is better in both directions

25x100 performance on Layer-2 is similar in the end of HL-LHC as it was for the present detector in 2018

=> Decision: 25x100 um²

Technology studies

3D sensors collect charge on columnar implants that penetrate the substrate



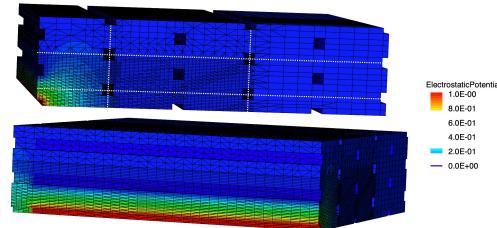
Changes needed for PixelAV

PixelAV used a segmented parallel plate capacitor model to estimate trapped carrier induced signal --> uses symmetries that are not there in 3D sensors

Use Ramo - Shockley theorem instead

- Solve Laplace's eq for system with $V_j = V_0$ and $V_{bnd} = 0 + all$ electrodes $V_i = 0$ [$i \neq j$]
- Charge on electrode j induced by carrier at x_c is $Q_j = q_c \varphi(x_c)/V_0$
 - where $\varphi(x_c)/V_0$ is the weighting potential

This is a general method that works for 3D sensors



Changes needed for TCAD

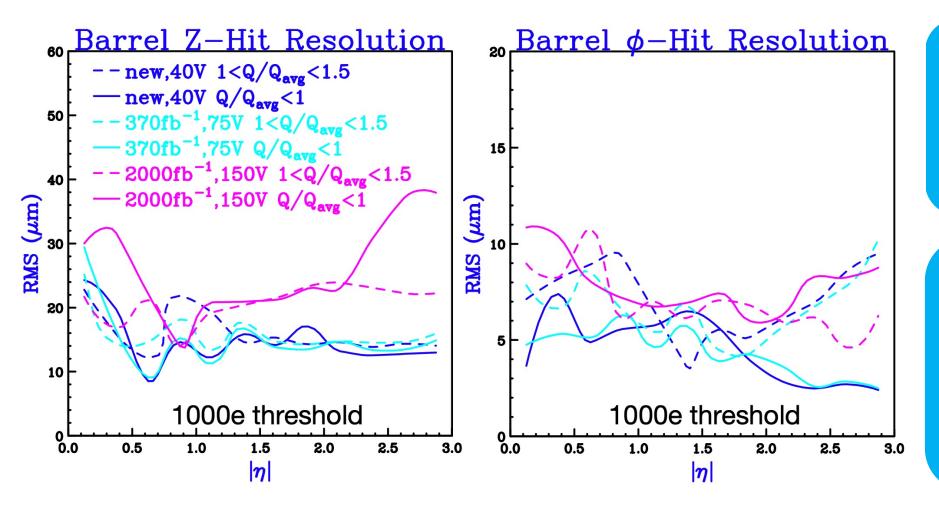
TCAD 9.0 does not support to mesh across region boundaries to calculate the weighting potential

place equipotential conducting "contacts" on the inside surfaces of square voids to represent the implants in a 2.5x2.5 pixel array

Region definition for 3D case -->

E-field 0.5x0.5 cell

Solid region 230um thick Silicon "substrate" (cuboid [(0.0.0) (230.50.12.5)].



Weighting potential 2.5x2.5 cell

Oxide "substrate" [polyhedron [polygon [(230.0,96.0,0.0) (230.0,96.0,4.0) (230.0,104.0,4.0) (230.0,104.0,0.0) (230.0,196.0,0.0) (230.0,196.0,4.0) (230.0,204.0,4.0) (230.0,204.0,0.0) (230.0,250.0,0.0) (230.0,250.0,8.5) (230.0,246.0,8.5) (230.0,246.0,12.5) (230.0,154.0,12.5) (230.0,154.0,8.5) (230.0,146.0,8.5) (230.0,146.0,16.5) (230.0.154.0.16.5) (230.0.154.0.12.5) (230.0.246.0.12.5) (230.0.246.0.16.5) (230.0.250.0.16.5) (230.0.250.0.25.0) (230.0.204.0.2) 230.0,196.0,21.0) (230.0,196.0,29.0) (230.0,204.0,29.0) (230.0,204.0,25.0) (230.0,250.0,25.0) (230.0,250.0,33.5) (230.0,246.0,33.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,246.0,37.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5) (230.0,27.5 (230.0,154.0,37.5) (230.0,154.0,33.5) (230.0,146.0,33.5) (230.0,146.0,41.5) (230.0,154.0,41.5) (230.0,154.0,37.5) (230.0,246.0,37.5) (230.0,246.0,47.5) (230.0,250.0,41.5) (230.0,250.0,50.0) (230.0,204.0,50.0) (230.0,204.0,46.0) (230.0,196.0,46.0) (230.0,196.0,54.0) (230.0,204.0,54.0) (230.0,204.0,50.0) 230 0 250 0 50 0) (230 0 250 0 58 5) (230 0 246 0 58 5) (230 0 246 0 62 5) (230 0 154 0 62 5) (230 0 154 0 58 5) (230 0 146 0 58 5) (230 0 146 0 62 5) (230.0,54.0,62.5) (230.0,54.0,58.5) (230.0,46.0,58.5) (230.0,46.0,62.5) (230.0,0,62.5) (230.0,0,0,54.0) (230.0,4.0,54.0) (230.0,4.0,50.0) (230.0,96.0,50.0) (230.0,96.0,54.0) (230.0,104.0,54.0) (230.0,104.0,46.0) (230.0,96.0,46.0) (230.0,96.0,50.0) (230.0,4.0,50.0) (230.0,4.0,46.0) (230.0,0.0,46.0) (230.0,0.0,46.0) (230.0,0.0,40.0) (230.0,0.0,40.0) (230.0,0.0,40.0) (230.0,0.0,40.0) (230.0,0.0,40.0) (230.0,0.0,40.0) (230.0,0.0,40.0) (230.0,0.0,40.0) (230.0,0.0,40.0) (230.0,0.0,40.0) (230.0,0.0,40.0) (230.0,0.0,40.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (230.0,0.0,0.0) (23 (230.0.4.0.25.0) (230.0.96.0.25.0) (230.0.96.0.29.0) (230.0.104.0.29.0) (230.0.104.0.21.0) (230.0.96.0.21.0) (230.0.96.0.25.0) (230.0.4.0.25.0) (230.0.4.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25.0) (230.0.96.0.25 (230.0,0.4.0) (230.0,4.0,4.0) (230.0,4.0,0.0)] rectangle[(0.0,96.0,0.0) (230.0,96.0,4.0)] rectangle[(0.0,96.0,4.0)] rectangle[(0.0,104.0,4.0)] rectangle[(0 rectangle[(0.0,204.0,4.0) (230.0,204.0,0.0)] rectangle[(0.0,204.0,0.0) (230.0,250.0,0.0)] rectangle[(0.0,250.0,0.0) (230.0,250.0,8.5)] rectangle[(0.0,250.0,8.5)] rectangle[(0.0,250.0, (230.0,246.0,8.5)] rectangle[(0.0,246.0,8.5) (230.0,246.0,12.5)] rectangle[(0.0,154.0,12.5) (230.0,154.0,8.5)] rectangle[(0.0,154.0,8.5) (230.0,146.0,8.5)] rectangle[(0.0, 146.0, 8.5) (230.0, 146.0, 16.5)] rectangle[(0.0, 146.0, 16.5) (230.0, 154.0, 16.5)] rectangle[(0.0, 154.0, 16.5)] rectangle[(0.0, 246.0, 16 (230.0,246.0,16.5)] rectangle[(0.0,246.0,16.5) (230.0,250.0,16.5)] rectangle[(0.0,250.0,16.5)] rectangle[(0.0,250.0,25.0)] rectangle[(0.0,204.0,25.0) (230.0,204.0,25.0)] rectangle[(0.0,204.0,25.0) (230.0,25.0)] rectangle[(0.0,204.0,25.0) (230.0,25.0)] rectangle[(0.0,204.0,25.0) (230.0,25.0)] rectangle[(0.0,204.0,25.0)] rectangle[(0.0,204 rectangle[(0.0,204.0,21.0) (230.0,196.0,21.0)] rectangle[(0.0,196.0,21.0) (230.0,196.0,29.0)] rectangle[(0.0,196.0,29.0) (230.0,204.0,29.0)] rectangle[(0.0,204.0,29.0) (230.0,204.0,25.0)] rectangle[(0.0,250.0,25.0) (230.0,250.0,33.5)] rectangle[(0.0,250.0,33.5) (230.0,246.0,33.5)] rectangle[(0.0,246.0,33.5) (230.0,246.0,37.5)] rectangle[(0.0,154.0,37.5) (230.0,154.0,33.5)] rectangle[(0.0,154.0,33.5) (230.0,146.0,33.5)] rectangle[(0.0, 146.0, 33.5) (230.0, 146.0, 41.5)] rectangle[(0.0, 146.0, 41.5) (230.0, 154.0, 41.5)] rectangle[(0.0, 154.0, 41.5)] (230.0, 154.0, 37.5) rectangle[(0.0,246.0,37.5) (230.0,246.0,41.5)] rectangle[(0.0,246.0,41.5) (230.0,250.0,41.5)] rectangle[(0.0,250.0,41.5)] rectangle[(0.0,250.0 rectangle[(0.0,204.0,50.0) (230.0,204.0,46.0)] rectangle[(0.0,204.0,46.0) (230.0,196.0,46.0)] rectangle[(0.0,196.0,46.0) (230.0,196.0,54.0)] rectangle[(0.0, 196.0, 54.0) (230.0, 204.0, 54.0)] rectangle[(0.0, 204.0, 54.0) (230.0, 204.0, 50.0)] rectangle[(0.0, 250.0, 50.0) (230.0, 250.0, 58.5)] ectangle[(0.0,250.0,58.5) (230.0,246.0,58.5)] rectangle[(0.0,246.0,58.5) (230.0,246.0,62.5)] rectangle[(0.0,246.0,62.5) (230.0,154.0,62.5)] rectangle[(0.0,154.0,62.5) (230.0,154.0,58.5)] rectangle[(0.0,154.0,58.5) (230.0,146.0,58.5)] rectangle[(0.0,146.0,58.5) (230.0,146.0,62.5)] rectangle[(0.0,146.0,62.5) (230.0,54.0,62.5)] rectangle[(0.0,54.0,62.5) (230.0,54.0,58.5)] rectangle[(0.0,54.0,58.5)] rectangle[(0.0,46.0,58.5)] rectangle[((230.0,46.0,62.5) rectangle[(0.0,46.0,62.5) (230.0,0.62.5)] rectangle[(0.0,0.0,62.5) (230.0,0.0,54.0)] rectangle[(0.0,0.0,54.0) (230.0,4.0,54.0)] rectangle[(0.0,4.0,54.0) (230.0,4.0,50.0)] rectangle[(0.0,96.0,50.0) (230.0,96.0,54.0)] rectangle[(0.0,96.0,54.0) (230.0,104.0,54.0)] rectangle 0.0.104.0.54 (230.0, 104.0, 46.0)] rectangle[(0.0, 104.0, 46.0) (230.0, 96.0, 46.0)] rectangle[(0.0, 96.0, 46.0) (230.0, 96.0, 50.0)] rectangle[(0.0, 4.0, 50.0) (230.0, 4.0, 46.0)] e[(0.0,4.0,46.0) (230.0,0.0,46.0)] rectangle[(0.0,0.0,46.0) (230.0,0.37.5)] rectangle[(0.0,46.0,37.5) (230.0,46.0,41.5)] rectangle[(0.0,46.0,41.5)] (230.0,54.0,41.5)] rectangle[(0.0,54.0,41.5) (230.0,54.0,33.5)] rectangle[(0.0,54.0,33.5) (230.0,46.0,33.5)] rectangle[(0.0,46.0,33.5)] rectangle[(0.0,46.0, ctangle[(0.0,0.0,37.5) (230.0,0.0,29.0)] rectangle[(0.0,0.0,29.0) (230.0,4.0,29.0)] rectangle[(0.0,4.0,29.0) (230.0,4.0,25.0)] rectangle[(0.0,96.0,25.0)] (230.0,96.0,29.0)] rectangle[(0.0,96.0,29.0) (230.0,104.0,29.0)] rectangle[(0.0,104.0,29.0) (230.0,104.0,21.0)] rectangle[(0.0,104.0,21.0) (230.0,96.0,21.0)] rectangle[(0.0,96.0,21.0) (230.0,96.0,25.0)] rectangle[(0.0,4.0,25.0) (230.0,4.0,21.0)] rectangle[(0.0,4.0,21.0) (230.0,0.0,21.0)] rectangle[(0.0,4.0,16.5)] rectangle[(0.0,4.0,16.5)] rectangle[(0.0,4.0,16.5)] rectangle[(0.0,54.0,16.5)] r ctangle[(0.0,54.0,8.5) (230.0,46.0,8.5)] rectangle[(0.0,46.0,8.5) (230.0,46.0,12.5)] rectangle[(0.0,0.0,12.5) (230.0,0.0,4.0)] rectangle[ngle[(0.0,4.0,4.0) (230.0,4.0,0.0)] rectangle[(0.0,4.0,0.0) (230.0,96.0,0.0)] polygon [(0.0,4.0,0.0) (0.0,4.0,4.0) (0.0,0.0,4.0) (0.0,0.0,12.5) (0.0,46.0,12.5) (0.0,46.0,8.5) (0.0,54.0,8.5) (0.0,54.0,16.5) (0.0,46.0,16.5) (0.0,46.0,12.5) (0.0,0.0,12.5) (0.0,0.0,21.0) (0.0,4.0,21.0) (0.0,4.0,25.0) (0.0,96.0,25.0) (0.0,96.0,21.0) (0.0,40.0,21.0) (0.0,4.0,25.0) (0.0,96.0,25.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,96.0,21.0) (0.0,9 (0.0,104.0,21.0) (0.0,104.0,29.0) (0.0,96.0,29.0) (0.0,96.0,25.0) (0.0,4.0,25.0) (0.0,4.0,29.0) (0.0,0.0,29.0) (0.0,0.0,37.5) (0.0,46.0,37.5) (0.0,46.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) (0.0,54.0,33.5) ((0.0,54.0,41.5) (0.0,46.0,41.5) (0.0,46.0,37.5) (0.0,0.0,37.5) (0.0,0.0,46.0) (0.0,4.0,46.0) (0.0,4.0,50.0) (0.0,96.0,50.0) (0.0,96.0,46.0) (0.0,104.0,46.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0.0,104.0,54.0) (0. (0 0 96 0 54 0) (0 0 96 0 50 0) (0 0 4 0 50 0) (0 0 4 0 54 0) (0 0 0 0 54 0) (0 0 0 0 62 5) (0 0 46 0 62 5) (0 0 46 0 58 5) (0 0 54 0 58 5) (0 0 54 0 62 5) (0 0 146 0 62 5) (0.0,146.0,58.5) (0.0,154.0,58.5) (0.0,154.0,62.5) (0.0,246.0,62.5) (0.0,246.0,58.5) (0.0,250.0,58.5) (0.0,250.0,50.0) (0.0,204.0,50.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,204.0,54.0) (0.0,20 0.0 196 0,46 0) (0.0,246 0,46 0) (0.0,204 0,50 0) (0.0,250 0,50 0) (0.0,250 0,41 5) (0.0,246 0,41 5) (0.0,246 0,37 5) (0.0,154 0,37 5) (0.0,154 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 0,41 5) (0.0,146 (0.0,146.0,33.5) (0.0,154.0,33.5) (0.0,154.0,37.5) (0.0,246.0,37.5) (0.0,246.0,37.5) (0.0,250.0,33.5) (0.0,250.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,204.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0) (0.0,25.0 (0.0,196.0,21.0) (0.0,204.0,21.0) (0.0,204.0,25.0) (0.0,250.0,25.0) (0.0,250.0,16.5) (0.0,246.0,16.5) (0.0,246.0,12.5) (0.0,154.0,12.5) (0.0,154.0,12.5) (0.0,154.0,16.5) (0.0,146.0,16.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,246.0,12.5) (0.0,24 (0.0,146.0,8.5) (0.0,154.0,8.5) (0.0,154.0,12.5) (0.0,246.0,12.5) (0.0,246.0,8.5) (0.0,250.0,8.5) (0.0,250.0,0.0) (0.0,204.0,0.0) (0.0,204.0,4.0) (0.0,196.0,4.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0.0) (0.0,196.0,0

Technology studies

Sensors after 370 fb⁻¹ perform similarly to new sensors

At 2000 fb⁻¹ resolutions with 150 V are showing the effect of charge loss

Technology studies

Scenario	new	370/fb	2000/fb	2000/fb
Fluence	0 n _{eq} /cm ²	3e15 n _{eq} /cm ²	17e15 n _{eq} /cm ²	17e15 n _{eq} /cm ²
Bias	40 V	75 V	100 V	150 V
Resolution (x/y)	5.6 / 13.9 um	5.9 / 14.3 um	10.9 / 27.5 um	9.8 / 22.5 um
CCE	0.96	0.84	0.32	0.39

2000 fb⁻¹ really needs 150V, otherwise significant cluster breakage is observed

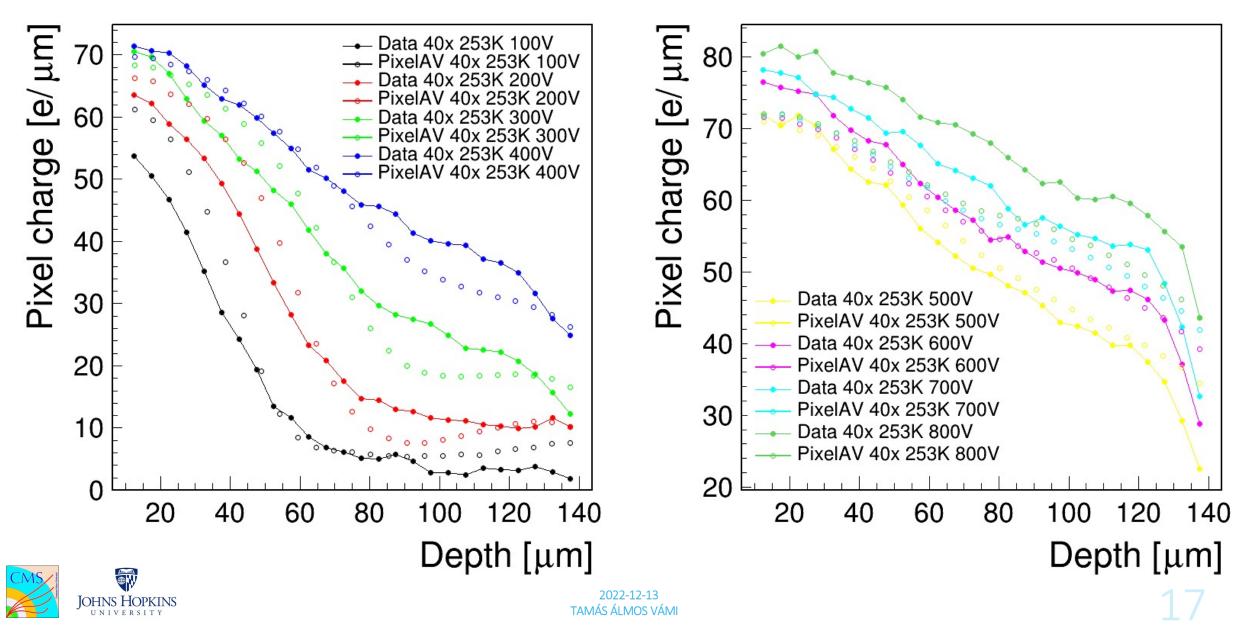
3D sensors have great performance at high irradiation (comparable to current detector performance)

=> Decision: Use 3D in L1

2022–12–13 Tramás Álmos vámi

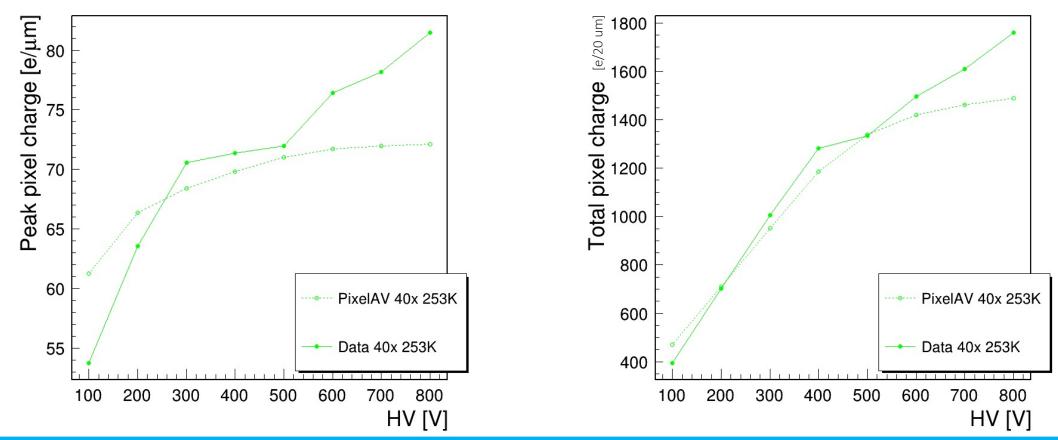
Simulation of avalanche gain effect

The avalanche gain effect is non-negligible for high HV values for the Phase-2 planar sensors, so we should simulate it correctly


Compare test beam data from DESY to PixelAV simulations

- Test beam data with irradiation of 4.0E15 n_{eq}/cm² data (denoted as "Data 40x")
- PixelAV with the same procedure as earlier: by rescaling the 2018-based simulation (this will be denoted as "PixelAV 40x")

Data contains several HV setting, so for each point a new simulation was created with the appropriate HV value, but same temperature (253K), threshold, etc

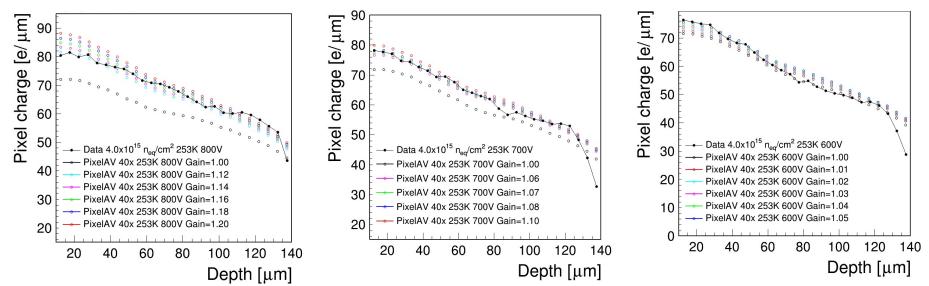

Charge profiles (data comparison)

Peak and total charge comparisons

Max of the previous histograms

Integral of the previous histograms

PixelAV is good in describing both quantities for low HV. For high HV we have the avalanche effect -- to be simulated

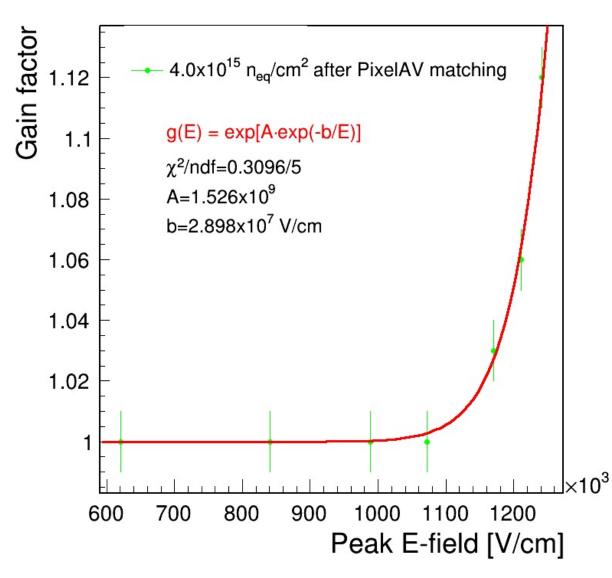


First simulations of the gain factor in PixelAV

Change PixelAV to include a gain factor as an external parameter when collecting electrons only [the induced charge from trapped carriers would not experience any gain]

Testing the code with gain = 1 leads to identical results to vanilla pixelAV

Make a scan for each samples with a gain factor variation, then choose the one that describes the data the most

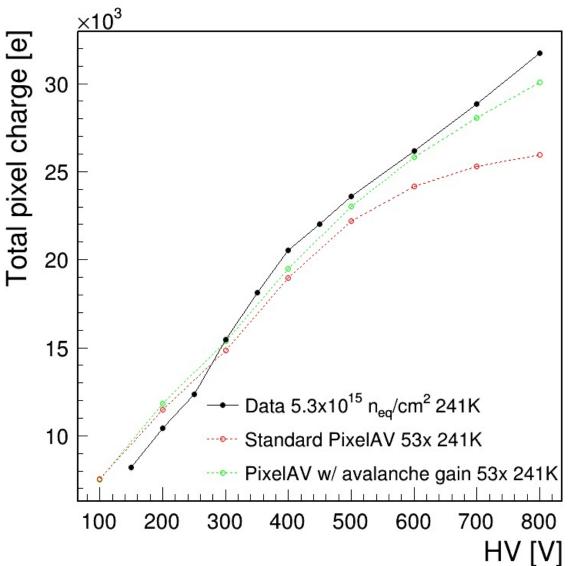

Looking at the factors vs peak E-field

For V<600 PixelAV seems to be ok with the default (gain=1.0)

I also gave all values an error of 0.01

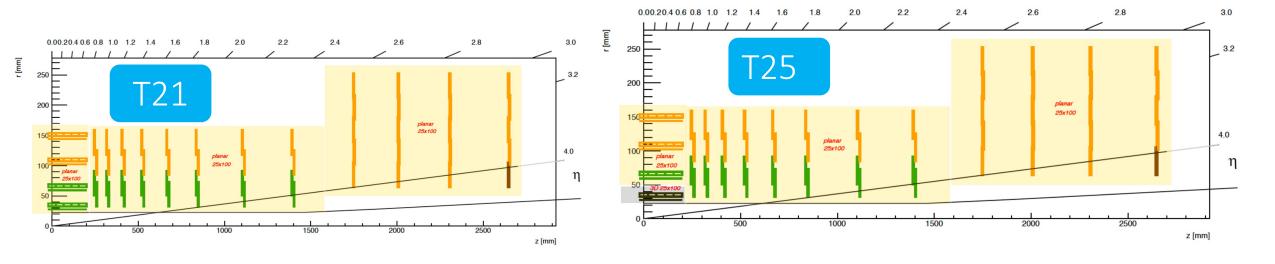
Literature suggest the function g(E), where $\mathbf{A} \cdot \exp\left(-\frac{b}{E}\right)$ is the coefficient of the impact ionization for electrons/holes, b is the parameter for the breakdown E-field

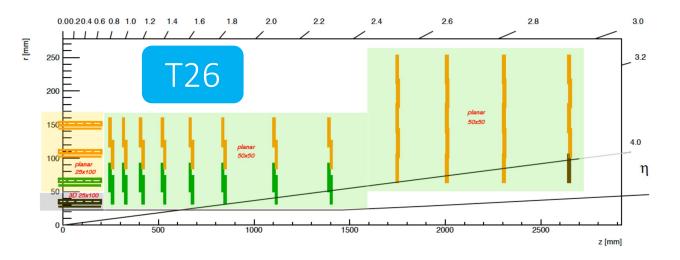
Serezhkin, Y.N., Shesterkina, A.A. Carrier multiplication in silicon *P-N* junctions. *Semiconductors* **37**, 1085–1089 (2003). https://doi.org/10.1134/1.1610124



Validation with 5.3E15 data

As a validation of the procedure, I used test beam data with irradiation of 5.3E15 n_{eq}/cm^2 and run simulations in which I included the avalanche gain effect.

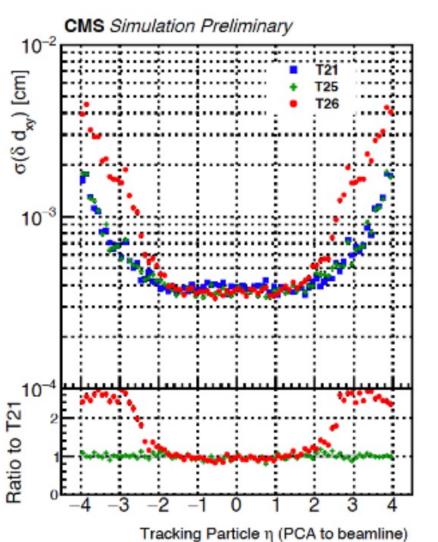

PixelAV with avalanche gain effect is better at describing the test beam data

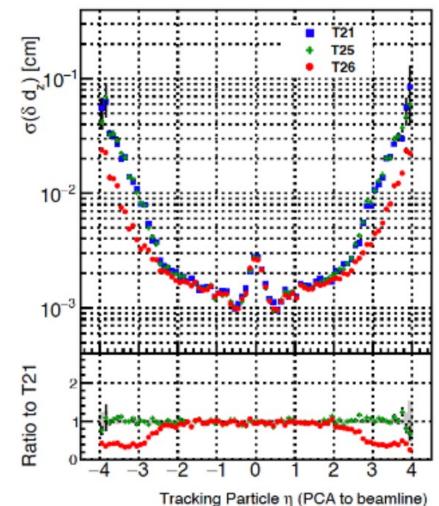


Let's use CMS (CMSSW) full simulations!

Different layouts

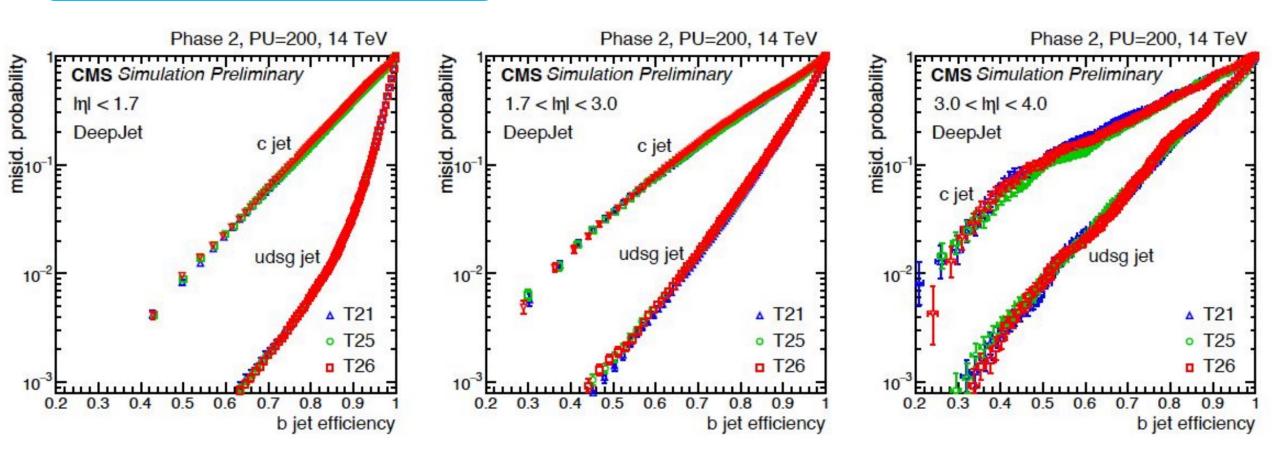
No radiation simulation yet




Tracking performance

Events from muon gun (no pile-up, no vtx-smearing)

Resolution loss for T26 in d_{xy} is comparable to the gain in d_z



Heavy flavor tagging performance

TTbar+PU200events

25

Conclusions

Introduction to HL-LHC and CMS Phase-2 IT project

Introduction to PixelAV and its use to simulate sensors

Studied different sensor sizes and sensor technologies

Developed PixelAV to simulate 3D sensors and avalanche gain effect

Compared simulations to DESY test beam data

Studied tracking and heavy flavor tagging in CMSSW

