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Introduction

* The ATLAS experiment will undergo a major
upgrade for the High-Luminosity LHC phase

* CMOS pixel sensors were considered for the
outermost layer of the ITk pixel detector

e Requirements for layer 4:
— High efficiency (>97 %)
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Hybrid vs. CMOS pixel detectors

* Hybrid pixel detectors .

sensor chip (e.g. silicon)

high resistivity n-type silicon

p-type
silicon layer

flip chip )
bonding with S
solder bumps

aluminium layer

electronics chip single pixel

read-out cell

* Used in the majority of present systems .

* Sensor and readout on separate chips — can be
optimised separately (different materials, high .
sensor bias voltages)

* Fast charge collection, good radiation tolerance .

* Complex and costly assembly due to fine-pitch
bump bonding

CMOS monolithic pixel sensors

Pixel electronics in the deep n-well
P-substrate
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E-field
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14 pym depleted at 100V bias

Particle

Sensor and readout integrated into the same
silicon die (large or small collection electrode)

High granularity, low power consumption,
significant reduction in material budget

No bump-bonding: easy integration, lower cost

Recent progress in radiation hardness
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Sensors in the TowerJazz 180 nm technology

16/09/2019

Small collection electrode design with high
resistivity (> 1 kQ cm) p-type epitaxial layer
(25 pm thick - MIP charge ~1500 e)

Deep p-well shielding n-well to allow full CMOS

Reverse bias (~6 V) to further reduce input
capacitance and increase depletion volume
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Modified process — adding a planar n-type layer
to improve depletion under the deep p-well
near the pixel edges

A fully depleted epitaxial layer results in faster
charge collection and better radiation tolerance

No circuit or layout changes required

NWELL COLLECTION
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W. Snoeys et al. https://doi.org/10.1016/j.nima.2017.07.046
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MALTA pixel sensor

 The 512x512 pixel matrix divided into 8
sectors with slight differences in electrode
size, spacing and reset mechanism

* Design based on a low-power analogue
front-end and a novel asynchronous
architecture to read out the pixel matrix

DACs for
analogue biases

digital periphery
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The MALTA pixel

analogue

36.4 um

digital
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sensor

Vs
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e Sensor and analogue front-end (shaper-
amplifier and discriminator) shielded from
digital part to minimise crosstalk



Analogue front-end design

* Fast, low power, low noise amplifier based on a * Designed for a threshold of ~200 e- with a
previous design for the ALICE upgrade (shaping simulated ENC noise of <10 e and RMS channel-
time ~25 ns, power <1 uW/pixel) to-channel threshold variation of ~10 e
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D. Kim et al. https://doi.org/10.1088/1748-0221/11/02/C02042
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Analogue front-end timing optimisation
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Analogue front-end timing measurements

* Time walk measurement
performed with a 2°Sr
source using special pixels
to monitor the analogue
output

 With a threshold of 210 e-
the in-time threshold is
300 e (20% of MIP charge)

e Qut-of-time hits mostly
due to charge sharing
(measurement done on a
single pixel)
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Front-end response before and after irradiation

* MALTA chips irradiated with neutrons
up to 10%* n,,/cm? (with a
background TID of 1 Mrad)

* Monitoring pixels also used to study
sensor and front-end response to >>Fe
source before and after irradiation

* Characteristic K, and Kg peaks of the
source clearly visible even after
irradiation

* Irradiated front-end shows a slightly
higher signal due to decreasing input
capacitance, as well as an increase in
noise
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MALTA asynchronous readout architecture

* Front-end discriminator outputs are injected

Pixel bus 16 bits Group addr. Pixel bus 16 bits Group addr.

5 bits 5 bits

into double-column digital logic generating a
short pulse (0.5-2 ns)

v v
S 5
o o
U o
= X
=} a
(] o
= =
w w
— —

* Data is transmitted asynchronously over high
speed buses without clock distribution over the
active matrix to save power

* 2 independent buses serve alternating 2x8 pixel
groups (one bus for the red groups and another
for the blue groups)

* 22 bits per bus: reference (1b) + pixel pattern
(16b) + group address (5b)

* In-pixel logic includes hit arbitration in case of
simultaneous hits within one 2x8 group

5 bit group # bus
5 bit group # bus

32 blue+32 red pixel groups of 2x8 pixels = 1 double column 2x 512

VvV v VWV VYWY v VWYY
|. Berdalovic et al. https://doi.org/10.1088/1748-0221/13/01/C01023
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Asynchronous readout architecture — measurements

e Hit signals from the pixels are buffered and p 12005_‘ """""""""""""""" E
arrive at the end-of-column with a maximum 3 1000 E
. " 8 rooo; = 17 ns{(pulse) +
propagation delay of ~8 ns s0ok- 25 ns = 17 ns{(pulse
F 8 ns (signal) 3
600; E
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bottom of the column) 95660 70 80 90 100 110 120
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Front-end and readout timing measurements

* Time walk can also be obtained by
measuring the delay of digital output
signals with respect to a fast trigger

(scintillator)

* In-time efficiency for leading signals in
clusters reaches 98% with a 300 e
threshold (no correction for the 8 ns

propagation delay down the column)
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Threshold dispersion and noise

before and after TID
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The miniMALTA prototype

* The next small prototype after MALTA, contains:

— A 64x16 pixel matrix with the same designs as
MALTA, but enlarged transistor to fix RTS noise

— A block to synchronise signals at the periphery

— A priority encoder readout and serialiser to send
the data out at 1.2 Gb/s
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Front-end design changes

* Two sectors with different front-end designs: one
with enlarged M3 and one with the same front-end
as MALTA

* Noise distributions after irradiation show a
significant reduction in RTS noise with enlarged M3

miniMalta Noise map
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Front-end design changes

* Alarger length of M3 means lower output
conductance on OUT,, leading to a higher gain

(about 30% in simulation)

* In measurements, the gain and threshold
difference is around a factor of 1.7, allowing lower
thresholds to be achieved more easily
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Synchronisation in miniMALTA

* Hits at the output of the MALTA double column stored asynchronously into FIFO RAM memory and read

out synchronously

22 1
\ 4
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Measurements on the synchronisation block

* Functionality already proven by reading out the correct address data in threshold scans and beam tests

* Timing information stored in the synchronisation memories tested with a 320 MHz fast clock
(resolution of ~3 ns)

* Example —distribution of timing difference between hits in horizontal clusters of 2 pixels
(close to 0 near the pixel borders, < 50 ns towards the pixel centres)
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Conclusion and outlook

 The MALTA CMOS pixel sensor was developed in view of the ATLAS High-Luminosity upgrade

* The large pixel matrix implements a fast, low-power analogue front-end and a novel
asynchronous readout architecture

e The chip has been extensively characterised in lab measurements and testbeam, and shows
good results in terms of front-end performance and readout capability

* The miniMALTA prototype includes front-end improvements and a synchronisation block at
the chip periphery, all of which are tested and proven to work

* Designs in TowerlJazz 180 nm continue towards large-scale pixel detector chips with
asynchronous and synchronous architectures (MALTA V2, TJ Monopix V2)
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Thank you for your attention!
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