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DACs and biasing circuits
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Independent from process, voltage and temperature.
Linear behavior as a function of code.
Small area.

In a pixel sensor, part of the chip is dedicated to the DACs:  blocks to bias the 
analogue circuits providing a current or a voltage, configurable through a digital code.

CONFIGURATION CODE

Challenges:

18
.6
		𝑚
𝑚

LVDS DRIVER

DIGITAL PERIPHERY

DACs FOR ANALOGUE 
BIASES



MALTA Powering scheme
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Supply voltage provided from the side

Front-End current ~	0.5	𝜇𝐴

15 − 20	𝑚𝑉	voltage drop on the supply in the 
middle of the matrix

15 − 20	𝑚𝑉

512𝑥512 pixels ~	262	𝑘 pixels       ~	132	𝑚𝐴

1.8	𝑉



MiniMALTA DACs concept
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• Local DACs implemented to save space 
(	~5	𝑥 with respect to a modular approach)

MATRIX

BIASING STRUCTURE

𝐼𝐷
𝐴𝐶

𝑉𝐷
𝐴𝐶

CURRENT DAC

VOLTAGE DAC
Non Modular design:

• Number of bits independent from the  
Matrix width (8 bits DACs implemented)

• Easy to increase the number of DACs 
and biasing lines towards the FE

• Flexible layout



Voltage DAC
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TYPE RESISTOR STRING

RESOLUTION 8 BITS (LSB=7.03mV)

POWER 32	𝜇𝑊

AREA 204	𝑥	149	𝜇𝑚8
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Possibility to override and monitor the voltage. 



Current DAC
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TYPE PMOS CURRENT SOURCE

RESOLUTION 8 BITS (𝐿𝑆𝐵 ≈ 20𝑛𝐴)

POWER 14	𝜇𝑊

AREA 192	𝑥	237	𝜇𝑚8

Possibility to override and monitor the current. 

BINARY TO THERMOMETER CODE
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Integration in MiniMALTA and testchip
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VDACsIDACs

Test-chip implemented as a backup solution 
in case of malfunctioning on MiniMALTA

260	𝜇𝑚
≈
1800	𝜇𝑚

CONTROLS 
AND OUTPUTS

MiniMalta

INPUT CODE

SUPPLY

VDAC

IDAC



Linearity of the VDACs vs TID
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Integral nonlinearity of DAC
91	𝑀𝑅𝑎𝑑:

Measurement on 15 chips before and after 
ionizing radiation (TID).
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Linearity of the IDACs vs TID
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DNL INL
NO_IRR 18% 40%
1 MRad 30% 130%
66 MRad 29% 111%
91 MRad 25% 140%

Measurement on 15 chips before and after 
ionizing radiation (TID).

91	𝑀𝑅𝑎𝑑:



IDACs testing - mismatch
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SAMPLE ITHR [𝜇𝐴] IRESET [𝜇𝐴] IDB [𝜇𝐴] ICASN [𝜇𝐴] IBIAS [𝜇𝐴]
AVG per 
sample

#1 57.6 56.6 57.9 56.4 58.3 57.36

#2 54.2 55.2 54.2 54.9 54.9 54.68

#3 59.9 59.9 59.5 59.6 59.3 59.64

#4 59.4 58.8 59.2 59.1 59.4 59.18
AVG per 

channel T=27°C 57.775 57.625 57.7 57.5 57.975 57.595

T=-30°C 52.7325 52.365 52.565 52.25 52.85 52.5525

After irradiation 51.092 51.80 51.200 51.3287 51.82 51.448

Current ranges are dependent on process, temperature and also ionizing radiation 
dose. 
Similar values of average currents for the different channels indicate no design issue. 

Possibility to use it with a Bandgap reference for a better PVT independence.

Measurement on 15 chips before and after ionizing radiation (TID).



Threshold dispersion and noise
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The DACs are setting global references to the pixel matrix but there is a pixel to 
pixel variability due to the process variations.
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Noise and transistor mismatch cause a variation on important Front-End 
characteristics as gain, threshold etc.
The behavior over the chip has to be as uniform as possible.



Front-End threshold dispersion
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FE study to improve overall performance, focusing on threshold dispersion.
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- the discriminator input 
transistor M11

Larger (4x) filtering capacitance CS from previous version: further improvement on 
the gain and better stability

Relevant RTS contributor, 
transistor M4: enlarged for 
next developments

- the output conductance of the 
sink transistor

Main sources of Mismatch are: 

Added M3 to cascode sink 
transistor M4



Front-End - simulations
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Factor 3 
discrepancy with 
measurement.

2x more signal for the same charge with 
cascode.
Faster Front-End with the same charge: 
lower Time Walk and in time threshold.

Potentially higher efficiency.
Improved time resolution.

w/o cascode (MALTA/MiniMALTA) w cascade, bigger cap

TIME WALK curve



Pixel design
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To further reduce the dispersion a local adjustment is implemented.

A three bit DAC has been integrated “in pixel”.
Reduction by a x7 factor of the threshold dispersion.
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Timing measurements MALTA+PicoTDC
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Malta gives output data asynchronously on a 40 bits bus to provide information on 
hit position on the matrix.

The outputs are LVDS-compatible (LAPA drivers, see R. Cardella’s presentation).

The REF bit is a fast OR signal, high whenever a hit has occurred on the matrix.

REF BIT

0

40

2𝑛𝑠 1𝑛𝑠

1
2

39



PicoTDC features
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The PicoTDC is a Time to Digital Converter with a 3 ps binning capability.

It has 64 LVDS input channels, compatible with LAPA.

The data are stored in a FIFO and sent out serially through an 8 bit port.



Lab setup
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MALTA

FPGA for MALTA

LAPA boardPicoTDC

FPGA for PicoTDC

LAPA board needed to adapt signals levels to MALTA



Timing characterization of MALTA
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Time of arrival characterization of the REF signal with test pulses.
Pulsed two pixels in the same column. 

Sigma of the distribution is the Front-End 
and read out circuitry jitter

MATRIX BOTTOM

PicoTDC

Distribution of REF time of arrival difference 

PULSING REF BIT

𝜎 = 	1.67	𝑛𝑠
𝜇 = 29.47	𝑛𝑠



Front-End time resolution
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The level of noise 
and signal speed 

affect the time 
resolution

𝜎i = 𝜎jk			/
l`
lU

Jitter vs injected charge

Time jitter

Flattens out at 
500ps for charges 
> 1.5ke

Q2

Q1

Q2 > Q1

𝜎	[𝑛𝑠]

𝑄XY	[𝑒p]



Test beam - setup
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Plane1 Plane2 Plane3 Plane4

Trigger 
Logic 
Unit

BEAM

SCINTILLATORS

L1A
142	𝑀𝑒𝑉 protons beam
An asynchronous trigger is generated on the time 
coincidence of the hits on the scintillators.

The trigger allows the MALTA read-out to acquire hits to 
be processed off-line. 



PicoTDC – integration in setup
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Plane1 Plane2 Plane3 Plane4

Trigger 
Logic 
Unit

BEAM

SCINTILLATORS

L1A

PicoTDC
Synchronization to a 
40MHz clock

PicoTDC generates a 
precise time tag of the 
REF bit.
No position information 
from PicoTDC.



TestBeam - results
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Distribution of the REF bits with respect to the trigger.

Timing difference between planes (first of the cluster in case of multiple hits).

Assuming the different planes uncorrelated: 𝜎i = 1.6	𝑛𝑠

- MALTA jitter

- Jitter due to the trigger synchronization
with a 40 MHz clock (dominant).

Two contributions to the sigma:



TestBeam - results
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The resolution is improved considering only higher charges (single pixel cluster)
Protons beam at 142 MeV -> ≈ 𝑥3	𝑀𝐼𝑃

Future measurements will include correlation between PicoTDC and Malta.

Non gaussian tails due to noisy hits
No information on hit position: 

Shifted average due to column propagation

𝜎 = 1.6	𝑛𝑠 𝜎 = 0.8	𝑛𝑠

After cutting on 
multiple hits clusters 



Conclusions
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extensively characterized with lab measurements and show good results 
in terms of linearity and radiation hardness.

A thorough study on the Front-End has been carried out, achieving a factor 2 
improvement in threshold dispersion in simulations.

The Front-End modification have been implemented in a new layout 
including a in-pixel tuning DAC and will be used for future TowerJazz
developments.

A testing system for MALTA timing characterization which includes a fast timing ASIC 
(PicoTDC) has been implemented.

A sub ns time resolution has been achieved with lab measurements and a 
1.6	𝑛𝑠 resolution with testbeams.

Designed biasing circuits for monolithic pixel sensors (MiniMALTA, MONOPIX2).
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BACKUP



PicoTDC settings
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Trigger mode enabled:  

Trigger latency

Trigger window

Trigger window limited to 200	𝑛𝑠
Trigger latency ≈ 600	𝑛𝑠 (the trigger signal is delayed because the TLU sends a 16 
bit address + processing time)

Trigger LE

In the trigger window, picoTDC detects the LE with respect to the trigger LE and its 
pulse width for each channel.

The asynchronous trigger coming from the TLU is synchronized to a 40 MHz 
clock by one of the four FPGA of the telescope -> huge jitter introduced by the 
synchronization and by using different clocks for picoTDC and the trigger. 



First results
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Pulsed three pixels at the top, middle and bottom of the matrix

Pulse width distributions:

Pulse width = 500ps Pulse width = 750ps

Pulse width = 1000ps Pulse width = 2000ps Tested with 
different LAPA 
configurations, 
no change in 
the jitter



Le distributions after cleaning
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Relative timing difference
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Fitting only the core of the distribution to keep the Gaussian component, clear tails are visible due to 
different TWs (thresholds) of the planes.

Hit by hit difference for the different planes.
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Keeping only the trigger events with 1 hit in both planes to filter the noise



Relative timing difference for all the planes 
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Plane 3 has a worse resolution due to a much higher threshold

Smallest RMS between the first two planes possibly due to their proximity

Plane 4 has a higher RMS possibly due to either different threshold or beam defocusing effect and column 
propagation
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considering events with only one hit per plane 
(largest possible signal = smallest possible TW)

All combinations (including very low energy 
signals) 

Considering all events but comparing only the 
leading signals of fastest 

Possible ways to plot



First results
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Delay between the pixel on the top and different pixels within the column 0

Pixels 0 - 49 Pixels 0 - 161

Pixels 0 - 321 Pixels 0 - 497
The delay takes into 
account the 
injection pulse delay 
up and the data 
propagation down 
the column.



First results
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Longer tail towards higher values
Mean values increases

For smaller pulses

The distribution takes into account the jitter of the discriminator leading edge which is 
worse close to the threshold 

under investigation



Resolution vs energy
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Artificially increasing the effect of the TW, things behave as expected.

Considering events with at 
least 1 hit per plane

Considering events 
with at least 1 hit on 
the second but at 
least 2 on the first 
plane.

Considering 
events with at 
least 1 hit on the 
first but at least 2 
on the second 
plane

Considering events with at 
least 2 hit on both planes
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Summary
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For high charge deposition the time resolution is in the order of one ns.

20- 15- 10- 5- 0 5 10 15 20
 dist p_1 p_2 [ns]

0

100

200

300

400

500

dist_p_1_p_2
dist_p_1_p_2

Entries  7918
Mean   0.6276
Std Dev     3.844

 / ndf 2c  39.23 / 20
Prob   0.006247
Constant  7.5± 427.7 
Mean      0.0168± 0.1652 
Sigma     0.017± 1.133 

dist_p_1_p_2

𝜎 =
1.133𝑛𝑠
√(2)

≈ 800𝑝𝑠



In-time efficiency with PicoTDC
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How to define a track: 
Require one hit on the first (origin) 
and last plane

Efficiency= fraction of tracks seen on 
other planes

Integration on a 
moving window 

of 25ns

Efficiency compatible with other analysis (see R. Cardella’s presentation)
Next step: correlation with position information to cut noisy hits. 

Efficiency: 98.12% +/- 0.32%

In time efficiency > 95%

Important information can be extracted from PicoTDC analysis.


