RD39 Status Report 2006

Jaakko Härkönen and Zheng Li

http://rd39.web.cern.ch/RD39/

Outline

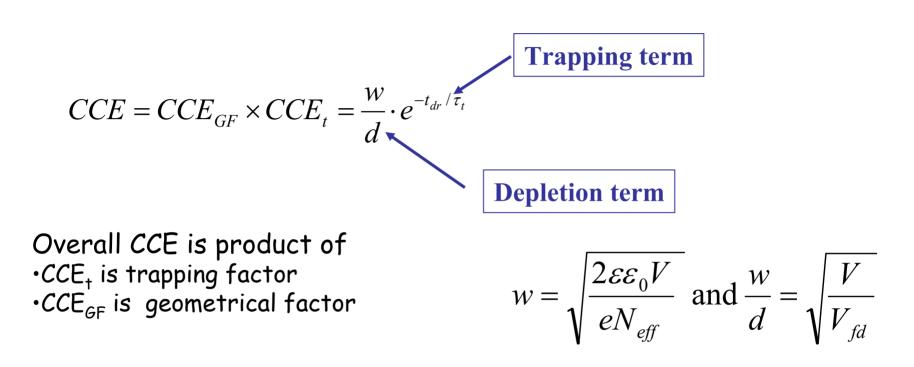
Introduction

Trapping effect on Charge Collection efficiency (CCE) in S-LHC

CryogenicTCT setup

CCE at the low temperatures

Operation of current-injected-detectors (CID)


CCE measurements on CID

Simulation of noise in CID strip detectors

Cryogenic module of microstrip Si detectors

Milestones and Budget

Trapping effect on CCE in S-LHC

For fluence less than 10^{15} n/cm², the trapping term CCE₊ is significant

For fluence 10¹⁶ n/cm², the trapping term CCE_t is a limiting factor of detector operation ! Jaakko Härkönen, 85th LHCC Open Session, 15th November 2006

TRAPPING

$$\tau_{t} = \frac{1}{\sigma v_{dr} N_{t}}$$

The drift velocity $v_{dr} \approx 10^7 \text{ cm/s}$

10^{16} cm^{-2} irradiation produces $N_T \approx 3-5 \times 10^{16}$ cm^-3 with $\sigma \approx 10^{-14} cm^2$

On average (e and h) it gives a $\tau_t \approx 0.2$ ns!

Even in highest E-field (Saturation velocity, 10^7 cm/s), carrier drifts only 20-30 μ m before it gets trapped regardless whether the detector is fully depleted or not !

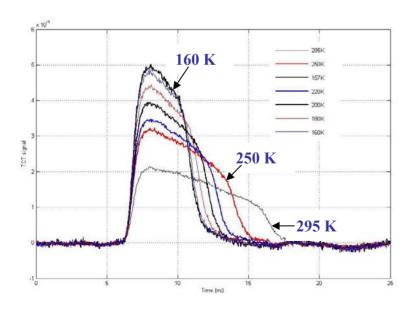
In S-LHC conditions, about 90% of the volume of d=300 μm detector is dead space !

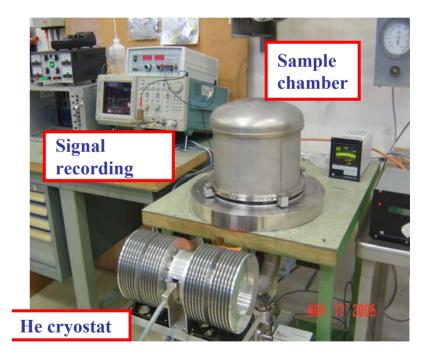

$$\tau_{d} = \frac{1}{\sigma v_{th} N_{C} e^{-E_{t}/kT}}$$

DETRAPPING

If a trap is filled (electrically nonactive) the detrapping time-constant is crucial

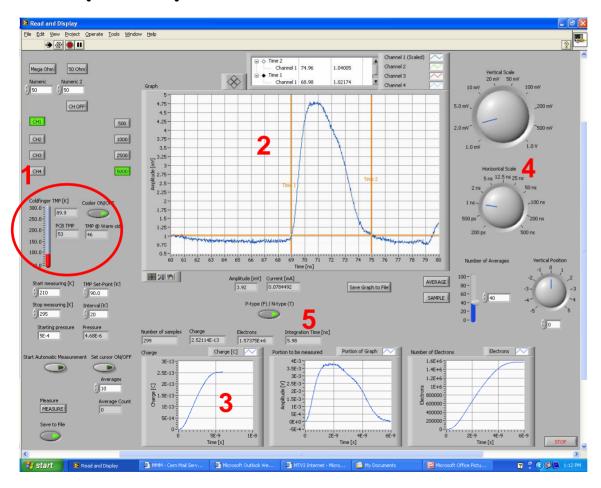
The detrapping time-constant depends exponentially on T


For A-center (O-V at $E_c\text{-}0.18~\text{eV}$ with $\sigma \approx 10^{\text{-}15}~\text{cm}^2$)

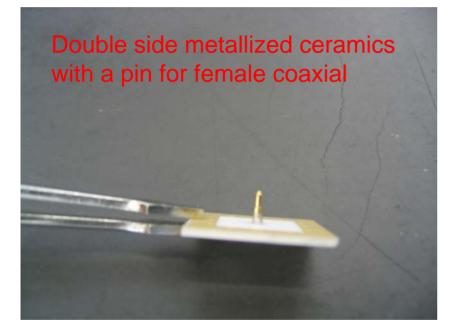


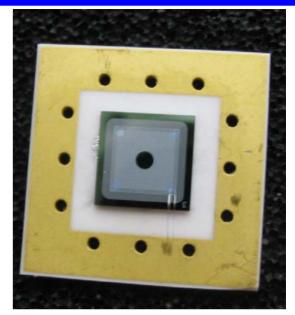
Cryogenic Transient Current Technique (C-TCT)

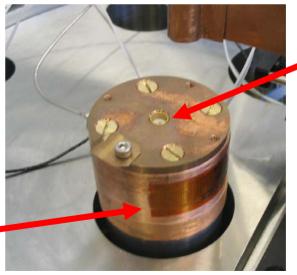
With C-TCT it is possible to measure and extract


- -Full depletion voltage V_{fd}
- -Charge Collection Efficiency (CCE)
- -Type of the space charge (n or p)
- -Trapping time constant $\tau_{e,h}$ -Electric field distibution E(x)

Improvements since Dec 2005


Fully computer controlled user interface


- 1. Temperature control
- Adjustable cursors for data taking
- 3. CCE measurement screen
- 4. Oscilloscope control
- 5. N or P type sample


Improvements since Dec 2005

Ceramic sample holders

Heating resistor provides faster temperature ramping

Cold finger and coaxial connector

10 L

100

200

BIAS VOLTAGE (V)

300

400

500

Ο

C-TCT data analysis

V_{fd} Trapping corrected transient 🛃 TCT_GUI x 10⁻¹² INTEGRATED DATA MEASURED TCT DATA OBTAINED t trap = 3.6695 ns Load TCT data file 6 Transient Int. T0 (ns) 2.5 Update Transient Int. T1 (ns) 13 CHARGE (arb) (V) TRNDIC 3 Calculate tau 3 Voltage span (file) 500:-25:0 2 Subtract undershooting 2 INTEGRATED FROM TCT Tau search values (ns) 1:.05:20 0 Smoothing param. .6 Smooth 0 nΦ 'ο 0.2 0.4 0.8 1.2 1.4 100 200 300 0.6 n. TIME (s) BIAS VOLTAGE (V) x 10⁻⁸ 250 Save data Depletion voltage CCE CORRECTED @ VARIOUS τ AND LINE FITS x 10⁻¹¹ ZERO OF GRADIENT 20 0.5 18 -0.5 FITTED GRADIENT Q/Q_{CORR}% CHARGE (arb) 16 $\tau_h \approx 3.7 \text{ns}$ -1.5 3 14 -2 -2.5 12 -3

100

Jaakko Härkönen, 85th LHCC Open Session, 15th November 2006

BIAS VOLTAGE (V)

300

400

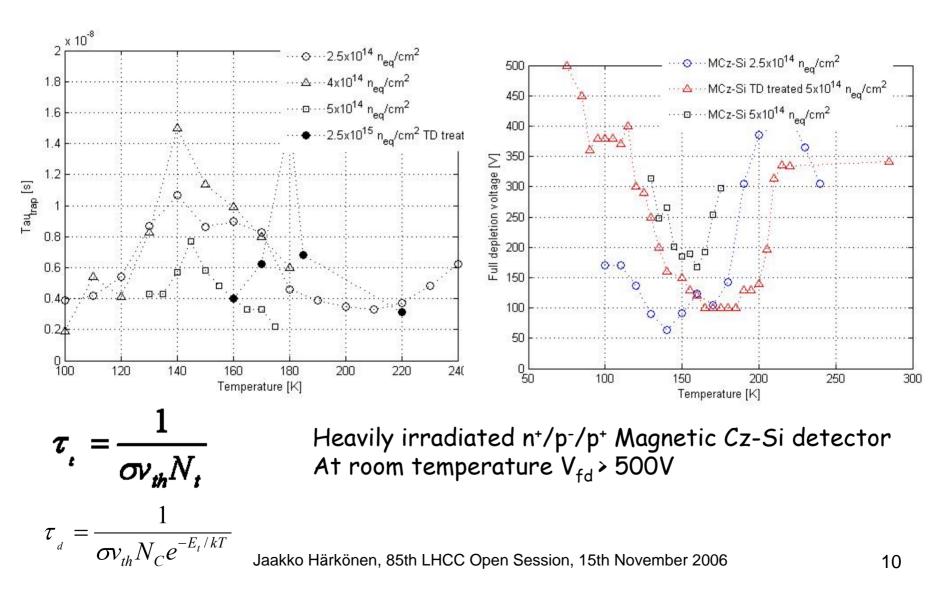
500

0

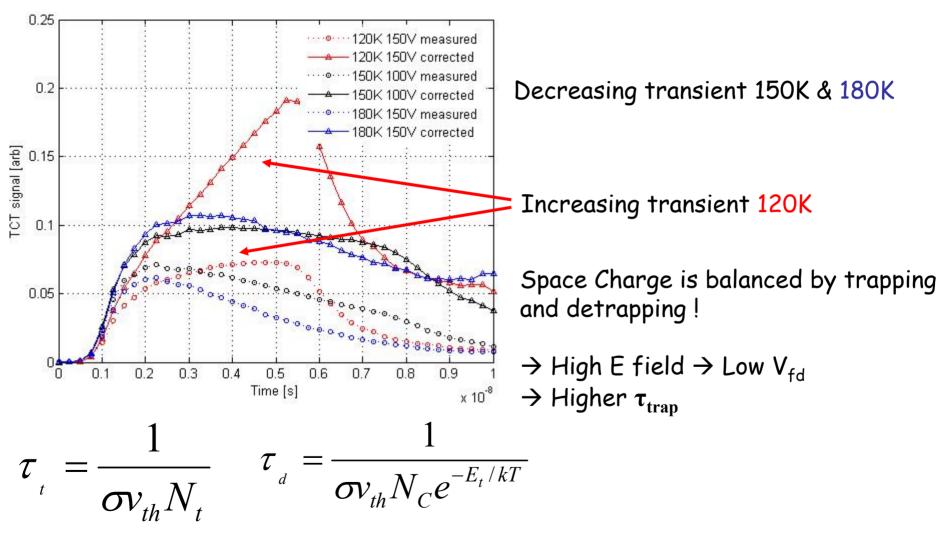
0.5

1

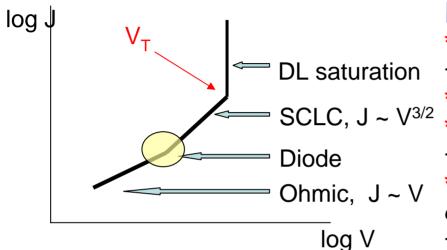
τ(s)


200

400


1.5

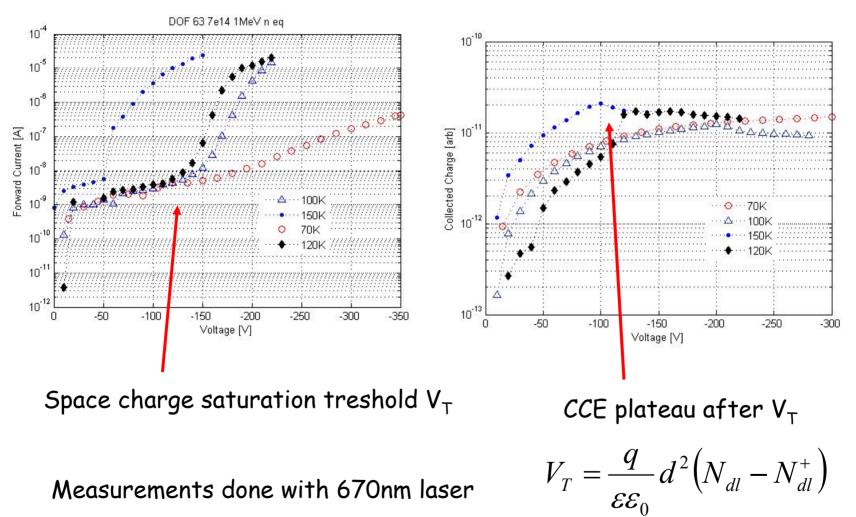
500


Trapping time τ_{eff} and V_{fd} vs Temperature

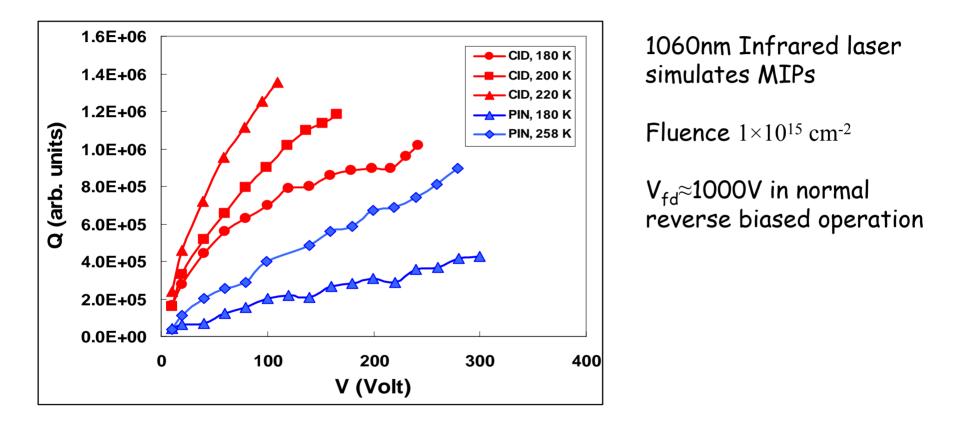
Space Charge Sign Inversion at low T

Charge Injected Detector CID

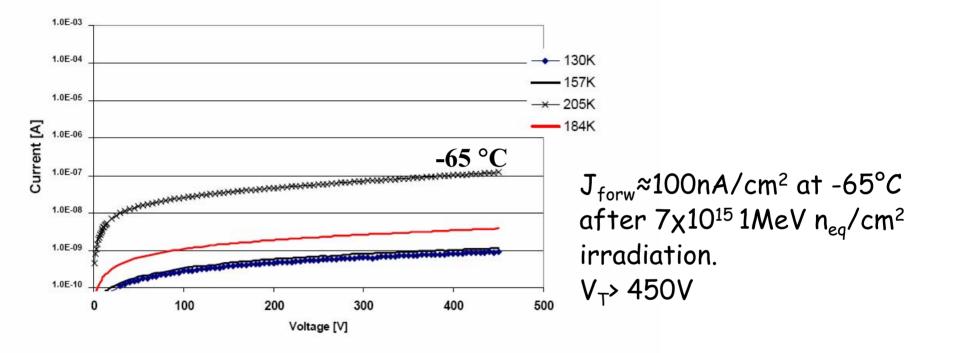
Current voltage characteristic

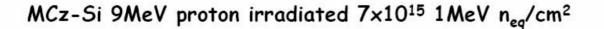

E(x)

Features of CID

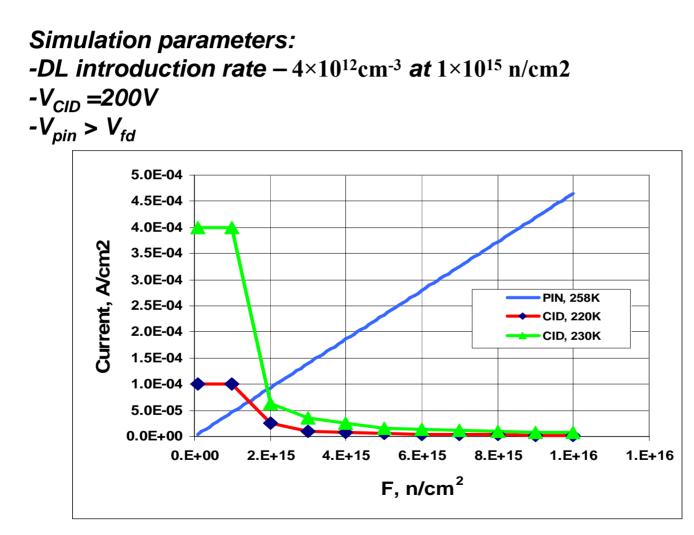

*Electric field shape is not affected by fluence » E-field exists at S-LHC conditions *E field exists regardless of thickness *Low temperature makes possible to keep forward current at μA range *No breakdown problem due to self-adjusted electric field by space charge limited current feedback effect *CID is quite insesisite on detectors material properties. *CID is insensitive on type of irradiation. *CID is insensitive on reverse annealing of radiation defects » importnant in HEP applications.

*Treshold for sharp current increase V_T increases with respect of fluence * V_T can be affected by temperature


Charge Collection in CID

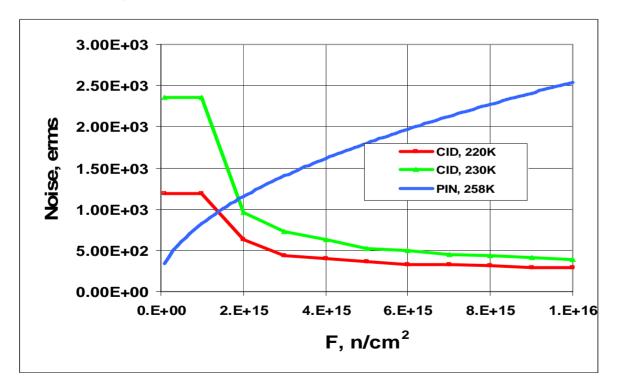


CCE of CID vs. "normal" detector PIN

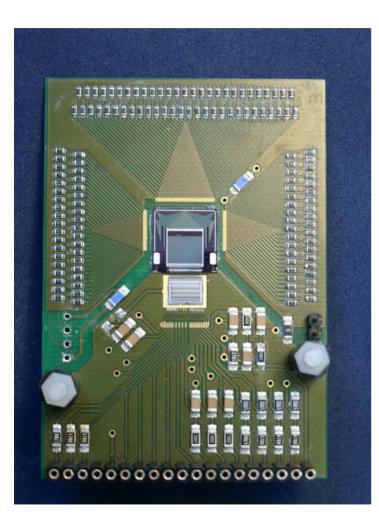


CID operation at S-LHC fluence

Current of CID and PIN

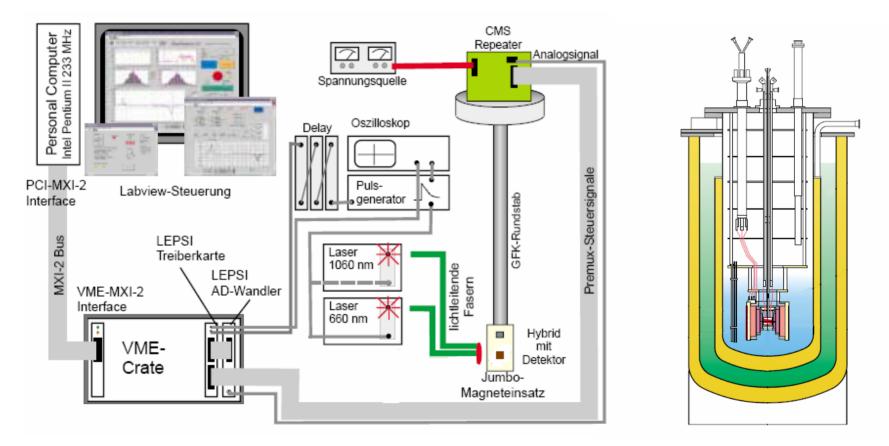

Jaakko Härkönen, 85th LHCC Open Session, 15th November 2006

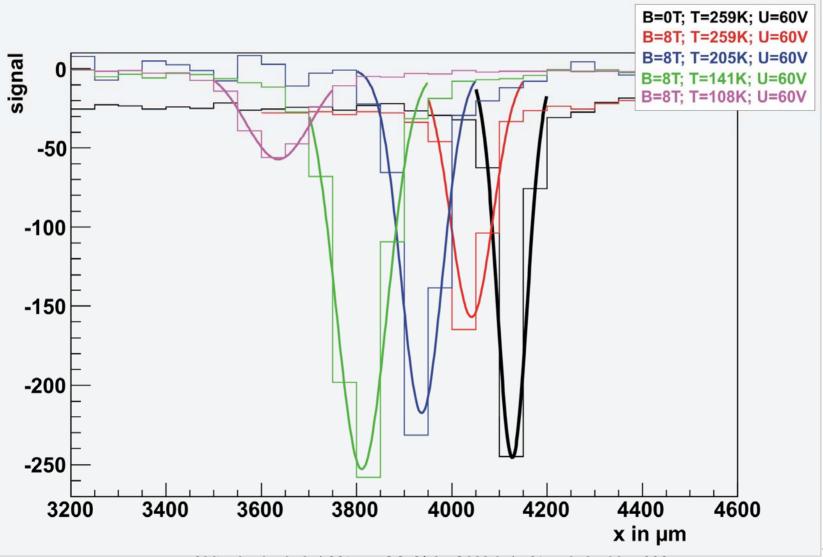
Noise in CID strip detector


Simulation parameters:

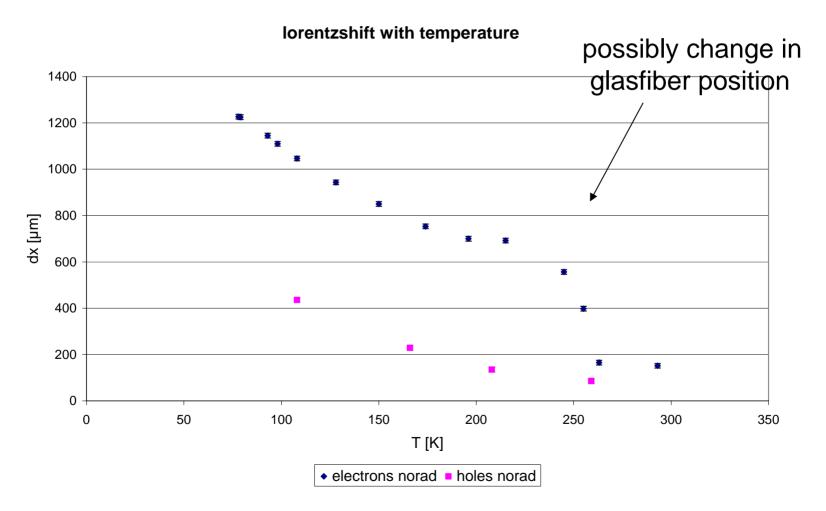
-ATLAS strip design, pitch 80µm, length 6cm, shaping time 25ns -CID at 200V

-PIN at V=V_{fd} and 258K


Hybrid with strip sensor


- Double sided sensor (~1cm²), 50µm pitch, 300µm thickness, strips on both sides parallel (former sensors had stripes crossed)
- bias resistors (10M Ω) on hybrid
- Premux128 Chip for data recording
- irradiated with 26MeV protons
- Φ =6 x 10¹³ and Φ =1,2 x 10¹⁴

Karlsruhe Cryogenic TCT/CCE measurement setup


The setup has extensively been used for Lorenzshift measurements
Ongoing activity for CID measurements of strip detectors

Lorentzshift of holes with different temperatures

Lorenzshift of electrons and holes vs temperature

Jaakko Härkönen, 85th LHCC Open Session, 15th November 2006

Summary

- The C-TCT project has been successfully completed
- The results show that at low temperatures the effective space charge is balanced by the trapping and detrapping.
- That results in
 - 1) Space Charge Sigh Inversion SCSI
 - 2) Low full depletion voltage (measured by QV)
 - 3) Increase of trapping time
- \cdot In CID detectors

1) E-field exists at any bias and at any fluence. Detector is always "fully depleted"

2) CCE measurements on CID at cryogenic temperatures with laser and forward current injection have shown significant increase in CCE
3) Simulations on ERMS noise predict that noise in CID strip detectors could be significantly lower than reverse biased detector operating at -15°C

Schedule for the projects of RD39 in 2006 and 2007

Device physics

Task name	2006			2007				
	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
Device Physics/ Basic			•	•		•	•	•
Research								
Radiation of segmented (strip)				Х	2	XXX		
Si detectors								
Improvements on the Cryo-					XXX			
TCT (C-TCT) by adding a								
floating power								
- Simulations of injection and								
E field.								
CID measurements at	XX XXXXXXXXX							
T<80 K for pad detectors by								
red and IR lasers								
CID measurements at T<80 K						XXXXXX	XXXXXX	X
for strip detectors by red and								
IR lasers								
More detailed CID modeling	XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			X				
Simulations of injection and E						XXXXXXX	XXXXXX	X
field at cryogenic temperatures								
Modeling of trapping at CID					XXXXX	XXXXXX	XXXXXX	X
conditions at low temperatures								

Schedule for the projects of RD39 in 2006 and 2007 II

Full size systems

Cryogenic Modules		
Characterization of CID	XXX	XXXXXXXXX
operation of irradiated strip		
detectors with read-out		
electronics		
Laser cut and ICP Plasma	XXX	Х
etching of edgeless CMS baby		
strip detectors		
Assembly of modules with		XXXXXXX
edgeless CMS baby strip		
detectors		
Electrical tests of modules at		XXX
low temperatures		
Irradiation of modules		XX
Source and beam tests of		XXXX
irradiated modules		
ICP Plasma etching of	XXX	XX
edgeless detectors		

Resources

Resources of the 15 institutes in RD39, planned for the projects of RD39 for 2007. For institutes involved also directly in the experiments, the resources for the construction of the final detectors are not included in the figures given for the budget and for the

FTE manpower.

Institute	Authors	Device	Basic	Cryogenic	RD39 Budget	FTE
		Physics	Research	Modules	(CHF/year)	In
						RD39
U.	5	х	х		5000	1.00
Northeastern						
BNL	2	х	х	Х	20000	1.00
CERN	2	х	Х		2000	1.00
U. Florence	4	х	Х		4000	1.00
U. Geneva	1	х		х	1000	0.15
U. Glasgow	2	х	х		2000	0.50
HIP Helsinki	4	х	х		20000	1.00
U. Helsinki	4	х	х		10000	2
U. Karlsruhe	7	х	Х		5000	2.00
U. Louvain	3	х		Х	20000	1.00
JSI Ljubljana	4	х	Х		2000	0.50
U. Naples	3			х	2000	0.50
Ioffe PTI	3	х	х	х	10000	1.50
U. Turku	3	х	х		5000	0.60
U. Vilnius	7	х	х		10000	2.0
Total	54	14	12	5	113000	14.75