

Analysis and Modeling of Storage Access Patterns and Caching Strategies

Shreya Krishnan

Supervisors: Markus Schulz and Andrea Sciaba

Challenges of the Future: HL-LHC

(More data x higher complexity) + Flat Budget

Much, much, much more...

Reduce cost and complexity of storage!

Replace storage by caches @ Tier 2s

We need to Analyse & Model Storage Access Patterns & Caching Strategies

Used CMS Logs

Analysing Caching Strategies

Modeling file access patterns

- ★ Cache Size
- ★ File Eviction Strategy
- ★ Trade-off between Network Usage and Cache Size

- ★ Generate a data set based on file access patterns
- * simulate the behavior of cache
- ★ See if the model works!

File Eviction Strategies

Key factor in the design of an optimal cache...

UNUSED FOR N DAYS

Delete files that haven't been accessed for more than N days.

HIGH WATER MARK

Garbage collection is initiated when used space exceeds the size of cache. This is done by deleting the least recently used files until occupancy falls below 80%

I will now discuss some of my results...

N - Days Strategy

High Water Mark Strategy - Efficiency of Cache

BUT...

High Water Mark Strategy - Daily Fluctuations

Can we model the Access Patterns?

→ Distributions of file accesses can be described by just a few parameters!

For Example:

The number of access per file follows an Inverse Gaussian.

Which is given by the probability density function:

Monte Carlo Model for file accesses

We extract parameters from our previous analysis!

- For every day:
 - Generate new files
 - Average and width of the distribution from data popularity
 - Simulate accesses
 - Probability based on number of accesses and time since last access
 - Update the status of files, write accessed files to simulated data popularity files
 - Re-run Cache Simulation using this data set and compare results

Monte Carlo Model for file accesses

Simulate accesses

Probability based on number of accesses and time since last access

Probability that a file will be accessed for the nth time in a certain time interval

Conclusion

- These studies have helped us understand the impact of site caches as an alternative to storage quantitatively and we know that this will bring a significant improvement in the way we store and access data across the WLCG.
- These studies can be used by site managers for resource planning

If you are interested to know more... Please reach out to me at:

- sshreyakrishnan@gmail.com
- sarada.shreya.krishnan@cern.ch
- in https://www.linkedin.com/in/shreya-krishnan/

