

## **Deep Learning Models for Particle Identification and Energy Regression** in CMS HGCAL L1 Trigger

Using **Micron's** FPGA based inference engines and FWDNXT firmware + software for compiling models and running the inference



**Anwesha Bhattacharya,** Emilio Meschi, Thomas James, Dejan Golubovic 13th August, 2019

#### Introduction

- Classify electrons and photons and estimate the energy of particles for the L1 trigger
  - Unsupervised learning for clustering
  - Supervised learning for classification and regression
  - Implement the models in software and Micron hardware







#### Introduction

- Classify **electrons** and photons and estimate the energy of particles for the L1 trigger
  - Unsupervised learning for clustering
  - Supervised learning for classification and regression
  - Implement the models in software and Micron hardware











(a) Big Silicon sensors, 1.18 (b) Small Silicon sensors, 0.52

(c) Layout of a layer where (d) Layout of wafers and Scintillator tiles in a layer

only silicon sensors are present where both are present: the 22nd layer of CE-H

- **DL** implementations
  - Python -> keras/tensorflow
- Hardware & Software connecting DL models and hardware- by Micron
  - SB-852 FPGA board
  - Drivers for hardware
  - Compiler to translate DL models to FPGA bitstream - proprietary
  - Python wrapper around compiler open source



#### **Dataset**

- Simulated single particle events with no pileup. Interpreted as 3D images of energy deposits in the calorimeter.
- 100k photons, e<sup>+</sup> and e<sup>-</sup> generated from the interaction region. 40% photons decay to e<sup>+</sup>-e<sup>-</sup> pairs.
- Constrained topological clustering is used to extract the clusters
- CNN model trained on this dataset for classification and regression





### **DL Model Architecture**



2D CNN



3D CNN





## **Classification Model**

2D 2-input CNN model that takes into account both x and y channels.

|              | Pred Photons | Pred e⁺/e⁻ |
|--------------|--------------|------------|
| True photons | 0.82         | 0.18       |
| True e⁺/e⁻   | 0.13         | 0.87       |









input\_2

input\_1



## **Regression Model**

Energy error from cl3d\* and model pred vs true energy





Relative error on energy estimate from the model compared to cl3d\* and summed trigger cells





46k - train samples

20k - validation

28k - test

95k- total



\*cl3d = Classical density-based clustering of each detector layer and then sum

## **Summary**

- Trained classification and regression models for CMS HGCAL L1 trigger.
- Both 2D 2-input and Conv3D models compile and run on the micron board using FWDNXT SDK.
- Promising results for particle identification. Energy regression needs further tuning.
- A test comparison shows good results when using single inputs.
  Multiple input mode gives results inconsistent with the python implementation- to be followed up with Micron/FWDNXT.



## **Next Steps**

- Compare performance of Conv3D and 2D 2-input models for the board
- Compare classification results with BDT results from HGCAL backend group.
- Optimize and tune the model for the board.
- Merge regression and classification model into one.
- Include pile-up events.
- Explore regression models for cluster position.



#### **Useful Links**

- Micron hardware
  - https://www.micron.com/products/advanced-solutions/advanced-computing-solutions
- FWDNXT SDK
  - https://github.com/FWDNXT/SDK
- The Phase-2 Upgrade of the CMS L1 Trigger Interim TDR
  - https://cds.cern.ch/record/2283192?ln=en
- The Phase-2 Upgrade of the CMS Endcap Calorimeter
  - https://cds.cern.ch/record/2293646



# Thank you



## **QUESTIONS?**

96anwesha@gmail.com



## **Specifications - sb852**

- Xilinx Virtex Ultrascale+ UV7P or UV9P FPGA
- 2GB Hybrid Memory Cube
- Two full-width (x16) links with 15 Gb/s transceivers
- Up to 120 GB/s HMC bandwidth
- Up to 30 GB/s (RX and TX combined) via each full-width (x16) link
- 64GB DDR4 SODIMM (standard configuration); upgradeable to 512GB of high-performance memory
- 2 QSFP transceiver connectors
- PCle x16 Gen3 to the host
- SDAccel (OpenCL™) support
- Easy design framework with simple FPGA bitstream loading from host
- Complete suite of analytics tools



## **Confusion matrix for 3D CNN**

|                                     | Pred photons | Pred e⁺/e⁻ |
|-------------------------------------|--------------|------------|
| True photons                        | 0.95         | 0.05       |
| True e <sup>+</sup> /e <sup>-</sup> | 0.31         | 0.69       |

