

Fast Inference of ML on FPGAs for HEP Trigger Systems

Hamza Javed

Supervisors: Maurizio Perini, Jennifer Ngadiuba, Vladimir Loncar

Problem

- 1 collision every 25 nanoseconds
- 99.99975% of data has to be rejected

Why FPGAs?

- During First Trigger
 - 99.75% rejected
 - Decision in ~10 μs

FPGA's are fast and massively parallelizable

What are FPGAs?

• It's a whiteboard for hardware

• Programmable Circuits

Can emulate any logic

Why Machine Learning?

- Classical HEP algorithms for triggers are accurate.
- But, Machine Learning algorithms are faster and can be parallelized
- Is there a way to combine the two?

Fast inference of DNN on FPGAs for L1 Systems

Approach

- Model can be trained in any library
- Converted and Optimzied by hls4ml
- Deployed on an FPGA

Architecture

300x Faster

Architecture

600x Faster

Test Case

- A Deep Neural Network trained for jet classification
- Five outputs corresponding to each of the **g**, **q**, **w**, **z** & **t** jet.

Results

Verification Statistics								
	Invocations	Latency (min,max,avg)	II (min,max,avg)	Details				
myproject	10 (54,54,54	1,1,1	Click for details				
Explicit component invocations	0	n/a,n/a,n/a	n/a,n/a,n/a	Click for details				
Enqueued component invocations	10	54,54,54	1,1,1	Click for details				

54 x 4ns = **220ns** latency (50 times lower)

Throughput of 250M events/sec

Accelerated ML for HLT Triggers using Openvino

What is Openvino?

- It's a toolkit for deploying neural networks across multiple intel platforms.
- Highly scalable and cross platform compatible.

Accelerated ML for HLT Trigger

Custom Resnet-50 model used for

identifying top quark jets

Optimized using Openvino.

Tested on FPGA, GPU and CPU

Accelerated ML for HLT Trigger

Performance comparison between Tensorflow and Openvino

Accelerated ML for HLT Trigger

Туре	Hardware	Accuracy	Inference Time	Max Throughput	Power	Throughput/W
CPU	2 x Xeon 2.1Ghz, 8 core	0.91	88 ms	11.36 img/s	~30W	0.38
EDC A	Arria 10 PAC - FP16	0.91	14 ms	84.44 img/s	~31W	2.72
FPGA	Arria 10 PAC - FP11	0.88	7.5 ms	187.21 img/s	~31W	6.03
GPU	GTX 1080	0.90	7.5 ms	192 img/s	~180W	1.06

• FPGA is 3-6x more efficient than a GPU

Acknowledgements

• Maurizio Perini, Jennifer Ngadiuba, Vladimir Loncar

Thank You!

hjaved@cern.ch

Questions?