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Multiple sources and notification channels

* Each subsystem produce its own ¢ E-mail P

data, but we have a common e Tickets (Jira/Snow) ke

messaging service: Kafka _ o
* Messaging Applications ¥

Different expected response time.




Original statement




E.g.:

CO M p|ex * Timeout message has been repeated 5 times in
a 1 hour window for a given node.
patte ns * Memory increase alert but there is not a

request increase alert.




* Notification Channel as target variable
e Features to be determined

Ale rtS * Explore multiples alternatives (e.g. Decision
ClaSSiﬂcatiO N trees, Random Forest, content based

recommendation techniques)




Results

visualizatior e Storytelling with data guidelines.
ano e Paper with results

presentatior
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Python and Bash only. The project must be finished during
the summer stay.

Restrictions
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Tools

* Apache Spark

* Scikit-Learn

e Spark streaming
* Apache Flink
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Notes

Consuming from Kafka, we can use this architecture in a project-agnostic way. Initially, we will work with currently produced alerts, but the
architecture will help to produce new alerts from other sources in the future. We are looking forward to new applications.

The project will be released with an Open Source license.
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Current Status




Project Progress

Consuming Data : Publishing Visualization Normalizing
Message Aggregation Output Data
Spark e Countcmsweb e  Saving Tableau e Min/Max scaler e RNN/LSTM
Structured system's dataframe to e %Difference e Normalizer e STL
Streaming requests logs HDFS in Parquet compare to Decompose
based on form previous result e KMeans
‘System’ field e Publish to Kafka e %Difference Clustering
topic (send compare to window
email) average

e Standard deviation
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Use clustering to group Detect anomalies using Report anomalies using the
similar behavior clustering quality measures Notifier module




Important Factor For Anomaly Detection

* Percentage different compared to average value
 Number of System being called
 Number of API being called
* Number of User who send a request to system

If some of these factor are lower than usual or higher than usual such as there's
a spike occurred, it should be considered as anomaly

* Date/Time of the logs

* Make the anomaly more personalized. In the particular time period some
factor should be considered as an anomaly but some shouldn't.

By combining these features with the name of system, user, and APl we can
make anomaly detection system more personalize.
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Anomaly can be detected by several reasons
* Heavy user loads
Heavy system called
Heavy API called
Abnormal date and time which the peak occurred
Combination of these factors or altogether



Alert trigger
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Benchmark: +/- 40% of Max Euclidean distance

to the centre of cluster

Example: CouchDB system log
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Benchmark: >1S.D of the Euclidean distance
mean of every data in cluster to the centre of
its cluster

CouchDB anomaly detection with 40% uncertainty region
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Details plot[Zoom in]
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Towards
interpretability

 Why are we getting the alert?
* An user has changed his behaviour
e A system is under attack
* An API too popular
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Model Evaluation

Elbow Method
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Plot of elbow in data 2000 samples determine
that k value should be around 10

e Silhouette: Study the separation distance
between the resulting clusters

* +1 indicate that the sample is far away
from the neighbouring clusters

* Oindicates that the sample is on or very
close to the decision boundary between
two neighbouring clusters

e -1indicate that those samples might have
been assigned to the wrong cluster

Kmeans Model evaluation using Silhouette method

# Evaluate clustering by computing Silhouette score

evaluator = ClusteringEvaluator()

silhouette = evaluator.evaluate(predictions)

print("Silhouette with squared euclidean distance = " + str(silhouette))

Silhouette with squared euclidean distance = 0.6417416612740873



or more information
Please visit...

https://github.com/operationalintelligence/EmailAlertingSystem/



https://github.com/operationalintelligence/EmailAlertingSystem/

