ZAIGA: Zhaoshan long-baseline Atom Interferometer Gravitation Antenna

Mingsheng ZHAN

Wuhan Institute of Physics and Mathematics (WIPM) Chinese Academy of Sciences (CAS)
OUTLINE

- Motivation
- ZAIGA: facility and key instruments
- ZAIGA: scientific proposals
- Progress
OUTLINE

● Motivation

● ZAIGA: facility and key instruments

● ZAIGA: scientific proposals

● Progress
ZAIGA: bridge GR and QT with atomic sensors

Asymptotic Freedom

Quantum Theory

Gravitational effect on micro-systems?
Neutron, Atom, Ion, Molecule …

Atomic Clock
Atom Interferometer

Quantum effect of macro-objects?
C_{60}, Virus, Bacteria, Brain …

\[
\frac{F_{ee-E&M}}{F_{ee-Gravity}} = \left(\frac{e}{m_e}\right)^2 \left(\frac{1}{4\pi\varepsilon_0 G}\right) = 4 \times 10^{42}
\]
Precision Measurement: fighting with noises

$4 \times 10^{42} : 1$

look for a needle in the sea

$4,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,001$

Observables (frequency, phase, energy…): stable

Large scale Quantum sensors

…...

ZAIGA

SNR ↑

Underground Space

…...

effect, signal: large

noises: small
Long Base-line Interferometers

VLBI

LIGO

LAIGA

RF

Laser Light

RF/MW

Matter Wave

SKA

VIRGO/KAGRA/LISA

ZAIGA/MIGA
Coherence & Interference

\[\lambda_{dB} = \frac{h}{p} = \frac{h}{mv} \]

Cold atoms

\(v \text{ small} \ll c \)

\(\lambda_{dB} \text{ large} \gg \lambda_L \)
Single atom M-Z interferometer: building up the interference fringe

Each time 1 atom, averaged N times

The atom interferes with itself!
Laser interferometry vs Atom interferometry

e.g. gyro = interference + Sagnac effect

\[
\delta_{gyro} (m > 0) = \frac{4\pi m}{\hbar} \Omega \cdot A
\]

\[
\delta_{gyro} (\text{light}) = \frac{4\pi}{\lambda_c} \Omega \cdot A
\]

\[
R_{gyro} = \frac{mc^2}{\hbar \omega} = \frac{\lambda}{\lambda_{deB}} \cdot \frac{c}{\nu} \approx 10^{10}
\]
Atom Interferometry

Raman AI

Test mass:
free atoms

Mirror / Splitter:
light pulse

\[\omega \propto \frac{1}{T} \approx HZ \]

1 m, \(T = 0.45 \) s
10 m, \(T = 1.41 \) s
300 m, \(T = 7.82 \) s
In response to its terms of reference, the Committee’s findings are as follows:

1. the Committee has undertaken a review of all known approaches to the measurement of gravitational waves. It has concluded that *laser interferometry* both fully responds to the science goals set out in the 2013 Senior Science Committee report, and is also sufficiently well advanced to offer a highly realistic prospect of implementation according to the L3 schedule. In terms of technology readiness and risk, it is preferred over any alternative;

2. the Committee appreciates that a second approach, based on *atom interferometry*, shows interesting potential. The Committee has encouraged the development of a full mission proposal to assess better its challenges, and its prospects for either a more secure, or a less costly, alternative. With ESA proceeding with plans for small innovative missions, a proof-of-concept atom interferometry experiment could be timely;

3. the Committee has re-evaluated the scientific capabilities of a gravitational wave observatory, quantifying and presenting the expected performance as a function of:
General relativity has held up under extensive experimental scrutiny. The question then arises, why bother to continue to test it? One reason is that gravity is a fundamental interaction of nature, and as such requires the most solid empirical underpinning we can provide. Another is that all attempts to quantize gravity and to unify it with the other forces suggest that the standard general relativity of Einstein may not be the last word. Furthermore, the predictions of general relativity are fixed; the pure theory contains no adjustable constants so nothing can be changed. Thus every test of the theory is either a potentially deadly test or a possible probe for new physics. Although it is remarkable that this theory, born 100 years ago out of almost pure thought, has managed to survive every test, the possibility of finding a discrepancy will continue to drive experiments for years to come. These experiments will search for new physics beyond Einstein at many different scales: the large distance scales of the astrophysical, galactic, and cosmological realms; scales of very short distances or high energy; and scales related to strong or dynamical gravity.
ZAIGA

a facility for GR tests with atomic sensors

a home for large scale atomic interferometers, gyros and clocks

- Underground
- Large scale

A_{i}: i-th Atomic Interferometer

$A_{C_{i}}$: i-th Atomic Clock

$H \sim 300$ m

$L \sim 1/3/10$ km
ZAIGA: Zhaoshan Long-baseline Atom Interferometer Gravitation Antenna

Ming-Sheng Zhan,1,2,3, * Jin Wang,1,2,3, † Wei-Tou Ni,1 Dong-Feng Gao,1,2,3 Gang Wang,1 Ling-Xiang He,1,2,3 Run-Bing Li,1,2,3 Lin Zhou,1,2,3 Xi Chen,1,2,3 Jia-Qi Zhong,1,2,3 Biao Tang,1,2,3 Zhan-Wei Yao,1,2,3 Lei Zhu,1,2 Zong-Yuan Xiong,1,2 Si-Bin Lu,1,2 Geng-Hua Yu,1,2 Qun-Feng Cheng,1,2,3 Min Liu,1,2,3 Yu-Rong Liang,1,2,3 Peng Xu,1,2,3 Xiao-Dong He,1,2,3 Min Ke,1,2,3 Zheng Tan,1,2 and Jun Luo1,2,3

1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
3School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
(Dated: March 27, 2019)

The Zhaoshan long-baseline Atom Interferometer Gravitation Antenna (ZAIGA) is a new type of underground laser-linked interferometer facility, and is currently under construction. It is in the 200-meter-on-average underground of a mountain named Zhaoshan which is about 80 km southeast to Wuhan. ZAIGA will be equipped with long-baseline atom interferometers, high-precision atom clocks, and large-scale gyros. ZAIGA facility will take an equilateral triangle configuration with two 1-km-apart atom interferometers in each arm, a 300-meter vertical tunnel with atom fountain and atom clocks mounted, and a tracking-and-ranging 1-km-arm-length prototype with lattice optical clocks linked by locked lasers. The ZAIGA facility will be used for experimental research on gravitation and related problems including gravitational wave detection, high-precision test of the equivalence principle of micro-particles, clock based gravitational red-shift measurement, rotation measurement and gravito-magnetic effect.
China unveils plans for giant underground lab

A new facility in central China is designed to study gravitational waves as well as test Einstein’s theory of general relativity to unprecedented precision, as Ling Xin reports.

Physicists in China have revealed plans to build a massive new underground facility in the centre of the country to study gravitational waves and test Einstein’s general theory of relativity to an unprecedented precision. The Zhaoshan Long-baseline Atom Interferometer Gravitation Antenna (ZAIGA), is to be located in eastern Wuhan and will cost two billion yuan (about £226m). If the project is fully funded, it could be operational by 2025 (arXiv:1903.09288).

The first phase of ZAIGA, which could be complete by the end of 2020, will involve building a 300 m vertical tunnel under the Zhaoshan Mountain – 80 km south-east of Wuhan – to study various predictions resulting from general relativity. It will cost 600 million yuan (£68m) and is fully funded by local governments and the Chinese Academy of Sciences. “We have just completed site exploration, with tunnel excavation starting this optical clocks can be controlled better and are less influenced by outside temperatures.

ZAIGA will also measure the “space-time dragging effect” caused by Earth’s rotation distorting space-time. This will be done to

Bouncing atoms
Once the 300m vertical tunnel for ZAIGA is complete, physicists then hope to construct a gravitational-wave observatory, which would be under the mountain at an average depth of 200m to reduce the effect of seismic noise. Rather than detecting gravitational waves by bouncing laser beams off mirrors as used by the LIGO gravitational-wave observatories in the US, ZAIGA-GW would instead use an atom interferometer. This would involve splitting an atom beam in half, and allowing both halves to travel for a certain distance before being recombined to look for differences in their paths. A slightly longer path would result from a tiny curvature in space–time that could be caused by a passing gravitational wave. Atom interferometry would be more sensitive.
OUTLINE

- Motivation

- **ZAIGA:** facility and key instruments

- **ZAIGA:** scientific proposals

- Progress
Zhaoshan（沼山）: a mountain about 80 km away from WIPM
ZAIGA design

ZAIGA-EP (Equivalence Principle test)
ZAIGA-CE-R (Clock Redshift measurement)
ZAIGA-RM (Rotation Measurement)
ZAIGA-GW (Gravitational Wave detection)
ZAIGA-DM (Dark Matter detection)
ZAIGA-GG (Geological and Geophysical measurement)
sensitivity 1.2×10^{-6} rad/s/√Hz
long term stability 6.2×10^{-8} rad/s @2000s

Atom clocks @ WIPM

Ca+, Al+, Yb

Short term stability $6 \times 10^{-13}/\sqrt{\tau}$
Long term stability $\sim 10^{-15}$

Ca+

Comp. 3×10^{-17}
Uncertainty: 5.5×10^{-17}

Hg+

Similar facilities in the world

Stanford

100-m AI proposal
from Thomas Wilkason's Poster

Hannover VLBAI

from Dennis Schlippert

MIGA

from Philippe Bouyer

Large-scale atomic fountain
⇒ Sardinia?

from Guglielmo M. Tino

10-m AI
OUTLINE

- Motivation
- ZAIGA: facility and key instruments
- ZAIGA: scientific proposals
- Progress
ZAIGA: GR test proposals

- **ZAIGA-EP:** Test of the Weak Equivalence Principle (WEP) by free falling atom interferometers
- **ZAIGA-CR:** Test of the Local Position Invariance (LPI) by clock red shift measurement
- **ZAIGA-GW:** Detection of mid-frequency Gravitational Waves by Atomic Interferometers
- **ZAIGA-RM:** Gravito-magnetic Effect by Large Scale Gyros
- **ZAIGA-DM:** Detection of Dark Matter by Atomic Interferometers and Clocks
ZAIGA: GR test — WEP (fund. assumpt.)

Weak Equivalence Principle (WEP)
or Universality of Free Fall (UFF)
Einstein Equivalence Principle (EEP)

EEP is organised into three conditions:

WEP + LLI + LPI

1) Equivalence between the system’s inertia and weight – the Weak Equivalence Principle (WEP, \(\eta = 0 \));

2) Independence of outcomes of local non-gravitational experiments of the velocity of a freely-falling reference frame in which they are performed (or validity of special relativity) – Local Lorentz Invariance (LLI);

3) Independence of outcomes of local non-gravitational experiments of their location – Local Position Invariance (LPI).

\[
\eta = \frac{(a_1 - a_2)}{(a_1 + a_2) / 2}
\]
EEP: classical test formulation

\[\eta \equiv \frac{g_A - g_B}{(g_A + g_B) / 2} \]

\begin{align*}
85\text{Rb} & \quad 87\text{Rb} \\
g_A & \downarrow \quad g_B
\end{align*}

<table>
<thead>
<tr>
<th>Physical Regime</th>
<th>WEP</th>
<th>(\eta^\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newtonian</td>
<td>(m_i = m_g)</td>
<td>(m_g/m_i - 1)</td>
</tr>
<tr>
<td>Newtonian & m-E equivalence</td>
<td>(m_i c^2 + E_i = m_g c^2 + E_g)</td>
<td>((m_g + \frac{E_g - E_i}{c^2})/m_i - 1)</td>
</tr>
</tbody>
</table>

For atoms, internal energy can be changed.

\[m_g = m_i + \sum_\alpha \frac{\eta^\alpha E^\alpha}{c^2}, \quad \eta = \sum_\alpha \eta^\alpha \left(\frac{E^\alpha_A}{m_A c^2} - \frac{E^\alpha_B}{m_B c^2} \right) \]
EEP: quantum test formulation

M. Zych and C. Brukner

\[
\hat{H} = mc^2 + \frac{\hat{P}^2}{2m} + m\phi(\hat{Q}) + \hat{H}_{\text{int}}(1 - \frac{\hat{P}^2}{2m^2c^2} + \frac{\phi(\hat{Q})}{c^2})
\]

\[
\hat{M} = m\hat{I}_{\text{int}} + \frac{\hat{H}_{\text{int}}}{c^2}
\]

\[\hat{\eta} = \hat{I}_{\text{int}} - \hat{M}_g / \hat{M}_i\]

<table>
<thead>
<tr>
<th>Physical Regime</th>
<th>Classical / Quantum</th>
<th>WEP</th>
<th>Number of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newtonian</td>
<td>C & Q</td>
<td>(m_i = m_g)</td>
<td>1</td>
</tr>
<tr>
<td>Newtonian & m-E equivalence</td>
<td>C</td>
<td>(m_i c^2 + E_i = m_g c^2 + E_g)</td>
<td>2n-1</td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>(m_i c^2 I + H_i = m_g c^2 I + H_g)</td>
<td>2n^2-1</td>
</tr>
</tbody>
</table>

\[
H_{\text{test}}^C = m_i c^2 + E_r + \frac{\hat{P}^2}{2m_i} + m_g\phi(\hat{Q}) - E_i \frac{\hat{P}^2}{2m_i^2c^2} + E_g \frac{\phi(\hat{Q})}{c^2}
\]

\[
\hat{H}_{\text{test}}^Q = m_i c^2 + \hat{H}_{\text{int},r} + \frac{\hat{P}^2}{2m_i} + m_g\phi(\hat{Q}) - \hat{H}_{\text{int},i} \frac{\hat{P}^2}{2m_i^2c^2} + \hat{H}_{\text{int},g} \frac{\phi(\hat{Q})}{c^2}
\]
400 years of WEP test (massive body)
Figure 1. The MICROSCOPE experiment: shielded by the satellite, the two masses, made of different materials, fall around the Earth; they are submitted to the same gravity field and controlled along the same orbit; in case of EP violation, the electrostatic force (in red) is accurately measured towards the Earth while the instrument frame (in black) rotates.

Measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit.

TABLE III. Evaluation of systematic errors in the differential acceleration measurement for SUEP at $f_{EP} = 3.1113 \times 10^{-3}$ Hz.

<table>
<thead>
<tr>
<th>Term in the Eq. (1) projected on \vec{x}</th>
<th>Amplitude or upper bound</th>
<th>Method of estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(T_{xx} \Delta x; T_{xy} \Delta y; T_{xz} \Delta z)$</td>
<td>Gravity gradient effect $[T] \tilde{\Delta}$ along $X @ f_{EP}$ (in phase with g_x)</td>
<td>$<(10^{-18}; 10^{-19}; 10^{-17})$ m s$^{-2}$</td>
</tr>
<tr>
<td>$\dot{\Omega}_y \Delta_z - \dot{\Omega}_z \Delta_y$</td>
<td>Gradient of inertia matrix $[\Omega]$ effect along X at f_{EP}</td>
<td>10^{-18} m s$^{-2}$</td>
</tr>
<tr>
<td>$\Omega_y \Omega_z \Delta_y - \Omega_x \Omega_z \Delta_z - (\Omega_x^2 + \Omega_z^2) \Delta_x$</td>
<td></td>
<td>1.3×10^{-17} m s$^{-2}$</td>
</tr>
<tr>
<td>$([M_d]\tilde{\Gamma}^{app}_c) \cdot \vec{x}$</td>
<td>Drag-free control</td>
<td>1.7×10^{-15} m s$^{-2}$</td>
</tr>
<tr>
<td>$([M_d]\tilde{\Gamma}^{quad}_c) \cdot \vec{x}$</td>
<td>Instrument systematics and defects</td>
<td>5×10^{-17} m s$^{-2}$</td>
</tr>
<tr>
<td>$([\text{Coupl}_d]\tilde{\Omega}) \cdot \vec{x}$</td>
<td></td>
<td>$<2 \times 10^{-15}$ m s$^{-2}$</td>
</tr>
<tr>
<td>Thermal systematics</td>
<td>Magnetic systematics</td>
<td>Total of systematics in Γ_{dx}^{meas}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$<67 \times 10^{-15}$ m s$^{-2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$<2.5 \times 10^{-16}$ m s$^{-2}$</td>
</tr>
</tbody>
</table>

According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10^{-15} precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives $\delta(Ti,Pt) = [-1 \pm 9\,(\text{stat}) \pm 9\,(\text{syst})] \times 10^{-15}$ (1σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.

WEP Test with Atoms

<table>
<thead>
<tr>
<th>Year</th>
<th>Inst.</th>
<th>Test Pairs</th>
<th>η</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>MPQ</td>
<td>$^{85}\text{Rb}-^{87}\text{Rb}$</td>
<td>$(1.2 \pm 1.7) \times 10^{-7}$</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>ONERA</td>
<td>$^{85}\text{Rb}-^{87}\text{Rb}$</td>
<td>$(1.2 \pm 3.2) \times 10^{-7}$</td>
<td>Mass – pair 1g</td>
</tr>
<tr>
<td>2014</td>
<td>Hannover</td>
<td>$^{87}\text{Rb}-^{39}\text{K}$</td>
<td>$(0.3 \pm 5.4) \times 10^{-7}$</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>Florence</td>
<td>$^{88}\text{Sr}-^{87}\text{Sr}$</td>
<td>$(0.2 \pm 1.6) \times 10^{-7}$</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>WIPM</td>
<td>$^{85}\text{Rb}-^{87}\text{Rb}$</td>
<td>$(2.8 \pm 3.0) \times 10^{-8}$</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Bordeaux</td>
<td>$^{87}\text{Rb}-^{39}\text{K}$</td>
<td>$(0.9 \pm 3.0) \times 10^{-4}$</td>
<td>0-g</td>
</tr>
<tr>
<td>2016</td>
<td>HUST</td>
<td>^{87}Rb ($m_F=\pm 1$)</td>
<td>$(0.2 \pm 1.2) \times 10^{-7}$</td>
<td>Spin</td>
</tr>
<tr>
<td>2017</td>
<td>Florence</td>
<td>^{87}Rb ($F=1,2, s$)</td>
<td>$(1.4 \pm 2.8) \times 10^{-9}$</td>
<td>State Superposition</td>
</tr>
</tbody>
</table>
WEP Test with $A(^{85}\text{Rb},F=2/3) - B(^{87}\text{Rb},F'=1/2)$ pairs

Physical Regime

<table>
<thead>
<tr>
<th>Physical Regime</th>
<th>Classical / Quantum</th>
<th>WEP</th>
<th>Number of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newtonian</td>
<td>C & Q</td>
<td>$m_i = m_g$</td>
<td>1</td>
</tr>
<tr>
<td>Newtonian & m-E equivalence</td>
<td>C</td>
<td>$m_i c^2 + E_i = m_g c^2 + E_g$</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>$m_i c^2 I + H_i = m_g c^2 I + H_g$</td>
<td>7</td>
</tr>
</tbody>
</table>

2-level system

$n = 2$

Eötvös ratio:

$$\eta \equiv \frac{g_A - g_B}{(g_A + g_B) / 2}$$
FWDR (Four Wave Double-diffraction Raman Transition)

\[\omega_1 + \delta_1 = \omega_2 - \delta_2 = \omega_3 - 3.036 \text{ GHz} = \omega_4 - 6.835 \text{ GHz} \]

F specified AI: \(m_{87} F=1 \leftrightarrow m_{85} F=2 \)
mode phase noise of 85Rb and 87Rb AIs caused by shared ω_1 and ω_2 can be rejected. The phase noise of ω_3 and ω_4 are suppressed by double-diffraction Raman transition. The crosstalk among different Raman beams are minimized by optimizing the frequencies and intensity ratio of Raman beams.
<table>
<thead>
<tr>
<th>Year</th>
<th>Group</th>
<th>Element pair</th>
<th>η</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>MPQ</td>
<td>$^{85}\text{Rb}-^{87}\text{Rb}$</td>
<td>$(1.2\pm 1.7) \times 10^{-7}$</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>ONERA</td>
<td>$^{85}\text{Rb}-^{87}\text{Rb}$</td>
<td>$(1.2\pm 3.2) \times 10^{-7}$</td>
<td>1 g</td>
</tr>
<tr>
<td>2014</td>
<td>Hannover</td>
<td>$^{87}\text{Rb}-^{39}\text{K}$</td>
<td>$(0.3\pm 5.4) \times 10^{-7}$</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>Florence</td>
<td>$^{88}\text{Sr}-^{87}\text{Sr}$</td>
<td>$(0.2\pm 1.6) \times 10^{-7}$</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>WIPM</td>
<td>$^{85}\text{Rb}-^{87}\text{Rb}$</td>
<td>$(2.8\pm 3.0) \times 10^{-8}$</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Bordeaux</td>
<td>$^{87}\text{Rb}-^{39}\text{K}$</td>
<td>$(0.9\pm 3.0) \times 10^{-4}$</td>
<td>0 g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\eta \ (\times 10^{-8})$</th>
<th>Uncertainty ((\times 10^{-8}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental data</td>
<td>-491.6</td>
</tr>
<tr>
<td>Effective wave vector error</td>
<td>-494.4</td>
</tr>
<tr>
<td>Second order Zeeman shift</td>
<td>0</td>
</tr>
<tr>
<td>Gravity gradient</td>
<td>0.01</td>
</tr>
<tr>
<td>Coriolis effect</td>
<td>0</td>
</tr>
<tr>
<td>ac Stark shift</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Allan Deviation σ_{η} vs. Averaging Time τ (s)

- $T=70.96 \text{ ms}$
- $T=152.21 \text{ ms}$
- $T=203.12 \text{ ms}$
- $T=203.44 \text{ ms}$
- $T=299.34 \text{ ms}$

Data points for 2015 and 2018 show different trends in Allan deviation with varying averaging times.

- 8.0×10^{-9} at 3200 s
- 3.0×10^{-9} at 3200 s
- 5.1×10^{-10} at 8960 s
- 2.3×10^{-10} at 17920 s
- 9.4×10^{-11} at 17920 s
The diagrams show the population of 85Rb in the F=2 state as a function of time, with error bars indicating variability. The Allan deviation, σ_α, is plotted against average time $\tau(s)$, with specific data points and error bars provided for different time intervals:

- $\tau = 140$ s: $\sigma_\alpha = 1.61 \times 10^{-9}$
- $\tau = 280$ s: $\sigma_\alpha = 1.13 \times 10^{-9}$
- $\tau = 560$ s: $\sigma_\alpha = 7.57 \times 10^{-10}$
- $\tau = 1120$ s: $\sigma_\alpha = 5.12 \times 10^{-10}$
- $\tau = 2240$ s: $\sigma_\alpha = 3.30 \times 10^{-10}$
- $\tau = 4480$ s: $\sigma_\alpha = 2.65 \times 10^{-10}$
- $\tau = 8960$ s: $\sigma_\alpha = 1.82 \times 10^{-10}$
<table>
<thead>
<tr>
<th>Parameters</th>
<th>$\eta \times 10^{-10}$</th>
<th>Uncertainty (\times 10^{-10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental data</td>
<td>49426.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Effective wave vector</td>
<td>49435.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Detector difference</td>
<td>1.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Coriolis effect</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>Wave-front aberration</td>
<td>0</td>
<td>5.0</td>
</tr>
<tr>
<td>ac Stark shift</td>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>Quadratic Zeeman shift</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>Gravity gradient</td>
<td>-5.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Others</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>Total</td>
<td>-4.4</td>
<td>6.7</td>
</tr>
</tbody>
</table>
United test of the equivalence principle at 10^{-10} level using mass and internal energy specified atoms

Lin Zhou,¹,² Chuan He,¹,³ Si-Tong Yan,¹,³ Xi Chen,¹,² Wei-Tao Duan,¹,³ Run-Dong Xu,¹,³ Chao Zhou,¹ Yu-Hang Ji,¹ Sachin Barthwal,¹ Qi Wang,¹,³ Zhuo Hou,¹,³ Zong-Yuan Xiong,¹,² Dong-Feng Gao,¹,² Yuan-Zhong Zhang,⁴ Wei-Tou Ni,¹ Jin Wang,¹,²,* and Ming-Sheng Zhan¹,²,†

¹State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
²Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China
³School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
⁴Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

(Dated: April 24, 2019)

We use both mass and internal energy specified rubidium atoms to jointly test the weak equivalence principle (WEP). We improve the four-wave double-diffraction Raman transition method (FWDR) we proposed before to select atoms with certain mass and angular momentum state, and perform dual-species atom interferometer. By combining 87Rb and 85Rb atoms with different angular momenta, we compare the differential gravitational acceleration of them, and determine the value of Eötvös parameter, η, which measures the strength of the violation of WEP. For one case (87Rb$|F = 1\rangle$ - 85Rb$|F = 2\rangle$), the statistical uncertainty of η is 1.8×10^{-10} at integration time of 8960 s. With various systematic errors correction, the final value is $\eta = (-4.4 \pm 6.7) \times 10^{-10}$. Comparing with the previous WEP test experiments using atoms, this work gives a new upper limit of WEP violation for 87Rb and 85Rb atom pairs.

PACS numbers: 03.75.Dg, 04.80.Cc, 37.25.+k

$$m_1 m_2 \otimes \left| F_1 F_2 \right>$$

Entangling Two Individual Atoms of Different Isotopes via Rydberg Blockade

Yong Zeng,¹²,³ Peng Xu,¹,²,* Xiaodong He,¹,² Yangyang Liu,¹,²³ Min Liu,¹,² Jin Wang,¹,² D. J. Papoular,⁴ G. V. Shlyapnikov,⁵,⁶,⁷,⁸ and Mingsheng Zhan¹,²,†

(Received 12 March 2017; published 18 October 2017)

We report on the first experimental realization of the controlled-NOT (CNOT) quantum gate and entanglement for two individual atoms of different isotopes and demonstrate a negligible cross talk between two atom qubits. The experiment is based on a strong Rydberg blockade for 87Rb and 85Rb atoms confined in two single-atom optical traps separated by 3.8 μm. The raw fidelities of the CNOT gate and entanglement are 0.73 ± 0.01 and 0.59 ± 0.03, respectively, without any corrections for atom loss or trace loss. Our work has applications for simulations of many-body systems with multispecies interactions, for quantum computing, and for quantum metrology.

DOI: 10.1103/PhysRevLett.119.160502
The main idea of null redshift experiments: if the experiments show that \((\alpha_1 - \alpha_2) \rightarrow 0\), then \(\alpha_{1,2} \rightarrow 0\) that is, the principle of local invariance is not violated. However, as shown above, the presence of \(\alpha \neq 0\) can be associated with cosmological gravitation, where \(\alpha\) is universal and does not depend on the type of atomic clock.
Limits on gravitational Einstein equivalence principle violation from monitoring atomic clock frequencies during a year

V. A. Dzuba and V. V. Flambaum

TABLE III. Limits on the EEP violating parameter c_{00} from different experiments.

<table>
<thead>
<tr>
<th>Clocks</th>
<th>Ref.</th>
<th>c_{00}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Al}^+ / \text{Hg}^+$</td>
<td>[22]</td>
<td>$(-3.0 \pm 5.7) \times 10^{-7}$</td>
</tr>
<tr>
<td>Dy / Cs</td>
<td>[23]</td>
<td>$(6.4 \pm 6.0) \times 10^{-7}$</td>
</tr>
<tr>
<td>Hg^+ / Cs</td>
<td></td>
<td>$(1.8 \pm 3.2) \times 10^{-6}$</td>
</tr>
<tr>
<td>Sr / Cs</td>
<td></td>
<td>$(1.4 \pm 2.0) \times 10^{-6}$</td>
</tr>
<tr>
<td>Rb / Cs</td>
<td></td>
<td>$(4.8 \pm 4.2) \times 10^{-7}$</td>
</tr>
<tr>
<td>H / Cs</td>
<td>[34]</td>
<td>$(0.4 \pm 5.4) \times 10^{-6}$</td>
</tr>
</tbody>
</table>

\[\delta H = c_{00} \frac{2}{3} \frac{U}{c^2} \frac{p^2}{2m} \]

\[c_{00} = \frac{3}{2} \frac{\Delta \omega_1 / \omega_1 - \Delta \omega_2 / \omega_2}{(R_2 - R_1) \Delta U / c^2}. \]

$\Delta U / c^2 \approx 3.3 \times 10^{-10}$
Pound-Rebka Experiment (PRE) with Photon

Mass-energy equivalence: \(E = mc^2 \)

Constant speed of light \(c \)

WEP: the Universality of Free Fall (mass, freq.)

Gravitational redshift

\[
\frac{\Delta f}{f} = \frac{\Delta U}{c^2} = \frac{g}{c^2} \Delta H = 10^{-18} @ \Delta H = 1cm
\]

\[
\frac{\omega_1 - \omega_2}{\omega_0} = (1 + \beta) \frac{\Delta u}{c^2}
\]

If clock \(\delta \omega / \omega \) of \(10^{-19} \) and distance \(\delta h \) is 1 mm, then \(\beta \sim 10^{-5} \) for \(h=300 \) m

1976, GP-A experiment, 10000 km, E-14 H clock, \(|\beta| \leq 7 \times 10^{-5} \) (*Phys.Rev.Lett. 45, 2081(1980)*)

2018, Galileo satellite clock comparison \(|\beta| \leq 3 \times 10^{-5} \) (*Phys.Rev.Lett. 121, 231101/2(2018)*),
Precision Measurement: e.g. gravitational redshift

\[\frac{\Delta f}{f} = (1 + \beta) \frac{\Delta u}{c^2} \]

\[c = 299792458 \text{ m/s} \]
\[g = 9.80111 \text{ m/s}^2 \]
\[h = 300.111 \text{ m} \]

\[gh/c^2 = 0.000,000,000,000,032,727,73 \]
\[\Delta f/f = 0.000,000,000,000,032,727,x \]
\[\beta = 0.0000 \]

Satellite, \(\beta \) limited by \(g \) or \(h \)
Terrestrial, by \(\Delta f/f \) (clock)

If clock uncertainty \(\Delta f/f \) of \(1 \times 10^{-19} \) and distance \(\delta h \) is 1 mm, then
\[\beta = 3 \times 10^{-6} \text{ for } h=300 \text{ m} \]
ZAIGA: GR test — GM

Lense-Thirring effect (the effect of frame dragging), Gravitomagnetism

\[\Omega_{LT} = \frac{2 \, GM \omega}{5 \, c^2 R} \cos \theta \]

\[\Omega_{LT} = 2.8 \times 10^{-10} \Omega_E \]

\[\Omega_E = \frac{360^0}{24h} = 15^\circ/h \]

\[1^\circ/h = 4.85 \times 10^{-6} \text{ rad/s} \]

GP-B \(-37.2 \pm 7.2 \text{ mas/yr}, \quad 15 \Rightarrow 0.5\% (?)\)

GINGER, G-Ring, ROMY: \(\Omega_E \pm 5 \cdot 10^{-9} \)

Atomic Gyros

Atomic gyroscope \(10^{-9} \text{ rad/s} \Rightarrow 10^{-13} \text{ rad/s} \)

GSM2018 workshop, June 6-10, Wuhan
Parameters:

- Laser wavelength: 780 nm \(k = 8.5 \times 10^6 \text{ m}^{-1} \)
- Height of atom interferometers: 5 m, \(T = 1 \text{ s} \)
- Flux intensity: \(R = 10^{14} \text{ atoms/s} \)
- Photon momentum transfer: \(n = 1000 \)
- Arm length: \(L = 1000 \text{ m} / 3000 \text{ m} \).

- Atomic shot noise
- Seismic Newtonian Noise (Seismic NN)
- Infrasound Newtonian Noise (Infrasound NN)

\[
\Delta \phi_{\text{tot}} = 2k_{\text{eff}}hL \sin^2 \left(\frac{\omega T}{2} \right) \sin(\phi_0)
\]
GW detection with the NN subtraction factor of 50
Challenges: Full AI for GW

- Seismic noise: Vibrational isolation
- Uniform gravity gradient
- Atom optics: high flux atom source and ultracold atoms
 large photon momentum transfer
 quantum enhanced measurement:

\[
1 / \sqrt{N} \Rightarrow 1 / N
\]

\[
h \propto \frac{1}{nkL \sqrt{N}} = \frac{\lambda}{2\pi} \frac{1}{nL \sqrt{N}}
\]

Now only \[h \propto 1 \text{\,\mu m}/10 \text{m}/100 / \sqrt{10^6} = 10^{-12}\] AI with laser link
Event estimating

Detection performance without Newtonian Noise reduction

Detection performance with Newtonian Noise reduction

Signal to noise ratio vs. detectable distance
ZAIGA-GW will fill the gap between LIGO and LISA
ZAIGA: GR test — DM

(Andrei Derevianko)

<table>
<thead>
<tr>
<th>Non-baryonic</th>
<th>Baryonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axions</td>
<td>Snowballs</td>
</tr>
<tr>
<td>(10^{-5} eV)</td>
<td>?</td>
</tr>
<tr>
<td>Neutrinos</td>
<td>Brown dwarfs</td>
</tr>
<tr>
<td>$(\sim 10 \text{ eV})$</td>
<td>$(\leq 0.08 , M_\odot)$</td>
</tr>
<tr>
<td>WIMPs</td>
<td>M-dwarfs</td>
</tr>
<tr>
<td>$(1-10^3 \text{ GeV})$</td>
<td>$(0.1 , M_\odot)$</td>
</tr>
<tr>
<td>Monopoles</td>
<td>White dwarfs</td>
</tr>
<tr>
<td>(10^{16} GeV)</td>
<td>$(1 , M_\odot)$</td>
</tr>
<tr>
<td>Planck relics</td>
<td>Neutron stars</td>
</tr>
<tr>
<td>(10^{19} GeV)</td>
<td>$(2 , M_\odot)$</td>
</tr>
<tr>
<td>Primordial black holes</td>
<td>Stellar black holes</td>
</tr>
<tr>
<td>$(>10^{15} \text{ g})$</td>
<td>$(\sim 10 , M_\odot)$</td>
</tr>
<tr>
<td>Quark nuggets</td>
<td>Very Massive Objects</td>
</tr>
<tr>
<td>$(<10^{20} \text{ g})$</td>
<td>$(10^2-10^5 , M_\odot)$</td>
</tr>
<tr>
<td>Shadow matter</td>
<td>Super Massive Objects</td>
</tr>
<tr>
<td>?</td>
<td>Cold diffuse gas</td>
</tr>
<tr>
<td>Cosmic strings</td>
<td></td>
</tr>
</tbody>
</table>

Possible dark matter

Recent Nature 2018 shows $m_x < 4.3 \text{ GeV}$

A.A.Geraci and A.Derevianko, PRL 117, 261301(2016)
A.A.Geraci et.al., PRL 123, 031304 (2019)
ZAIGA: GR test — summary

<table>
<thead>
<tr>
<th>Tests</th>
<th>Current Limits</th>
<th>Expected Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEP</td>
<td>$\eta \sim 10^{-8}$</td>
<td>$\eta < 10^{-8} \sim 10^{-13}$</td>
</tr>
<tr>
<td>LPI</td>
<td>$\beta \sim 10^{-5}$</td>
<td>$\beta < 10^{-5}$</td>
</tr>
<tr>
<td>GM</td>
<td>10^{-9} rad/s</td>
<td>$< 10^{-13}$ rad/s</td>
</tr>
<tr>
<td>GW</td>
<td>$10 \sim 10^4$ Hz</td>
<td>$10^{-1} \sim 10$ Hz</td>
</tr>
<tr>
<td>DM</td>
<td>$m_x < 4.3$ GeV</td>
<td>10^{-24} eV $\leq m_x \leq 10^0$ eV</td>
</tr>
</tbody>
</table>
OUTLINE

- Motivation
- ZAIGA: facility and key instruments
- ZAIGA: scientific proposals
- Progress
ZAIGA budget and plans

✓ site exploration started
✓ initial fund 70M RMB granted
✓ 2019-2021 V300m + H1.7km + Lab
 -EP -CE –RM -GG
✓ 2022-2025 Δ1km
 -GW
The 10th International Comparison of Absolute Gravimeters, 16 Oct.-11 Nov, 2017, Beijing, China

- 17 countries
- 29 FG-5 gravimeters
- 6 atomic gravimeters
- Active vibration isolation
- Rotation compensation
- Long distance handling
- ^{85}Rb atoms
Large scale (10 m) sub-10nT magnetic field shielding

Fluctuation 0.08 mG = 8 nT
Background: 1.45 mG = 145 nT

Thank Liang Liu (魏荣/刘亮) for T-Comp.
TOF of the 12-m atomic fountain (2T = 3.13 s)
ZAIGA-GW hopes to join the Ligo-Virgo-Kagra family for GW astronomy in 6 years

KIW6, June 21-23, 2019 Wuhan
SAGE: A Proposal for a Space Atomic Gravity Explorer

WEP test in China Space Station (-2022)

Heavenly Palace

$\eta = 10^{-10} \sim 10^{-12}$

$^{85}\text{Rb} - ^{87}\text{Rb}$

$\leq 1 \times 10^{-7} \text{g RMS}$

$46 \times 30 \times 26 \text{ cm}^3$

30 kg

30 W
Acknowledgements

Mingsheng Zhan (詹明生)

ZAIGA-GW
-DM

Dongfeng Gao (高东峰)

Lin Zhou (周林)

Jin Wang (王谨)

ZAIGA-EP

Jiaqi ZHONG (仲嘉琪)

Biao TANG (汤彪)

Zongyuan XIONG (熊宗元)

Min LIU (刘敏)

Peng XU (许鹏)

Xiaodong HE (何晓东)

Yurong LIANG (梁浴榕)

Min KE (柯敏)

Jun LUO (罗军)

Zheng TAN (谭政)

Zhanwei YAO (姚战伟)

Lei ZHU (朱磊)

Genghua YU (余庚华)

Sibin LU (鲁思滨)

ZAIGA-CE

Lingxiang He (贺凌翔)

Wei-Tou Ni (倪维斗)

ZAIGA-RM

Runbing Li (李润兵)

MOST
CAS
NSFC

Students / Postdocs

Xi CHEN (陈曦)

Jiaqi ZHONG (仲嘉琪)

D. J. Papoular

G. V. Shlyapnikov

A. Derevianko

Thank you for your attention!