Electronics for the European XFEL: AGIPD a high frame rate camera

Peter Göttlicher, for AGIPD collaboration,

DESY, Hamburg, Germany

Bonn-Univ., DESY Hamburg-Univ, PSI

TWEPP 2010, Aachen, Sept. 20th 2010

- Motivation for new X-ray sources and detectors
- X-ray Free Electron Laser: Sources of the new 4th generation European XFEL
- Detectors 2 dimensional cameras, one is AGIPD: Adaptive Gain Integrated Pixel Detector
- Control and data Acquisition for detectors
- Status of the project
- > Outlook

optiona

12 double size slots

CU

PL

PU

Motivation for new X-ray sources and detectors

- X-ray Free Electron Laser: Sources of the new 4th generation European XFEL
- Detectors
 2 dimensional cameras,
 one is AGIPD: Adaptive Gain Integrated Pixel Detector
- Control and Data Acquisition for detectors
- Status of the project
- > Outlook

Science with X-ray from nowadays synchrotrons 3rd Generation

> Nice systems, but more wishes for the future

- Intensity
- Coherence for holography
- Many photons/bunch in <100fs:</p>
 - \Rightarrow Get the picture before X-rays destroy the target

Imaging detectors: e.g. Pilatus: 2-dimensional pixel Counting: 1MHz/pixel Rate: 10-100 pictures/sec

- > All that effort will open new opportunities for science
 - Structure and dynamics in complex systems: Molecules, clusters, biological objects, plasma
 - Physics, chemistry, material science, biology, medicine

The technique to realize:

Free Electron Laser

The SASE principle

Comparison: From synchrotrons to FEL's

Intense light gets delivered by lasers, now lasing for X-ray

European

FEL based sources

Motivation for new X-ray sources and detectors

- X-ray Free Electron Laser: Sources of the new 4th generation European XFEL
- Detectors 2 dimensional cameras, one is AGIPD: Adaptive Gain Integrated Pixel Detector
- Control and Data Acquisition for detectors
- Status of the project
- > Outlook

XFEL: Functional blocks

The European XFEL:

The Cavity

1040mm

- Niob,
- electro polished

Operating conditions:

- RF frequency 1.3 GHz
- accelerating field 20-25MV/m
- superconductive, T=2K

Heat production

- Need duty cycle:
 600µs e-beam with 10Hz
 - \Rightarrow bunches in trains

Cryostat with

- 8 cavities
- quadrupol magnet,
- couplers
- diagnostics

Contracts for 600 cavities signed with industry

Kick Off: September 7th 2010

101 cryostats

Train structure

- Advantage: 27 000 bunches/sec, LCLS,SCSS: 60-120 bunches/sec
- Consequence: All systems have to handle 220ns bunch to bunch 4.5MHz operation for 27k-bunches/sec.

LLRF: Radio frequency control

W.Koprek, LLRF09, Tsukuba, Japan, EuCARD-PRE-2009-003

Train structure:

European

- Charging cavities: 10Hz for 2ms pulsed Lorentz-force detuning
- Load by beam pulsed: 600µs @ XFEL field energy used to accelerate e⁻, control of recharging constant field during train
- Compact bunches: Very stable field Amplitude 0.01 % Phase 0.01 ⁰ at injector

96 analogue information's ADC's: 14bit, ~100MS/s

Complex mathematics:

- feed back loops
- feed forward during train, train to train
- low latency: few 100ns
- \Rightarrow FPGA's, DSPs, high data throughput \Rightarrow high performance data links

xTCA as platform

High performance digital standard: Telecommunication

- ATCA: Advance Telecommunication Computing Architecture: 2002

Features:

European

- Backplane: many multi gigabit serial links
- Configurable network
- Redundancies: Power, CPU, MCH Uptimes >99.999%
- Carriers for 1-8 AMC Advance Mezzanine Cards
- Hot swap

μ**TCA** Scalable to

- Small systems
- Features like ATCA
- modules = AMC's

A standard for physics

- Science(XFEL)+ Industry PICMG® Specification MTCA.4

Features:

- Based on μTCA
- More space
- Synch. clocks on backplane
- Rear access by µRTM's µRear Transition Modules

LLRF: ATCA trials at FLASH, main accelerator

W.Koprek, LLRF09, Tsukuba, Japan, EuCARD-PRE-2009-003

Prototyping and first trials with ATCA

European

Stability needs regulation with:

- Feedback and feed forward,
- High amount of fast data handling

LLRF: Injector Performance at FLASH

European

1.4

[ms]

Learning Feedforward Performance: Pulse-to-Pulse (ACC1)

Peter Göttlicher | TWEPP 2010 | Sept. 20th 2010 | page16/45

European XFEL standardization of AMC boards

P.Vetrov et al., IEEE-Real-Time conf. 2010, Lisboa, Portugal

Droduction **DESYAMC 2** TO to type 8430-00 AMC-RTM-2C-TEST01234 56789 cable 54 DI/Os **Designs for** ō Fiber S E specific functionality Connector of FMC contro FMC mezzanine + standard interface **1Gbit RA** ADC's, DAC's, logic I/O's shapers,

µRTM: Rear transition module

- User specific hardware
- Simpler design

148 mm

DESY-AMC1

as real prototype Virtex-5, RAM, 125MS/s ADC's and DAC's

AMC: Front boards:

Connector to backplane of µTCA-crate:

- double width standard
- A few standard hardware developments: digital interface, ADC's, carriers
- Custom and industrialized designs
- Code as VHDL for hardware drivers
 - application in higher level (MATLAB)

- Motivation for new X-ray sources and detectors
- X-ray Free Electron Laser: Sources of the new 4th generation European XFEL
- Detectors
 2 dimensional cameras,
 one is AGIPD: Adaptive Gain Integrated Pixel Detector
- Control and Data Acquisition for detectors
- Status of the project
- > Outlook

Detectors for the dream: 2-dimensional cameras

European

User requirements

Linit (Lipit Order Different physic cases						
of magnitude		Pump/probe none crystalline	Pump/probe crystalline	Coherent diffractive imaging	Single Particle Imaging	X-ray Correlation Spectrosc.	Requirement to detector:
	500 um Si						
E _{photon}	keV	6-15	12	0.8-12	12.4	6-15	
Quan. Effic.	%	> 80			Exceed 1GGy		
Rad. Toler.	10 ¹⁶ photons	1	1	2	0.2	0.02	
Geometry							Pixels 100-500µm
Camera size	Target-angle	200 ⁰	120 ⁰	120 ⁰	120 ⁰	0.2 ⁰	Target-detector:
Pixel size	Mrad	7	100µm	0.1	0.5	0.004	1-5 meters 1mega-pixel
No. of pixels	kilo x kilo	0.5 x 0.5	3 x 3	20 x 20	4 x 4	1 x 1	
	Domanding						
Local rate	10 ⁴ photons /pixel/picture	5	300	10	1	0.1	dynamics !
Global rate	10 ⁷ phot./pict	3		1			10 ⁹ e-h-pairs in
Noise		Single photon resolution, << statistics					less than a pixel
Phot. spread	pixel	<1	<100µm		<1	K	
Picture rate	/train, /time	1, 10Hz	1, 10Hz	All, 27kHz	1, 10Hz	All, 27kHz	Possible total? Pict-pict: 220ns
Need a few detectors to cover all							

Same challenges look not feasible: compromises, future

DESY

General detector concepts: Mechanical view

European

Peter Göttlicher | TWEPP 2010 | Sept. 20th 2010 | page22/45

Three consortia for 2 dimensional cameras

Adaptive Gain Integrated Pixel Detector

Institutes: Bonn(University), DESY, Hamburg(University), PSI(Villingen) Reference: B. Henrich, et al., Nucl. Instr. and Meth. A (2010), doi:10.1016/j.nima.2010.06.107

DEPMOS Sensor with Signal Compression

DSSC Institutes: MPI-HLL Munich, DESY, Heidelberg(Univ.), Poly. Milano, Bergamo(Univ.), Siegen(Univ) Reference: M. Porro, et al., Nucl. Instr. and Meth. A (2010), doi:10.1016/j.nima.2010.02.254

Large Pixel Detector

LPD Institutes: STFC/RAL, Glasgow(University) Reference: S.R.Burge et al., Large Pixel Detector for the European X-ray Free Electron Laser, 11th European Symposium on Semiconductor Detectors, June 2009 conference proceedings.

Common items: Sensor-studies, ASIC in 130nm-technology, DAQ-systems

Different physics by different technical approaches

	AGIPD	DSSC	LPD
Pixel	200 x 200μm²	236µm hexagons with a DEPFET	500 x 500μm²
Approach for dynamic range	Automatic gain switching	Compression by DEPFET in pixel	3 parallel gains
Storage per bunch	Analogue with analog ASIC-out.	Digital, 1ADC/pixel	Analogue with digital ASIC-out.

Sensor

European

Charge explosion:

Electrostatic forces cause Widening of charge cloud

500V for 500µm thick Si-sensors

Sufficient to keep charge in pixel and in time of bunch (200µm-pixel, 220ns/bunch)

European

Modular structure of AGIPD: 16 modules for 1Mega Pixel

1 Module: Sensor: 512x128 pixel, 10.3 x 2.8 cm²
 16 bump bonded ASIC's, each for 64 x 64 pixel, each 4 outputs

PCB's for each module:

European

- Digitizing 64 parallel signals: 14 bit 50MS/s
- Sorting data and transferring to DAQ : 10GbE
- Controlling the ASIC's
- Synchronizing activies to train structure of accelerator

- Allow access to full data for sorting, selecting
- May be no activity while digitizing the critical values (2.)

Signal rates

European XFEL

and high performace crate electronics: xTCA

XILINX evaluation board + custom VHDL-UDP-core +custom designs+ ADC-evaluation board

10 Gbit-Ethernet

... Measurement is limited by 16GHz-scope Performance is better Eye diagram is well open

ADC: 700Mbit/s

Performance limited by no-impedance on XILINX-evaluation board Eye diagram is well open

Links are OK.

- Need no ideal setup
- Freedom to optimize system setup mechanics, modularity,...

Evaluation test successful

Now, converting to the complex circuit and layout of full module

Modular electronics of a module

Everything behind sensor

- stackable to 1MegaPixel and more

Using a backplane between sensors and Interface electronics as vacuum barrier and guiding common signals to the side

Separated digital and analog part

- Performance has shown, that connector is no problem at 700Mbit/s
- Therefore possible
- Disentangled developments, versions
- Compact analog part by two parallel PCB's,
- dense layout of 16 filters/ADC's each side

European

DSSC: DEPMOS Sensor with Signal Compression

G. Lutz, et al., Nucl. Instr. and Meth. A (2010), doi:10.1016/j.nima.2010.03.002

Mechanism for dynamics:

single photon distinguished: 0,1,2,3,.... high pulses: resolution better Poisson-statistics Inside pixel a DEPFET with none-linear behavior

- ADC/pixel: 8 bits within 220ns for dynamics up to 10 000 X-rays
- Storage depth: 512 or more
 - in DRAM of ASIC
 - all has to fit in area of one pixel
- Low noise due to DEPFET

Internal gate with specialized geometry

LPD: Large Pixel Detector

European

S.R.Burge et al., Large Pixel Detector for the European X-ray Free Electron Laser, 11th European Symposium on Semiconductor Detectors, June 2009 conference proceedings

LPD: Large Pixel Detector System components

ASIC Module

Services

The full system is complex, many design challenges have been taken on and realised by groups in the Technology department at Rutherford Appleton Labs.

LPD Full System

- Designed to be scalable.
- 8 ASICs are bump bonded to the back of a Silicon Detector module with 4,096 pixels
- 65+ Thousand pixels per super-module (8x2modules) Includes Cooling Unit, FPGA and Power Cards
- 1+ Million pixels (4x4 Supermodules) per detector.

Cooling

- Motivation for new X-ray sources and detectors
- X-ray Free Electron Laser: Sources of the new 4th generation European XFEL
- Detectors
 2 dimensional cameras,
 one is AGIPD: Adaptive Gain Integrated Pixel Detector
- Control and Data Acquisition for detectors
- Status of the project
- > Outlook

Targeted DAQ for cameras

European XFEI

XFEL-work package 76: C.Youngman http://www.xfel.eu/project/organization/work_packages/wp_76/

Clock&Control Hardware Structure

European

CC: Hardware Structure

European XFEI

Signal distribution by backplane and MCH

Following xTCA, PICMG®, MTCA.4

The veto system

- Cameras
- Logic unit
- differ in delays $0\mu s$ to $7\mu s$ due to positions along XFEL
- request a fast response \Rightarrow send "reject" at first valid veto.
- evaluates equations
- generates rejected bunch number: one/bunch or idle as 22bits

- Clock and Control system distributes the number
- Detector head does the memory management

Veto in detector head

Layer functionality

- FEE = Front End Electronics
 - Detector side interface to control & readout
- FEI = Front End Interface
 - DAQ side interface to control & readout
 - Protocol conversion: custom to TCP
 - Frame and Train building
 - Data processing

PC layer

- On-the-fly data processing and monitoring
- File formatting and aggregation

Data cache

- 2 day deferred commit to data archive
- Processing, monitoring and quality control
- Data archive
 - Offline data processing

Processing implies reduction

= compression | rejection

Design generic DAQ and DM systems assuming 10PB/year data volume with the possibility to scale it in the range of 5 to 100PB/year for all beam lines

- Motivation for new X-ray sources and detectors
- **X**-ray **F**ree **E**lectron Laser: Sources of the new 4th generation
- > European XFEL
- > Detectors
- > 2 dimensional cameras,
- > one is AGIPD: Adaptive Gain Integrated Pixel Detector
- Control and Data Acquisition for detectors
- Status of the project
- > Outlook

Start of the project

January 2009: Start of civil engineering on three sides

Hall and shafts are there, Civil engineering continues

November 2009: European-XFEL founded as GmbH (German limited) 8 countries joint the Eu-XFEL-GmbH, more coming

Status of the project

> September 3rd 2010: First photon tunnel drilling finished

- 2012 Buildings getting ready for installation
- 2013 First beam in injector
- 2014 First beam in linear accelerator
- 2015 First SASE, first experiment
- 2016 'Full' User operation

European

Outlook

- European XFEL will deliver the highest peak brilliance and bunch rate.
- > Need of excellent accelerator performance: Size and energy of bunch.
- Dedicated regulations in modern technologies needed. Developments and tests at FLASH are on going with good results.
- That leads to the use of modern standards in science: ATCA, μTCA. Adapting them to the needs (PICMG®) and first modules are available.
- Demanding dedicated detectors (Pixel cameras) are being developed. Ongoing developments for full chain with high signal and data throughput:
 - Sensors, ASIC's, detector heads and DAQ systems
 - e.g. 4.5MHz picture rate, 80 Gbit/s out of small detector heads
- All the effort opens new fields of science: Capturing a scattering picture with one flash of X-rays.
- > Thanks to all the work packages and consortia for providing material
- > More information on www.xfel.eu

http://hasylab.desy.de/instrumentation/detectors/index_eng.html

