Study for the LHCb readout board

J.-P. Cachemiche, P.-Y. Duval, F. Hachon, R. Le Gac et F. Marin

TWEPP 22 September 2010

Study for the LHCb readout board

Outline

- LHCb Upgrade
- Building blocks for high speed read-out
- Performances
- Slow control
- Scalable read-out architectures

LHCb Upgrade

Envisaged LHCb Upgrade in 2016

Motivation

Goal is to increase the statistical power to study new physics by:

- Increasing the instantaneous luminosity from 2×10³² to 2×10³³ cm⁻²s⁻¹
- Improving the trigger efficiency for hadronic channels
- Collect $\int \mathscr{L} \ge 50 \text{ fb}^{-1}$

Trigger upgrade

All detectors read at 40 MHz

Detector Upgrade

See "The Front-end Electronics of the LHCb Upgrade" presentation by Jan Buytaert in this workshop: 21-Sep-2010 12:15 IN2P3/CPPM 6

LHCb read-out requirements

Data output flow = Data input flow

Building blocks for high speed read-out

Guidelines for the study

Requirements	Prototype implementation
Interface with Front Ends: GBT protocol Interface with the farms: 10 GbE	Emulation of GBT protocol in FPGAs. Handling of high speed serial links (10 Gbits/s). Understand the limits (signal integrity, connectivity).
Find an architecture flexible enough to face demand changes, reuse of common building blocks	Test modular standard communication architecture (xTCA). See eventual limitations. Use of mezzanines for I/Os .
GBT centered architecture mixing data, slow control and time distribution	Test new supervision scheme embedded within FPGAs. <i>Measure performance.</i>

Development based on xTCA

Study for the LHCb readout board

Powerful connectivity in xTCA standards

Full mesh topology

µTCA Prototype

Mechanics

AMC board

AMC board

Mezzanine board

MCH board

Performance

Measurements at 4.8 Gbits/s

Serial link at 4.8 Gbits/s with GBT protocol

- Measured jitter at 10⁻¹² Total : 40 ps (p to p) Random : 2.4 ps Deterministic : 7.8 ps
- Estimated error rate : much less than 10⁻¹⁶

Serial lines at 8 Gbits/s

Measurements at 8 Gbits/s

Serial link at 8 Gbits/s with GBT protocol

- Measured jitter at 10⁻¹² Total : 77 ps (p to p) Random : 3.0 ps Deterministic : 36 ps
- Estimated error rate : 10⁻¹⁵ without pre-emphasis or equalization
- Closure of eye diagram: inter symbol interference due to attenuation of high frequencies

Slow control

System control

Based on NIOS cores^(*) **embedded in FPGAs**

- Communication through Gigabit Ethernet
- Switch is buried in hardware
- Single control point
- Same Architecture for ATCA or µTCA

(*) NIOS II core = RISC CPU directly embedded in FPGA

TCP/IP packet server running on NIOS II core Test configuration

Feasibility of a scalable supervision system

 A NIOS core with a triple speed Ethernet interface takes only 4% of the logic in a EP4SGX230

 Successful implementation of a basic server running over a microC/OSII realtime kernel.

Between **1 and 1.8 ms on average per transaction** (several consecutive writes + readbacks) with a simple NIOS core running at 50 MHz.

Packet size	Nb of transactions/s	Nb of tranfered bytes/s
1	943	1886
500	767	767000
1000	647	1294000
1458	568	1656288

Implementation of µCLinux + Dim server

TCP/IP packet server running on NIOS II core High level interface

Scalable read-out architectures

Mini Read-Out For FE debug & test

Data acquisition at 40 MHz

Slow control / Time distribution

Conclusions

- Study on signal integrity is on-going
 - Serial links at 4.8 and 8.5 Gbits/s are OK
 - Pre-emphasis and equalization should allow to increase speed up to 10 Gigabit/s
 - New version of the board with Stratix GT running at 10 Gbits/s soon available.
- xTCA system can be used to build scalable architectures for LHCb upgrade
 - Advantages of a standard: mechanics, COTS systems, interoperability, ...
 - Star topologies present in the standard might help for time distribution, slow control and communications between boards.
- Mezzanine concept allows flexible reconfiguration of boards
 - Quick redesign at low cost
- Supervision system based on NIOS cores embedded in FPGAs is very promizing