The GBT – SerDes ASIC

P. Moreira^a, S. Baron^a, S. Bonacini^a, O. Cobanoglu^a, F. Faccio^a, S. Feger^a, R. Francisco^a, P. Gui^b, J. Li^b, A. Marchioro^a, C. Paillard^a, N. Panilla^b, D. Porret^a and K. Wyllie^a

TWEPP

20th – 24th September 2010

http://cern.ch/proj-gbt

^a CERN, 1211 Geneva 23, Switzerland

^b SMU, Dallas TX 75275-0338, USA

Outline

- Radiation Hard Optical Link Architecture
- GBTX To Frontend
- The GBT SerDes
 - Architecture
 - Serializer:
 - Architecture
 - Hardening
 - Fast multiplexer
 - Measurements
 - Line Coding/Decoding
 - BER measurements
 - Clock and Data Recovery (CDR)
 - Architecture
 - Phase detector
 - Measurements
 - Phase Shifter:
 - Architecture
 - Measurements
 - Test Setup
 - Summary

Defined in the "DG White Paper"

- "Work Package 3-1"
 - Objective:
 - Development of an high speed bidirectional radiation hard optical link
 - Deliverable:
 - Tested and qualified radiation hard optical link
 - Duration:
 - 4 years (2008 2011)

Radiation Hard Optical Link:

- Versatile link project:
 - Opto-electronics
 - Radiation hardness
 - Functionality testing
 - Packaging
- *GBT project:*
 - ASIC design
 - Verification
 - Functionality testing
 - Packaging

GBTX-TO-FRONTEND: E - Link Modes

Mode	Туре	Data Rate	Notes
OFF	Power off	-	
P-Bus	parallel	80 MW/s	One 40-bit word (DDR)
B-Bus	parallel	80 MB/s	Up to 5 Bytes (DDR)
N-Bus	parallel	160 MN/s	Up to 5 Nibbles (DDR)
2 ×	serial	80 Mb/s	Up to 40 serial links
4 ×	serial	160 Mb/s	Up to 20 serial links
8 ×	serial	320 Mb/s	Up to 10 serial links
8 ×	serial-lanes	> 320 Mb/s	See "Error! Reference source not found."

GBT/Frontend interface:

- Electrical links (e-link)
- Serial
- Bidirectional
- Up to 40 links

Programmable data rate:

- Independently in five groups
- Independently for up/down links
- 80 Mb/s, 160 Mb/s and 320 Mb/s
- Lanes:
 - To achieve > 320 Mb/s
 - Two or more e-links can be grouped forming a "lane"
- Slow control channel:
 - 80 Mb/s
- E-Link:
 - Three pairs: D_{OUT}/D_{IN}/CLK
 - SLVS
- E-Links will be handled by E-ports:
 - Electrically
 - "Protocol"

Package (preliminary):

- BGA: 361 PINS
- 16 mm x 16 mm, 0.8 mm pitch

Serializer: Architecture

Serializer:

- 4.8 Gb/s
- 120-bit shift register
 - 3 × 40-bit shift register (f=1.6 GHz)
 - 3-to-1 fast multiplexer (f=4.8 GHz)

Data path:

- No SEU protection
- SEUs handled by the Reed-Solomon CODEC
- Clock divider:
 - Divide by 120
 - f = 4.8 GHz
 - Triple voted for SEU robustness
- PLL:
 - SEU hardened VCO
 - SEU hardened Clock Divider
 - Based on "custom" dynamic flip-flop

Serializer: Hardening

- Clock divider:
 - A "missing" count on the clock divider unlocks the PLL resulting in a burst of errors lasting for "µs"
- TMR in the counter mandatory:
 - A voter + a static DFF is far to slow!
 - Even a voter + a dynamic DFF will not pass the corner simulations!
 - A new "voted DFF" is proposed and used in the GBT-SERDES
- VCO:
 - Depending on the charge injected, an SEU can stop the VCO oscillations for a few cycles!
 - SEUs were modeled by current pulses injecting 300 fC in 10 ps
 - The VCO current is set so that an SEU event causes a phase shift which is a fraction of the bit period.
 - Penalty: high power consumption.

Serializer: Fast Multiplexer

Serializer: Measurements

• Tx Jitter:

- Total jitter (1e⁻¹²): 68.7 ps
- Random jitter: 2.2 ps (rms)
- Deterministic jitter: 37.6 ps
 - Data dependent: 6.3 ps
 - Periodic:
 - RMS: 7.2 ps
 - PP: 38.2 ps
 - Duty-cycle-distortion: 9.7 ps
 - Inter-symbol interference: 6.3 ps

Line Coding/Decoding

- High rates of Single Event Upsets (SEU) are expected for HL – LHC links:
 - Particle "detection" by Photodiodes used in optical receivers.
 - SEUs on PIN-receivers, Laser-drivers and SERDES circuits
- The GBT high speed data path is <u>not</u> SEU hardened!
- Transmitted data is however protected by a Forward Error Correction (FEC) code

- Scrambler:
 - 4 × Maximum run length 21-bit scrambler
- FEC code:
 - Interleaved Reed-Solomon double error correction
 - 4-bit symbols (RS(15,11))
 - Interleaving: 2
 - Error correction capability:
 - 2 (Interleaving) × 2 (RS) = 4 symbols = 16-bits
- GBT frame efficiency: 70%
 - A line code is always required for DC balance and synchronization
 - For comparison, the Gigabit Ethernet frame efficiency is 80% (at the physical level)
 - At a small penalty (10%, when compared with the Gigabit Ethernet) the GBT protocol will offer the benefits of Error Detection and Correction

BER Measurements

CDR: Architecture

CDR: Half-Rate Phase Detector

Advantages:

- Clock runs at f/2
- Data is automatically retimed
- VCO design "can be" relaxed
- "Only" serial data sampling operation remains critical!
- Disadvantages:
 - Four well controlled clock phases are needed
 - One bit period uncertainty on the clock phase:
 - Is the ½ rate clock phase aligned with an "even" or "odd" bit?
 - Constant latency requires this phase uncertainty to be resolved latter (only important in HEP applications)

http://cern.ch/proj-gbt

Recovered Clock: 40 MHz

Fixed pattern:

- Total jitter (1e⁻¹²): 60 ps
- Random jitter: 2.2 ps (rms)
- Deterministic jitter: 27.5 ps (pp)
 - Periodic:
 - RMS: 5.6 ps
 - PP: 28 ps

PRBS:

- Total jitter (1e⁻¹²): 159 ps
- Random jitter: 9.5 ps (rms)
- Deterministic jitter: 24 ps (pp)
 - Periodic:
 - RMS: 7.8 ps
 - PP: 24 ps

Phase – Shifter: Architecture

Main features:

- 3 channels in the GBT SerDes
- 1 PLL + Counter generates the three frequencies: 40 / 80 and 160 MHz
- 1 DLL per channel: 48.83 ps resolution
- Mixed digital/analogue phase shifting technique:
 - Coarse deskewing Digital: Δt (coarse) = 781.25 ps
 - Fine deskewing Analogue: Δt (fine) = 48.83 ps
- Power consumption: 5.6 mW/channel (simulated)
- Differential non-linearity: DNL <6.7% LSB
- Integral non-linearity: INL<6.5% LSB

Predicted by simulation

Phase – Shifter: Measurements

Resolution: $\Delta t = 48.83 \text{ ps}$

Differential Non-Linearity: Differential Non-Linearity:

 $\Box \sigma = 4.7 \text{ ps} (9.6\% \text{ of } \Delta t)$

D pp = 21.5 ps (44% of Δt)

Jitter: σ = 5 ps (pp = 30 ps)

 $\Box \sigma = 4.3 \text{ ps} (8.7\% \text{ of } \Delta t)$

 \Box pp = 21.9 ps (48.7% of Δt)

Test Setup

Summary

- The GBT SerDes:
 - Fabricated in 130 nm CMOS technology
 - Packaged in a custom 13 × 13 bump-pad C4 package (168 pin)
- A test bench was developed based on:
 - StratixII Gx Development Kit
 - Test board with different ground options
- Almost all of the functions proved 100% functional:
 - Serializer
 - Frame-Aligner
 - Constant-latency "barrel-shifter"
 - Encoder/Decoder
 - Scrambler/Descrambler
 - Phase-shifter
 - Logic
 - Parallel I/O interface
- For the De-serializer
 - The clock recovery function works fine over the full range
 - However, error free data reception at 4.8 Gb/s has not (yet?) been achieved!
 - OK up to 2.4 Gb/s

.