Upgrade of the ALICE-TPC read-out electronics

Antoine Junique, Luciano Musa, <u>Magnus Mager</u>, Attiq Ur Rehman for the ALICE collaboration

CERN

TWEPP Aachen September 21st, 2010

Magnus Mager (CERN)

Upgrade of the ALICE-TPC read-out electronics

21.09.2010 1 / 23

Outline

- Overview of ALICE and its TPC
- Current read-out and performance
- Proposed upgrade & first prototype
- Planning

ALICE

Magnus Mager (CERN)

The TPC – key facts

- pseudo-rapidity coverage: $|\eta| < 0.9$ or $|\eta| < 1.5$ for full and 1/3 of radial track length, respectively
- ▶ active volume: -2497 < z < 2497 mm times 848 < r < 2466 mm</p>
- read-out chambers: 2 × 2 × 18 (side, radial and azimuthal segmentation) multi-wire proportional chambers
- ▶ gas: Ne-CO₂-N₂ [85.7-9.5-4.8]
- drift-time: 96 µs (nominal)

Electronics

number of pads: 557,568; distributed over:

- 4,536 front-end cards (FECs)
- 216 independent read-out partitions:
 - 2 sides times
 - 18 sectors (azimuthal) times
 - 6 partitions (radial) times
 - 18, 25, 18, 20, 20, 20 FECs (inner to outer)
- full parallel/concurrent operation
- sampling:
 - 10 bit at 10 MSPS
 - up to 1,008 samples
- multiple event buffering: 4 events
- (very) raw event size: 700 MByte

Overview

The front-end card (FEC)

- 128 channels
- components:
 - 8 PASAs (pre-amplifier and shaper)
 - 8 ALTROs (ADC, DSP and event buffering)
 - board controller (BC)
- interface:
 - ▶ 40 + 5 bit (data + control) wide bus (GTL)
 - triggers
 - L1 (GTL)
 - L2 (GTL)
 - clocks
 - read-out (GTL)
 - sampling (PECL)
 - 4-wire serial I²C-like slow control bus (GTL)
 - card-switch line (CMOS)

Operating modes

Foreseen operating scenarios

- proton-proton
 - isolated events
 - Iow interaction rate
 - past-future protected
 - pileup (up to 100 events)
 - within a bunch
 - within the drift time
- heavy ions
 - isolated events
 - multiplicity trigger

1 pp event

3 pp events (pileup)

1 PbPb event (θ-slice)

Magnus Mager (CERN)

Introduction Operating modes

Foreseen operating scenarios - Simulations

- simulations done by merging $\sqrt{s} = 7$ TeV min. bias *pp* events
- proton-proton pileup
 - overlay of displaced events
 - equally spaced from T 100 to $T + 100 \ \mu s$.
- heavy ions
 - overlay of events without displacement
 - ▶ 100 for min. bias *PbPb*, and
 - 300 for central collisions

1 pp event

3 pp events (pileup)

1 PbPb event (θ-slice)

Magnus Mager (CERN)

Read-out control unit (RCU)

- ▶ 216 RCUs, one per read-out partition
- 2 buses connect to half of the FECs each
- 2 daughter cards:
 - SIU card: optical link (DDL) interface to experiment-wide data acquisition
 - DCS card:
 - clock and trigger receiver
 - embedded Linux to monitor electronics
- 2 FPGAs:
 - Xilinx: communication to FECs and daughter cards
 - Actel: active partial reconfiguration to increase radiation tolerance

Read-out modes

- full read-out:
 - ▶ read out every channel ($T_{rdo,ch} \ge 450 \text{ ns}$)
 - multiple event buffer usable
 - used for high occupancy events
- sparse read-out:
 - BCs compile lists of channels with data (parallel on all FECs) $(T_{sevl} = 90 \ \mu s)$
 - BCs transfer list of active channels to RCU (total: $T_{revl} = 10 \ \mu s$)
 - read-out of non-empty channels only
 - multiple event buffer not usable (FEC isolated during first point)
 - used for sparse events

Read-out times and throughput

- front-end electronics designed for PbPb events and rates of 100 – 300 Hz.
- read-out times measured by overlaying different numbers of events events in
 - in pp pileup topology (sparse and full read-out)
 - in PbPb topology (only full read-out)
- > read-out time: maximum read-out time of all 216 links: max{ T_{rdo} }
- throughput: maximum link-size divided by maximum read-out time of all 216 links each: $\max\{S_{DDL}\}/\max\{T_{rdo}\}$

Magnus Mager (CERN)

Upgrade of the ALICE-TPC read-out electronics

21.09.2010 11 / 23

Read-out times and throughput – measurements

Magnus Mager (CERN)

Motivations to upgrade

physics:

- lower expectation for dN/dη for central PbPb collisions: 2,500 instead of 8,000 (TDR)
- stable operation of other similar devices observed at high rates
- event selection by HLT
- electronics:
 - reduce impact of ALTRO protocol overhead
 - make better use of available (future) bandwidth
 - resolve full VS. sparse read-out issue
 - increase fault tolerance

Magnus Mager (CERN)

Proposed upgrade Motivation

Motivations to upgrade II: FEC performance

Magnus Mager (CERN)

Proposed architecture

- restrictions:
 - keep FECs (worth 80% of whole TPC)
- topology:
 - replace bus by star
 - use serial links

parts:

- "FECint" (4,536): interface card to translate FEC bus to serial
- "master RCU" (about 216): star-point and link to central services (Trigger, DAQ, DCS)

FECint

- translates parallel bus to serial bus
- adds memory to further derandomise events
- parallel interface to FEC:
 - clocks (sampling and read-out)
 - triggers
 - data
 - slow control
- serial link to master RCU:
 - 4 differential lines:
 - receive (2 GBit/s)
 - transmit (2 GBit/s)
 - clock
 - trigger
 - ► PC

targets Xilinx Spartan-6 (cheap FPGA with high speed serial links)

Master RCU

- star-point in data flow
- serial connection to about 20 FECs
- interface to central services, by (depending on DAQ upgrade) either:
 - integration of DDL and DCS, or
 - integration of new high level link
- integration into a single FPGA
- targets Xilinx Virtex-6

Prototyping

FECint prototype - design

- based on Virtex-II Pro (availability)
- aims:
 - mechanics:
 - minimum size
 - FEC connectors
 - choice of serial connectors
 - weight
 - electronics:
 - GTL–CMOS interfacing
 - signal integrity
 - price

Prototyping

FECint prototype – hardware

► PCB:

- dimensions: 18.4 × 4 cm
- layers: 8 (to have enough power planes to assess decoupling)
- connectivity:
 - 4 serial ports:
 - 2 HDMI
 - 2 mHDMI
 - 2 rx-tx swapped
 - JTAG (programming and communication)
- testability features:
 - currents
 - voltages
 - FPGA temperature

Prototyping

FECint prototype – firmware

FEC link:

- software controlled DCMs for phase shifts of read-out and sampling clocks
- in system ALTRO bus state analyser
- detailed phase scans and characterisation of transactions
- serial link:
 - simple data packet transmitter and receiver
 - power consumption and temperature monitoring

FECint prototype - results

- approach is feasible
- minor issues:
 - FEC-connectors: needs adjustment in height
 - PCB size need to be adjusted for cooling hoses
- improvement of ALTRO communication possible (due to direct connection):

Planning

Near future

- second iteration of the FECint:
 - Spartan-6
 - adjusted geometry (size and connectors)
 - cost-optimised routing
 - USB/SFP connectivity
- ▶ implementation of "master RCU":
 - as counter part for the front-end link
 - including modules to interface Trigger and DAQ
- re-assessment with real PbPb data

Planning

Farer future

- ▶ 2012: qualification of components
- ▶ 2013: engineering of large scale prototype
- ▶ 2014–2015: production & testing
- 2016: installation (long LHC shutdown)