

M. Bochenek^{1,2}, W. Dąbrowski², F. Faccio¹, S. Michelis¹

- I. CERN, Conseil Européen pour la Recherche Nucléaire
- 2. AGH, University of Science & Technology

Topical Workshop on Electronics for Particle Physics, TWEPP 2010

Outline

- I. Powering schemes considered for upgraded ATLAS Inner Tracker
- 2. Switched capacitor step-down converter proposed for the DC-DC powering scheme
- A model of a simple step-down (2:1) converter and its practical implementation,
- Designs of the non-overlapping clock generator and buffers.
- 3. Switched capacitor voltage doubler proposed for the serial powering scheme
- A model of a simple voltage doubler and its practical implementation,
- Designs of the non-overlapping clock generator, level shifters and buffers.

Due to the fact that the IBM 0.13 µm submission was delayed, we have to wait for the results from the chips.

I. Overview of the powering schemes considered for the upgraded ATLAS Inner Tracker

22/09/2010 3

Serial powering scheme

Good quality of analog and digital voltage:

- low output impedance of shunt regulator,
- possibility to use classical linear regulator \rightarrow good filtering efficiency.

No regulation on DC-DC, but the power consumption in the analog part is constant.

DC-DC conversion technique

- A low-dropout voltage regulator in the "analog bus" is required.
- No regulation on the digital power line (required low impedance of DC-DC since the current consumption varies significantly in the digital part).

2. Switched capacitor step-down converter

A simple model of the step-down switched capacitor converter

parallel.

The optimization process is based on minimizing the contradictory types of losses in the switching MOSFETs

- Conduction losses (equal to: $I^2 \cdot R$) therefore the total resistance between the source and drain during the "ON" state, $R_{DS(on)}$ has to be as low as possible,
- Switching losses (equal to: $\mathbf{t_s} \cdot \mathbf{V_{DS}} \cdot \mathbf{I} \cdot \mathbf{f}$) switching time, rise and fall time depend on the gate to drain capacitance C_{GD} , internal resistance of the driver and the V_{TH} ,
- Gate charge losses (equal to: $\mathbf{f} \cdot \mathbf{Q}_{\mathbf{G}(\mathbf{TOT})} \cdot \mathbf{V}_{\mathbf{DRIVE}}$) are caused by charging up the gate capacitance and then dumping the charge to ground every cycle.

Practical solution for the DC-DC step-down converter

Schematic diagram of the non-overlapping clock generator used in the step-down converter

2 x NOR gate

3 x inverter

2 x current starved inverter

$$C_1 = C_2 = 20 \text{ fF}$$

allows for a clock signal separation of 3.5ns

Buffer used in the step-down converter

Two chains of scaled inverters with cross-coupled transistors MI and M2 allow to avoid the conduction current in the last inverter M3 / M4

This architecture of the buffer was used by S. Michelis in AMIS2

Layout of the step-down converter

MI = 28.2 mm / 0.24 μ m, M2 = M3 = 18.0 mm / 0.30 μ m, M4 = 6.0 mm / 0.30 μ m

Total area = 0.12 mm^2

Simulation cell for the transient analysis (including package components)

Time response of the step-down converter (no wire bonds)

Input Voltage and Output Voltage vs. Time

Time response of the step-down (wire bond inductance included)

Voltage Ripple vs. Time

Power efficiency and output voltage vs. output current

Results from the corner analysis

2. Switched capacitor step-up converter

A simple model of the step-up switched capacitor converter

- Three switches
- One capacitor

Phase 2:

- Switches S₁ and S₃ are opened,
- Switch S₂ is closed,
- Bottom plate of the capacitor on V_{DD} , while the capacitor maintains its charge $V_{DD}C$ (from the previous phase).

Phase I:

- Switches S₁ and S₃ are closed,
- Switch S₂ is opened,
- Capacitor is charged to the supply voltage V_{DD}

 V_{DD}

Practical solution for the voltage doubler

Level shifter

Because of poor driving capability of used big PMOS serial switches two level shifters are needed

VOUT M5 M6 $\mathsf{CLK}_\mathsf{OUT}$ M1 CLKIN M2 M4

The level shifter requires two voltage supply domains: input voltage supply (0.9 V) and output supply (1.6 V) - taken from the output of the charge pump

Level shifter input

Layout of the charge pump **Buffers Voltage Doubler** Level **Shifters** Clock **Generator Total area** $= 0.04 \text{ mm}^2$ 200 µm

Simulation cell for the transient analysis (including package components)

22/09/2010 23

Time response of the step-up converter (no wire bonds)

Input Voltage and Output Voltage vs. Time

Voltage Ripples vs. Time

22/09/2010

24

Time response of the step-up (wire bond inductance included)

Voltage Ripples vs. Time

Power efficiency and output voltage vs. output current

22/09/2010 26

Results from the corner analysis

Layout of the DCDC013

Conclusions

- The results from the Spectre simulations are quite promising:
 - η = 97% for the step-down converter,
 - $\eta = 85\%$ for the step-up converter.
- The inductance of the bond wires causes fast voltage spikes the padring was designed to reduce the influence of the bond wire inductance.
 - Therefore, the use of the DC-DC converters mounted on the **separate chip** with **C4 pads** should be considered.
- The chip was submitted at the end of August 2010.
- The PCB board is now in production and will be ready before the arrival of the chips.

22/09/2010 2

Thank you!

This research project has been supported by a Marie Curie Initial Training Network Fellowship of the European Community's & Seventh Framework Programme under contract number (PITN-GA-2008-211801-ACEOLE)

