Available radiation data for "hardened" cells (proton tests)

- Wide range of "hardened" cells custom designed and tested (200MeV protons) by FNAL. Results presented by J.Hoff in 2006.
 - Some of them have cross-section 3 orders of magnitude below the one measured for a commercial cell
- DICE cells custom designed and tested in 2008 by the ATLAS Pixel detector collaboration
 - results presented by M.Menouni at TWEPP 08
 - 3 different layouts integrated
 - Tests done with the CERN 24 GeV/c proton beam
 - Cross-section varies with layout but mainly around 2-3.10⁻¹⁶ cm²bit⁻¹.
 - This is 10 times larger than what measured by FNAL on the same design in 2006
 - (but different layout and proton energy).

Туре	Cross Section
LBL Dice	3.84e-17 cm ² /bit
RT Dice	5.86e-17 cm ² /bit
RT Seuss	1.03e-15 cm ² /bit
RT SR-ff	3.85e-14 cm ² /bit
RT normal	3.23e-14 cm ² /bit
TR Seuss	4.7e-15 cm ² /bit
TR SR-ff	8.91e-15 cm ² /bit
Hit	1.59e-15 cm ² /bit
Liu	2.69e-16 cm ² /bit
Dice	4.55e-15 cm ² /bit
Seuss	1.05e-14 cm ² /bit
SR-ff	5.02e-14 cm ² /bit
COMMERCIAL	4.86e-14 cm ² /bit
Normal	5.63e-14 cm ² /bit

Available radiation data for "hardened" cells (heavy ion tests)

See poster in this conference for more details

Tests done at UCL-CRC, Belgium

sandro.bonacini@cern.ch

Error rate projection for "hardened" cells

- it appears that some hardened cells have a cross-section 3 orders of magnitude (or better) below the one measured for the commercial cell
 - CERN tests with heavy ions (2010)
 - FNAL tests with 200MeV protons
- Comparison with other data reveals large uncertainty on the actual rate for the DICE cells (is this due to layout, proton energy, systematic difference in experiments?)

Summary:

Error rate depends on the detailed implementation of the cell (architecture, layout) and operation (static, dynamic) SEU protection using standard library and automatic P&R tools

- Triple Module Redundancy
 - Easily passes through RTL Compiler (Encounter)
 - if input/outputs or clocks are triplicated
- SEU-robust cells
 - Not included in our library yet
 - Timing must be characterized for inclusion in the library
 - P&R can work without timing characterization... but no timing checks!!

Future tests on 90 nm technology

- A shift-register test chip with 60k FFs was fabricated and will be tested (by end 2010)
 - Two types of FF are present, using
 - Dual-Well devices
 - Triple-Well devices
 - TW could have advantage over DW due to thinner charge collection volume
 - But higher resistivity of well + parasitic bipolar effect may dominate
- An SRAM chip is under development (~1 Mbit)

- Developer:
 - Lorenzo Pierobon CERN PH/ESE

Single-Event Latchup tests

- Standard cell library needs tap cells for substrate/n-well contacts
 - By default placed at ~15 um distance in our automatic P&R scripts
 - (30 µm in same row w/ checkerboard pattern among rows)
 - Design rules require ~70 µm max distance

Planned irradiation tests to assess SEL immunity

- Test chip
 - 32kbit FF (foundry)
 - 17kbit SRAM (foundry)
- Expected delivery Dec/2010
- SEL tests
- SEU tests
- (TID tests on SRAM...)
- Library pads (foundry) were tested and proved functional
 - at LET > 60 MeVcm²/mg

Summary

- Error rate of 'standard' register/memory in 130nm is considerably larger than for the 0.25um designs used for LHC
 - Estimated cross-sections for both SRAM and FFs are available and can be used to compute error rate and judge compatibility with application
- Characterized hardened cells exist achieving error rates
 >3 orders of magnitude better than 'standard'
- SEL test structure representative of automatic P&R in the 130nm is being manufactured and will be tested
- More tests in 130 and 90nm are planned