# Dark matter direct detection: present scenario and future prospects



José A. Matias-Lopes

UNIVERSIDADE DE COIMBRA NIVERSIDADE DE COIMBRA PONT, December 8, 2020

# The Universe energy budget: a consistent picture from an impressive number of observations



## DM existence proofs are overwhelming

100%

Dark energy 68%

Dark matter 27%

Baryons 5%

#### And there are many:

- Early and late cosmology (CMB, LSS)
- Clusters of galaxies
- Galactic rotation curves
- Gravitational lensing

× ...



# Dark matter: the puzzle

Dark matter is matter - it leads to the formation of structure and galaxies in our universe

• We have a standard model of CDM, from 'precision cosmology' (CMB, LSS): however, measurement ≠ understanding

For 85% of matter in the universe is of unknown nature

Large scale distribution of dark matter, probed through gravitational lensing



#### What do we know about dark matter?

# Constraints from astrophysics and searches for new particles:

- No electric charge
- No strong self-interaction

Exists since the early Universe

Stable, or very long-lived



Probing dark matter through gravity

## Possible DM particles

no particle of the Standard Model is a good dark matter candidate



## Super Symmetry theory and Dark Matter



#### How to look for dark matter



#### How to look for dark matter









Standard Model states

Standard Model states

#### How to look for dark matter



## DM direct detection principle

Nuclear recoils



- collisions with electrons in the atomic shell, or absorption of light bosons via the axioelectric effect
- + Bremsstrahlung from polarised atoms; e<sup>-</sup> emission due to so-called Migdal effect

## What can we learn about DM?

Constraints on the mass and scattering cross section

$$\frac{dR}{dE_R} = N_N \frac{\rho_0}{m_W} \int_{v_{min}}^{v_{max}} dv f(v) v \frac{d\sigma}{dE_R}$$







## WIMP detection on Earth

Differential event rate:

$$\frac{dR}{dE_R} = N_N \frac{\rho_0}{m_W} \int_{\sqrt{(m_N E_{th})/(2\mu^2)}}^{v_{max}} dv f(v) v \frac{d\sigma}{dE_R}$$



**Astrophysics** 

$$\rho_0, f(v)$$

**Detector physics** 

$$N_N, E_{th}$$

Particle/nuclear physics

$$m_W, d\sigma/dE_R$$

# DM direct detection challenges

$$\frac{d\sigma^{SI}}{dE_R}(E_R) \propto A^2 \times F_{SI}^2(E_R)$$



#### Small deposited energies ⇒

 very low energy thresholds (~ keV)

#### Extremely low event rates ⇒

- 2) ultra-low backgrounds good background understanding
- good background discrimination
- large detector masses

# Backgrounds

- In the ideal case: below the expected signal
  - Muons & associated showers; cosmogenic activation of detector materials
  - Natural and anthropogenic radioactivity
  - Neutrinos! Coherent neutrino-nucleus scattering was observed





# Background reduction

#### o Go deep underground



**Select low-radioactivity materials** 

XENON collaboration, EPJ-C 75 (2015) 11

#### **Avoid cosmic activation**



LB et al., Eur. Phys. J. C75 2015



#### **Fiducialize**

2000



Energy (keV)

#### Use active shields



# Cosmic radiation shielding

- ► Go underground
- Bad news: you can't shield neutrinos
- Good news: eventually these will be one of your signals:

pp, <sup>7</sup>Be, <sup>8</sup>B, DSNB,...





# Cosmogenic backgrounds

- Avoid detector components exposure to cosmic rays
- Spallation reactions can produce long-lived isotopes





# Material screening and selection

- Ultra-low background HPGe detectors
- Purification and distillation of LXe
- Radon emanation facilities
- Surface contamination



#### Gator HPGe detector at LNGS



L. Baudis et al., JINST 6, 2011



# WIMP direct detection experiments



Heat

Ge, Si:
SuperCDMS
EDELWEISS

Charge

CaWO<sub>4:</sub> CRESST



Ge: CDEX

Si: DAMIC, SENSEI

C<sub>3</sub>F<sub>8</sub>, CF<sub>3</sub>I: PICO

CF<sub>4</sub>: DRIFT, DMTPC, MIMAC, NEWS

Nuclear recoil energy

Light

LXe: XMASS

LAr: DEAP-3600

CsI: KIMS

Nal: ANAIS

DAMA/LIBRA, COSINE, SABRE

LAr: ArDM, DarkSide, ARGO

LXe: XENON, LZ, PandaX, DARWIN



(not a complete list)

#### Kinematics and DM mass

- Light DM: nuclear recoil energy well below the threshold of most experiments
- Total energy in scattering: larger, and can induce inelastic atomic processes
   -> visible signals



## Present DM direct detection scenario



## Low mass searches - phonon detection at T ~ mK

- Sub-keV energy thresholds
- Probe sub-GeV particle masses
- Phonons and ionization or light; ionization

#### Super-CDMS nuclear recoils



**CRESST** 

**SENSEI** 

**EDELWEISS** 

**DAMIC** 

Super-CDMS











#### High mass searches – liquefied noble gases

- Single (liquid) and two-phase Ar & Xe detectors
- ► Two-phase: time projection chambers
  - 3D position resolution via light (S1) & charge (S2): fiducialisation
  - S2/S1 —> particle ID
  - Single (DM) versus multiple (bkgd) interactions



XMASS











#### The impressive evolution of LXe WIMP TPCs



## The XENON1T Experiment

- . 3.2 t LXe
- Largest LXe TPC ever operated: ~1m drift x ~1m diameter
- Most stringent exclusion limits for WIMP masses > 6 GeV/c²







# nuclear recoils and electronic recoils WIMP Searches Light DM

 Strongest limit on SI WIMP-nucleon cross sections > 6 GeV/c²

$$\sigma_{\rm SI} < 4.1 \times 10^{-47} {\rm cm}^2 {\rm at } 30 {\rm \, GeV/c}^2$$



XENON collaboration, PRL121 (2018) 111302

- Use charge signal (S2) only
- Achieve lower energy threshold (at the expense of higher backgrounds)



XENON collaboration, PRL 123 (2019) 251801

# XENON1T: an extremely sensitive system that allows for non-WIMP Physics

- pp solar neutrinos (ν e<sup>-</sup> scattering)
- 8B neutrinos (coherent v nucleus scattering)
- Supernova neutrinos
- Neutrinoless double beta decay in <sup>136</sup>Xe
- Double electron capture in <sup>124</sup>Xe
- Solar axions and axion-like particles (via axio-electric effect)
- Heavy sterile neutrinos (masses in the > 10 keV range)
- Bosonic SuperWIMPs (via absorption by Xe atoms)
- > ...





#### Neutrino less double beta decay

- Search for 0vββ-decay of  $^{136}Xe$ , at  $Q_{ββ}$ = 2.458 MeV
- Correct for signal saturation, determine event multiplicity, energy scale, resolution
- ► Achieved σ/E ~0.8%; 0vββ-decay data analysis and data/MC matching in progress



XENON collaboration, Eur. Phys. J. C 80 (2020) 785

#### Double electron capture

$$^{124}{\rm Xe} + 2{\rm e}^- \rightarrow ^{124}{\rm Te} + 2\nu_e$$



2 electrons are captured from the atomic shell



The 2 neutrinos leave the detectors unnoticed

X-rays with at ~ 64 keV are observed (Qvalue: 2.96 MeV)

De-excitation of the atom

 $\sigma/E = (4.1 \pm 0.4)\%$  at 64 keV

#### Double electron capture



longest half life ever measured directly





XENON collab., Nature 568, 2019

## XENON1T results: Light DM through Migdal effect

XENON collaboration, PRL 123 (2019) 241803

- Exploit the Migdal effect
- Sudden nuclear momentum change (with respect to e<sup>-</sup>) after NR
- Kinematic boost of e<sup>-</sup>





#### XENON1T results: Low energy excess

- ► Energy region: (1, 210) keV; background model good fit over most of the energy region; excess between (1,7) keV: number of observed events: 285, expected from background: (232±15) events
- ► Lowest background in history (1,30) keV: 76±2 events/(t y keV)



### XENON1T results: Low energy excess





... and many others since we made our result public.

(however in strong tension with stellar cooling constraints, see e.g. 2006.12487)

#### XENON1T results: Low energy excess

#### Considering a new type of background



- → less than 3 <sup>3</sup>H atoms per kg of Xe
- > cosmogenic production by Xe-spallation or H<sub>2</sub>O adsortion in walls
- > we can neither confirm nor exclude the Tritium hypothesis at this point

#### Axions vs. Tritium in XENONnT

#### Assuming that the excess persists and is from solar axions

How much data is needed to distinguish it from <sup>3</sup>H?





#### Future liquefied noble gases detectors

- About to start data taking
  - XENONnT
- In construction
  - LUX-ZEPLIN, DarkSide-20k, PandaX-4t
- Planned (design and R&D stage)
  - DARWIN (50 t LXe), ARGO (300 t LAr)



XENONnT: 8t LXe Data taking 2020



PandaX-4t LXe Data taking 2021



DarkSide: 20 t LAr Data taking 2021



LUX-ZEPLIN: 8 t LXe Data taking 2021





DARWIN: 50 t LXe Data taking ~2027

## How well do we expect to measure DM?

DM mass and cross section reconstruction for various masses (20, 100, 500 GeV/c²) and cross sections



1  $\sigma$  and 2  $\sigma$  confidence level regions, marginalized over astrophysical parameters

$$v_{esc} = 544 \pm 40 \text{ km/s}$$
  
 $v_0 = 220 \pm 20 \text{ km/s}$   
 $\rho_{\chi} = 0.3 \pm 0.1 \text{ GeV/cm}^3$ 

DARWIN collaboration, JCAP 1611 (2016) 017

#### Will directional information help?

- Yes, but mostly for low WIMP masses
- Several directional techniques currently in R&D phase
- Might be difficult to reach the 10<sup>-48</sup> 10<sup>-49</sup> cm<sup>2</sup> cross sections





367 t yr exposure, 500 events



P. Grothaus, M. Fairbairn, J. Monroe, Phys. Rev. D 90, 055018

#### Directional detectors

- Low-pressure (~0.1 atm) gas and nuclear emulsion detectors to measure the recoil direction (30° and 13° resolution), correlated to the galactic motion towards Cygnus
- Challenge: good angular resolution plus head/tails at 30-50 keV nuclear recoil
- CYGNUS aiming at converging the gas detectors efforts to a single consortium (He+SF<sub>6</sub>, 1000 m<sup>3</sup>)





DRIFT, Boulby Mine 1 m<sup>3</sup> prototype CS<sub>2</sub> + CF<sub>4</sub> gas



DMTPC, WIPP 1 m<sup>3</sup> prototype CF<sub>4</sub> gas



MIMAC, Modane 5l chamber CF<sub>4</sub> gas



NEWAGE, Kamioka 50 keV threshold CF<sub>4</sub> gas



NEWSdm, LNGS nuclear emulsion a few kg detector in preparation

#### Summary

- A variety of technologies employed for DM detection
- We have mostly learned what dark matter is not... we have been narrowing down the options; tremendous progress over the past decades, and expected for next
- Rich non-WIMP physics programme (neutrinos, axions/ALPs, dark photons, etc)
- Keep in mind that today's background might be tomorrow's signal!

