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Summary:

- Scalar-field dark matter.

- Steady state around a supermassive BH for a quartic self-interaction.

- Non-standard kinetic term.
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Figure 1. Visualization of possible solutions to the dark matter problem.
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Scalar-field models

For a mostly quadratic potential with small self-interactions:

simulations, which agree with the well-known Navarro-
Frenk-White (NFW) profile [87]. In fact, supermassive
BHs are expected to involve baryonic physics, as cooling
and dissipation allow baryons to fall into gravitational
potential wells. Nonequilibrium physics may also come
into play through the mergers of smaller BHs, whereas the
initial seeds could result from the remnants of massive stars
or the collapse of large gas clouds or of stellar clusters.
See, for instance, Ref. [88] for a recent review of scenarios
for the assembly of supermassive BHs. Similar baryonic
processes should also be present in scalar DM cosmologies;
hence, we expect supermassive BHs to form as well in these
scenarios.
Thus, in this paper, we investigate the smooth accretion

onto the supermassive BH after a solitonic halo profile has
formed on the galactic scale (similar to the NFW halo
profile for CDM scenarios). We find that outside the
Schwarzschild radius and close enough to the black hole
the scalar dynamics are described by a stationary solution
with nonvanishing flux. This corresponds to the infall of
dark matter into the central BH. Far away from the center,
the dynamics reproduce the static soliton behavior, with a
solution whose density is nearly constant in the core before
falling off rapidly towards zero [89]. This selects a unique
solution with constant flux and nearly vanishing velocity
far away from the BH, which is similar to the transonic
solution obtained for the hydrodynamic case. We find
typically that the lifetime of the soliton, despite the falling
of matter into the BH, is larger than the age of the Universe.
Moreover, the constraints on the density profile of dark
matter inferred from the stellar dynamics in the vicinity of
the central BH [90,91] are easily met.
This manuscript is arranged as follows. In Sec. II,

we describe the main equations of a generic model of
scalar DM within a Schwarzschild geometry, in both
isotropic coordinates (Sec. II A 2) and Eddington coordi-
nates (Sec. III D). In Sec. III, we analyze the main features
of the scalar DM solitons for the harmonic case. In Sec. IV,
we extend this analysis to the self-interacting case deter-
mined by a quartic term. In Sec. V, we derive the long
lifetime associated with the scalar-field soliton found in the
previous section. Finally, the main conclusions are sum-
marized in Sec. VI.

II. DARK MATTER SCALAR FIELD

A. Scalar-field action

The scalar-field action is

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

#
: ð1Þ

We also write the scalar-field potential as

VðϕÞ ¼ m2

2
ϕ2 þ VIðϕÞ; ð2Þ

where VI is the self-interaction potential. In this work, we
focus on the quartic self-interaction potential

VIðϕÞ ¼
λ4
4
ϕ4: ð3Þ

Such scalar fields can play the role of DM and build scalar
solitons, i.e., static profiles with a finite core, at the center
of galactic halos. These solitons can be the result of the
balance between the self-gravity of the scalar cloud and a
“quantum pressure” (due to the fact that the underlying
equations of motion are the Klein-Gordon equation, or the
Schrödinger equation in the nonrelativistic limit, rather
than the hydrodynamical Euler equation) or to a repulsive
self-interaction, associated with λ4 > 0. In this paper,
following our previous work [89], we focus on the large
scalar-mass limit

m ≫ 10−21 eV; ð4Þ

which ensures that the quantum pressure is negligible from
cosmological to galactic scales. Then, the galactic solitons
are due to the balance between gravity and the repulsive
self-interaction. In the large scalar-mass limit, the analysis
simplifies, and we can derive in the next sections explicit
expressions for the scalar-field profile and its inflow onto
the supermassive BH. Around a Schwarzschild BH, we
shall see below that the large-mass limit becomes defined
by the lower bound (40), which is somewhat larger than (4).

B. Schwarzschild metric

Close to the BH, the contribution from the scalar field is
negligible, and the metric is the standard Schwarzschild
metric [92,93]

ds2 ¼ −
$
1 −

rs
r̃

%
dt2 þ

$
1 −

rs
r̃

%−1
dr̃2 þ r̃2dΩ⃗2; ð5Þ

where r̃ is the Schwarzschild radial coordinate and rs ¼
2GM is the Schwarzschild radius of the BH of mass M.
Throughout this paper, we work in natural units with c ¼ 1.

C. Isotropic coordinates

We focus on spherically symmetric systems, as we
consider a spherical scalar cloud around a supermassive
Schwarzschild BH. To simplify the matching with the
Newtonian gauge at large scales, we work with the
isotropic radial coordinate r and the time t throughout
this paper, except in Secs. III D, IV F, and IVG. Then, the
static spherically symmetric metric can be written in the
isotropic form
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Background:
�̈+ 3H�̇+

dV

d�
= 0

V =
1

2
m2�2

H ⌧ m

̈ϕ̄þ 3H _̄ϕþm2ϕ̄þ dVI

dϕ
¼ 0; ð22Þ

whose solution can be written as a slowly varying defor-
mation of the harmonic oscillator,

ϕ̄ðtÞ ¼ φ̄ðtÞ cosðmt − S̄ðtÞÞ: ð23Þ

Notice the similarity with the ansatz (9) defining the
complex scalar field ψ . The amplitude of the scalar field
evolves in time and decreases with the scale factor

φ̄ ¼ φ̄0a−3=2; ð24Þ

while the phase evolves according to

S̄ðtÞ ¼ S̄0 −
Z

t

t0
dtmΦI

!
m2φ̄2

0

2a3

"
: ð25Þ

Hence, at the background level, the scalar field oscillates
harmonically at the leading order, with the high frequency
m given by the scalar mass. The Hubble expansion and the
self-interactions give rise to a slow decay of the amplitude
and to a phase shift. The power-law decay φ̄ ∝ a−3=2 shows
that the scalar-field energy density ρ̄ϕ ≃m2ϕ̄2=2 decreases
like a−3 and plays the role of a nonrelativistic dark-matter
component.

2. Nonrelativistic limit

Comparing the solution (23) with the nonrelativistic
decomposition (9), we can see that, at the background level,
the complex scalar field ψ̄ is

ψ̄ðtÞ ¼ ψ̄0a−3=2eiS̄; with ψ̄0 ¼
ffiffiffiffi
m
2

r
φ̄0 ¼

ffiffiffiffiffi
ρ̄0
m

r
: ð26Þ

We can check that the solution defined by ρ̄ ¼ ρ̄0=a3 and S̄
given by Eq. (25), which also can be written as

_̄S ¼ −
mΛ4a3

2ρ̄0

X∞

n¼2

λ2n
ð2nÞ!
ðn!Þ2

!
ρ̄0

2m2Λ2a3

"
n
; ð27Þ

is indeed the solution of the equations of motion derived
from the hydrodynamical action, which read

_̄S ¼ −m
dVI

dρ
; ð28Þ

_̄ρþ 3Hρ̄ ¼ 0: ð29Þ

Hence, at the background level, the evolution of the scalar
field given by the hydrodynamical equations reproduces the
full solution to the scalar-field equation (22).

III. TACHYONIC INSTABILITY FOR SMOOTH
SELF-INTERACTIONS

A. Polynomial self-interactions

In the first part of this paper, we consider the scenario
illustrated in Fig. 1, associated with slowly-varying self-
interaction potentials. For template, we take a low-order
polynomial case where we directly define the model at the
nonrelativistic level,

ΦI ¼ −c1
ρ
ρΛ

þ c2
ρ2

ρ2Λ
; VI ¼ −c1

ρ2

2ρΛ
þ c2

ρ3

3ρ2Λ
; ð30Þ

with ci > 0. This corresponds to

VIðϕÞ ¼ −
c1m4

3ρΛ
ϕ4 þ 2c2m6

15ρ2Λ
ϕ6: ð31Þ

FIG. 1. The main stages of the formation of scalar dark-matter clumps for the tachyonic scenario (31). Cosmic time grows from the left
column to the right column, and from the upper panel to the lower panel within each column. See the main text for explanations.
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the scalar field oscillates with frequency m,
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where the speed of sound squared becomes negative at low
background densities. We first use a perturbative approach
in Sec. III B, to follow the growth of the scalar-field density
perturbations. In Sec. III C, we study the stable isolated
scalar-field configurations that arise in such a model, i.e.,
the “solitons” that correspond to the final dark matter
clumps. We estimate in Sec. III D the efficiency of the
collisional aggregation of these scalar clouds, shortly after
their formation and before they are diluted by the expansion
of the Universe, and we check in Sec. III E that they do not
collapse to black holes. Then, in Sec. III F, we take into
account theoretical constraints to compute the parameter
space of this scenario. In Sec. III G we compute the scales
spanned by the scalar dark-matter clumps and in Sec. III H
we check that they are far beyond the reach of microlensing
observations.
Next, in Sec. IV, we present a different mechanism for

clump formation, associated with a parametric resonance.
We take as an example a Lagrangian inspired from axion
monodromy, where a dominant mass term is corrected by a
subleading cosine term. The parametric resonance then
arises from the interplay between this oscillating self-
interaction term, the quantum pressure, and the kinetic
terms of the scalar field. We again describe the perturbative
growth of the scalar-field density fluctuations and the stable
solitons that can arise. We also compute the parameter
space of this second scenario and the size of the scalar
clumps. Again, we check that they do not collapse into
black holes and are much below the observational threshold
of microlensing observations.
We present our main conclusions in Sec. V. We finally

complete our discussion with different Appendices on
thermodynamical phase transitions, parametric resonance,
and soliton profiles.

II. CLASSICAL FIELDS AND THEIR
NONRELATIVISTIC LIMIT

A. Classicality

In the following, we shall be interested in models of
scalar dark matter where the dark-matter field can be
described classically. This is a reasonable approximation
for the quantum field ϕ, whose nonrelativistic behavior will
give rise to dark matter, if the occupation number N of the
associated quantum state is very large. Denoting by ρ the
energy density of the field and by n ¼ ρ=m the number
density, where m is the mass of the scalar, the occupation
number can be estimated as [48]

N ≃
ρ
m
λ3dB; λdB ¼ 2π

mv
; ð1Þ

where λdB is the de Broglie wavelength of the scalar
particles associated to ϕ. Here v is their typical velocity.
This gives the condition for classicality

N ∼
ρ

m4v3
≫ 1: ð2Þ

We can envisage two types of situations. In the first one,
the energy density of the scalar field is nearly homo-
geneously distributed in the Universe and behaves like
ρ ≃ ρ0=a3, where ρ0 is the present dark-matter density in
the Universe. Inside large-scale inhomogeneities such as
galaxy halos, the typical velocity of dark-matter particles v0
is small and the classical regime is attained when

m4v30 ≪ ρ0 ∼ 10−48 GeV4; ð3Þ

where we consider low redshifts in the matter era. As we
expect v0 ≃ 10−3, this is the case when

cosmological inhomogeneities only∶ m ≪ 0.1 eV: ð4Þ

In this mass range the field can be treated classically. This
also applies at higher redshifts, as ρ ∝ a−3 and typically
v ∼ a−1 because of the expansion of the Universe.
Another scenario is the one that we consider in this

paper: dark matter is made of scalar-field clumps created in
the radiation era and forming a bound state of dark-matter
fluid. Then, in a fashion similar to primordial black holes,
these clumps play the role of dark matter particles and
behave at late times as in standard CDM cosmologies. In
this case, the density ρ is large inside the clumps, reflecting
the large energy densities at the time of their formation, and
the velocity is negligible as these clumps are equilibrium
configurations. Hence, for such clumpsN will be very large
and we can treat ϕ as a classical field. In fact, the
classicality condition (2) will provide a self-consistency
constraint on the parameter space of the scenarios we study
in this paper.

B. Equations of motion

We focus on scalar-field models characterized by canoni-
cal kinetic terms and an interaction potential VIðϕÞ. Thus,
they are governed by the action

S½ϕ% ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

#
; ð5Þ

with

VðϕÞ ¼ 1

2
m2ϕ2 þ VIðϕÞ: ð6Þ

In this paper, we restrict our study to the nonrelativistic
regime, when the self-interactions are small as compared
with the quadratic part,

VI ≪
1

2
m2ϕ2: ð7Þ
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density, where m is the mass of the scalar, the occupation
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N ≃
ρ
m
λ3dB; λdB ¼ 2π

mv
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where λdB is the de Broglie wavelength of the scalar
particles associated to ϕ. Here v is their typical velocity.
This gives the condition for classicality

N ∼
ρ

m4v3
≫ 1: ð2Þ

We can envisage two types of situations. In the first one,
the energy density of the scalar field is nearly homo-
geneously distributed in the Universe and behaves like
ρ ≃ ρ0=a3, where ρ0 is the present dark-matter density in
the Universe. Inside large-scale inhomogeneities such as
galaxy halos, the typical velocity of dark-matter particles v0
is small and the classical regime is attained when

m4v30 ≪ ρ0 ∼ 10−48 GeV4; ð3Þ

where we consider low redshifts in the matter era. As we
expect v0 ≃ 10−3, this is the case when

cosmological inhomogeneities only∶ m ≪ 0.1 eV: ð4Þ

In this mass range the field can be treated classically. This
also applies at higher redshifts, as ρ ∝ a−3 and typically
v ∼ a−1 because of the expansion of the Universe.
Another scenario is the one that we consider in this

paper: dark matter is made of scalar-field clumps created in
the radiation era and forming a bound state of dark-matter
fluid. Then, in a fashion similar to primordial black holes,
these clumps play the role of dark matter particles and
behave at late times as in standard CDM cosmologies. In
this case, the density ρ is large inside the clumps, reflecting
the large energy densities at the time of their formation, and
the velocity is negligible as these clumps are equilibrium
configurations. Hence, for such clumpsN will be very large
and we can treat ϕ as a classical field. In fact, the
classicality condition (2) will provide a self-consistency
constraint on the parameter space of the scenarios we study
in this paper.

B. Equations of motion

We focus on scalar-field models characterized by canoni-
cal kinetic terms and an interaction potential VIðϕÞ. Thus,
they are governed by the action

S½ϕ% ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

#
; ð5Þ

with

VðϕÞ ¼ 1

2
m2ϕ2 þ VIðϕÞ: ð6Þ

In this paper, we restrict our study to the nonrelativistic
regime, when the self-interactions are small as compared
with the quadratic part,

VI ≪
1

2
m2ϕ2: ð7Þ
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̈ϕ̄þ 3H _̄ϕþm2ϕ̄þ dVI

dϕ
¼ 0; ð22Þ

whose solution can be written as a slowly varying defor-
mation of the harmonic oscillator,

ϕ̄ðtÞ ¼ φ̄ðtÞ cosðmt − S̄ðtÞÞ: ð23Þ

Notice the similarity with the ansatz (9) defining the
complex scalar field ψ . The amplitude of the scalar field
evolves in time and decreases with the scale factor

φ̄ ¼ φ̄0a−3=2; ð24Þ

while the phase evolves according to

S̄ðtÞ ¼ S̄0 −
Z

t

t0
dtmΦI

!
m2φ̄2

0

2a3

"
: ð25Þ

Hence, at the background level, the scalar field oscillates
harmonically at the leading order, with the high frequency
m given by the scalar mass. The Hubble expansion and the
self-interactions give rise to a slow decay of the amplitude
and to a phase shift. The power-law decay φ̄ ∝ a−3=2 shows
that the scalar-field energy density ρ̄ϕ ≃m2ϕ̄2=2 decreases
like a−3 and plays the role of a nonrelativistic dark-matter
component.

2. Nonrelativistic limit

Comparing the solution (23) with the nonrelativistic
decomposition (9), we can see that, at the background level,
the complex scalar field ψ̄ is

ψ̄ðtÞ ¼ ψ̄0a−3=2eiS̄; with ψ̄0 ¼
ffiffiffiffi
m
2

r
φ̄0 ¼

ffiffiffiffiffi
ρ̄0
m

r
: ð26Þ

We can check that the solution defined by ρ̄ ¼ ρ̄0=a3 and S̄
given by Eq. (25), which also can be written as

_̄S ¼ −
mΛ4a3

2ρ̄0

X∞

n¼2

λ2n
ð2nÞ!
ðn!Þ2

!
ρ̄0

2m2Λ2a3

"
n
; ð27Þ

is indeed the solution of the equations of motion derived
from the hydrodynamical action, which read

_̄S ¼ −m
dVI

dρ
; ð28Þ

_̄ρþ 3Hρ̄ ¼ 0: ð29Þ

Hence, at the background level, the evolution of the scalar
field given by the hydrodynamical equations reproduces the
full solution to the scalar-field equation (22).

III. TACHYONIC INSTABILITY FOR SMOOTH
SELF-INTERACTIONS

A. Polynomial self-interactions

In the first part of this paper, we consider the scenario
illustrated in Fig. 1, associated with slowly-varying self-
interaction potentials. For template, we take a low-order
polynomial case where we directly define the model at the
nonrelativistic level,

ΦI ¼ −c1
ρ
ρΛ

þ c2
ρ2

ρ2Λ
; VI ¼ −c1

ρ2

2ρΛ
þ c2

ρ3

3ρ2Λ
; ð30Þ

with ci > 0. This corresponds to

VIðϕÞ ¼ −
c1m4

3ρΛ
ϕ4 þ 2c2m6

15ρ2Λ
ϕ6: ð31Þ

FIG. 1. The main stages of the formation of scalar dark-matter clumps for the tachyonic scenario (31). Cosmic time grows from the left
column to the right column, and from the upper panel to the lower panel within each column. See the main text for explanations.

BRAX, VALAGEAS, and CEMBRANOS PHYS. REV. D 102, 083012 (2020)

083012-6
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m
2

r
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ffiffiffiffiffi
ρ̄0
m

r
: ð26Þ

We can check that the solution defined by ρ̄ ¼ ρ̄0=a3 and S̄
given by Eq. (25), which also can be written as

_̄S ¼ −
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2ρ̄0

X∞
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from the hydrodynamical action, which read

_̄S ¼ −m
dVI
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full solution to the scalar-field equation (22).
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polynomial case where we directly define the model at the
nonrelativistic level,
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FIG. 1. The main stages of the formation of scalar dark-matter clumps for the tachyonic scenario (31). Cosmic time grows from the left
column to the right column, and from the upper panel to the lower panel within each column. See the main text for explanations.

BRAX, VALAGEAS, and CEMBRANOS PHYS. REV. D 102, 083012 (2020)

083012-6

̈ϕ̄þ 3H _̄ϕþm2ϕ̄þ dVI

dϕ
¼ 0; ð22Þ

whose solution can be written as a slowly varying defor-
mation of the harmonic oscillator,

ϕ̄ðtÞ ¼ φ̄ðtÞ cosðmt − S̄ðtÞÞ: ð23Þ
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while the phase evolves according to
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and to a phase shift. The power-law decay φ̄ ∝ a−3=2 shows
that the scalar-field energy density ρ̄ϕ ≃m2ϕ̄2=2 decreases
like a−3 and plays the role of a nonrelativistic dark-matter
component.

2. Nonrelativistic limit

Comparing the solution (23) with the nonrelativistic
decomposition (9), we can see that, at the background level,
the complex scalar field ψ̄ is

ψ̄ðtÞ ¼ ψ̄0a−3=2eiS̄; with ψ̄0 ¼
ffiffiffiffi
m
2

r
φ̄0 ¼

ffiffiffiffiffi
ρ̄0
m

r
: ð26Þ

We can check that the solution defined by ρ̄ ¼ ρ̄0=a3 and S̄
given by Eq. (25), which also can be written as

_̄S ¼ −
mΛ4a3

2ρ̄0

X∞

n¼2

λ2n
ð2nÞ!
ðn!Þ2

!
ρ̄0

2m2Λ2a3

"
n
; ð27Þ

is indeed the solution of the equations of motion derived
from the hydrodynamical action, which read

_̄S ¼ −m
dVI

dρ
; ð28Þ

_̄ρþ 3Hρ̄ ¼ 0: ð29Þ

Hence, at the background level, the evolution of the scalar
field given by the hydrodynamical equations reproduces the
full solution to the scalar-field equation (22).

III. TACHYONIC INSTABILITY FOR SMOOTH
SELF-INTERACTIONS

A. Polynomial self-interactions

In the first part of this paper, we consider the scenario
illustrated in Fig. 1, associated with slowly-varying self-
interaction potentials. For template, we take a low-order
polynomial case where we directly define the model at the
nonrelativistic level,

ΦI ¼ −c1
ρ
ρΛ

þ c2
ρ2

ρ2Λ
; VI ¼ −c1

ρ2

2ρΛ
þ c2

ρ3

3ρ2Λ
; ð30Þ

with ci > 0. This corresponds to

VIðϕÞ ¼ −
c1m4

3ρΛ
ϕ4 þ 2c2m6

15ρ2Λ
ϕ6: ð31Þ

FIG. 1. The main stages of the formation of scalar dark-matter clumps for the tachyonic scenario (31). Cosmic time grows from the left
column to the right column, and from the upper panel to the lower panel within each column. See the main text for explanations.
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Galactic-scale solitons:

On the scale of the galactic halo we are in the nonrelativistic regime: the frequencies and wave 
numbers of interest are much smaller than      and the metric fluctuations are small.m

At linear order in the gravitational potential Φ and for
m ≫ H, where H is the Hubble expansion rate, the
equation of motion of the real scalar field ϕ in a perturbed
Friedmann-Lemaître-Robertson-Walker universe (FLRW)
is

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕþ ð1þ 2ΦÞm2ϕþ dVI

dϕ
¼ 0; ð8Þ

where a is the scale factor of the Universe, normalized to
unity now. As we are interested in the classical behavior of
the field ϕ in the nonrelativistic limit, it is convenient to
decompose

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðψe−imt þ ψ⋆eimtÞ; ð9Þ

when the spatial and time variations of ψ are small
compared to m. This ansatz emphasizes the fact that the
scalar field oscillates with a pulsation m as the quadratic
terms in the scalar field action (5) dominate, following (7).
From this we can deduce the equation of motion of the
nonrelativistic complex scalar field ψ ,

i
"
_ψ þ 3

2
Hψ

#
¼ −

∇2ψ
2ma2

þmΦψ þ ∂VI

∂ψ⋆ ; ð10Þ

which is a nonlinear version of the Schrödinger equation.
Here we introduced the effective nonrelativistic self-inter-
action potential VIðψ ;ψ⋆Þ, which is obtained from VI by
averaging over the leading oscillations e%imt of ϕ. For
polynomial self-interactions, or analytic potentials that can
be defined by their Taylor expansion, with

VIðϕÞ ¼ Λ4
X

p≥3

λp
p

"
ϕ
Λ

#
p
; ð11Þ

one obtains [33]

VIðψ ;ψ⋆Þ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ψψ⋆

2mΛ2

#
p
: ð12Þ

It is convenient to introduce the Madelüng transform [49]

ψ ¼
ffiffiffiffi
ρ
m

r
eiS: ð13Þ

This defines the effective density field ρ, which coincides
with the scalar-field energy density in this nonrelativistic
limit. The phase S defines an effective curl-free velocity
field v⃗,

v⃗ ¼ ∇⃗S
ma

: ð14Þ

Then, the equations of motion take a familiar form, i.e., the
one of hydrodynamics [39]. The real part of the nonlinear
Schrödinger equation gives the continuity equation

_ρþ 3Hρþ 1

a
∇ · ðρv⃗Þ ¼ 0: ð15Þ

We can see that the self-interactions due to VI do not
modify this continuity equation. The imaginary part of the
nonlinear Schrödinger equation becomes the Hamilton-
Jacobi relation

_Sþ ð∇SÞ2

2ma2
¼ −mΦ −m

dVI

dρ
þ 1

2ma2
∇2 ffiffiffi

ρ
p
ffiffiffi
ρ

p ; ð16Þ

where the nonrelativistic self-interaction potential VIðρÞ is
directly obtained from VIðψ ;ψ⋆Þ in Eq. (12) with
ψψ⋆ ¼ ρ=m,

VIðρÞ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ρ

2m2Λ2

#
p
: ð17Þ

Then, taking the gradient of Eq. (16) gives the hydrody-
namical Euler equation,

_v⃗þHv⃗þ 1

a
ðv⃗ ·∇Þv⃗ ¼ −

1

a
∇ðΦþΦI þΦQÞ; ð18Þ

where we used ∇ðv⃗2Þ ¼ 2ðv⃗ ·∇Þv⃗ as ∇ × v⃗ ¼ 0. The self-
interaction potential ΦIðρÞ is defined by

ΦIðρÞ ¼
dVI

dρ
; ð19Þ

and we have introduced the “quantum pressure” term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2a2
ffiffiffi
ρ

p : ð20Þ

The continuity equation and the Euler equation will show
unstable solutions in the examples we consider in this
article, because of attractive self-interactions ΦI at low
densities. This description is valid provided the nonlinear
terms are small compared to the quadratic terms in the
original action, as in (7). This translates into the conditions

VI ≪ ρ; hence ΦI ≪ 1: ð21Þ

C. Cosmological background

1. Real scalar field ϕ

We now restrict our attention to the cosmological
background, where the scalar field ϕ̄ only depends on
time. The corresponding equation of motion is
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Decompose the real scalar field      in terms of the complex scalar field�  

factorizes (removes) the fast oscillations of frequency m

 ̇ ⌧ m , r ⌧ m 

 (x, t) evolves slowly, on astrophysical or cosmological scales.

Instead of the Klein-Gordon eq., it obeys the Schrödinger eq.:

At linear order in the gravitational potential Φ and for
m ≫ H, where H is the Hubble expansion rate, the
equation of motion of the real scalar field ϕ in a perturbed
Friedmann-Lemaître-Robertson-Walker universe (FLRW)
is

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕþ ð1þ 2ΦÞm2ϕþ dVI

dϕ
¼ 0; ð8Þ

where a is the scale factor of the Universe, normalized to
unity now. As we are interested in the classical behavior of
the field ϕ in the nonrelativistic limit, it is convenient to
decompose

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðψe−imt þ ψ⋆eimtÞ; ð9Þ

when the spatial and time variations of ψ are small
compared to m. This ansatz emphasizes the fact that the
scalar field oscillates with a pulsation m as the quadratic
terms in the scalar field action (5) dominate, following (7).
From this we can deduce the equation of motion of the
nonrelativistic complex scalar field ψ ,

i
"
_ψ þ 3

2
Hψ

#
¼ −

∇2ψ
2ma2

þmΦψ þ ∂VI

∂ψ⋆ ; ð10Þ

which is a nonlinear version of the Schrödinger equation.
Here we introduced the effective nonrelativistic self-inter-
action potential VIðψ ;ψ⋆Þ, which is obtained from VI by
averaging over the leading oscillations e%imt of ϕ. For
polynomial self-interactions, or analytic potentials that can
be defined by their Taylor expansion, with

VIðϕÞ ¼ Λ4
X

p≥3

λp
p

"
ϕ
Λ

#
p
; ð11Þ

one obtains [33]

VIðψ ;ψ⋆Þ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ψψ⋆

2mΛ2

#
p
: ð12Þ

It is convenient to introduce the Madelüng transform [49]

ψ ¼
ffiffiffiffi
ρ
m

r
eiS: ð13Þ

This defines the effective density field ρ, which coincides
with the scalar-field energy density in this nonrelativistic
limit. The phase S defines an effective curl-free velocity
field v⃗,

v⃗ ¼ ∇⃗S
ma

: ð14Þ

Then, the equations of motion take a familiar form, i.e., the
one of hydrodynamics [39]. The real part of the nonlinear
Schrödinger equation gives the continuity equation

_ρþ 3Hρþ 1

a
∇ · ðρv⃗Þ ¼ 0: ð15Þ

We can see that the self-interactions due to VI do not
modify this continuity equation. The imaginary part of the
nonlinear Schrödinger equation becomes the Hamilton-
Jacobi relation

_Sþ ð∇SÞ2

2ma2
¼ −mΦ −m

dVI

dρ
þ 1

2ma2
∇2 ffiffiffi

ρ
p
ffiffiffi
ρ

p ; ð16Þ

where the nonrelativistic self-interaction potential VIðρÞ is
directly obtained from VIðψ ;ψ⋆Þ in Eq. (12) with
ψψ⋆ ¼ ρ=m,

VIðρÞ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ρ

2m2Λ2

#
p
: ð17Þ

Then, taking the gradient of Eq. (16) gives the hydrody-
namical Euler equation,

_v⃗þHv⃗þ 1

a
ðv⃗ ·∇Þv⃗ ¼ −

1

a
∇ðΦþΦI þΦQÞ; ð18Þ

where we used ∇ðv⃗2Þ ¼ 2ðv⃗ ·∇Þv⃗ as ∇ × v⃗ ¼ 0. The self-
interaction potential ΦIðρÞ is defined by

ΦIðρÞ ¼
dVI

dρ
; ð19Þ

and we have introduced the “quantum pressure” term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2a2
ffiffiffi
ρ

p : ð20Þ

The continuity equation and the Euler equation will show
unstable solutions in the examples we consider in this
article, because of attractive self-interactions ΦI at low
densities. This description is valid provided the nonlinear
terms are small compared to the quadratic terms in the
original action, as in (7). This translates into the conditions

VI ≪ ρ; hence ΦI ≪ 1: ð21Þ

C. Cosmological background

1. Real scalar field ϕ

We now restrict our attention to the cosmological
background, where the scalar field ϕ̄ only depends on
time. The corresponding equation of motion is
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Newtonian 
gravitational 

potential

self-interactions

At linear order in the gravitational potential Φ and for
m ≫ H, where H is the Hubble expansion rate, the
equation of motion of the real scalar field ϕ in a perturbed
Friedmann-Lemaître-Robertson-Walker universe (FLRW)
is

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕþ ð1þ 2ΦÞm2ϕþ dVI

dϕ
¼ 0; ð8Þ

where a is the scale factor of the Universe, normalized to
unity now. As we are interested in the classical behavior of
the field ϕ in the nonrelativistic limit, it is convenient to
decompose

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðψe−imt þ ψ⋆eimtÞ; ð9Þ

when the spatial and time variations of ψ are small
compared to m. This ansatz emphasizes the fact that the
scalar field oscillates with a pulsation m as the quadratic
terms in the scalar field action (5) dominate, following (7).
From this we can deduce the equation of motion of the
nonrelativistic complex scalar field ψ ,

i
"
_ψ þ 3

2
Hψ

#
¼ −

∇2ψ
2ma2

þmΦψ þ ∂VI

∂ψ⋆ ; ð10Þ

which is a nonlinear version of the Schrödinger equation.
Here we introduced the effective nonrelativistic self-inter-
action potential VIðψ ;ψ⋆Þ, which is obtained from VI by
averaging over the leading oscillations e%imt of ϕ. For
polynomial self-interactions, or analytic potentials that can
be defined by their Taylor expansion, with

VIðϕÞ ¼ Λ4
X

p≥3

λp
p

"
ϕ
Λ

#
p
; ð11Þ

one obtains [33]

VIðψ ;ψ⋆Þ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ψψ⋆

2mΛ2

#
p
: ð12Þ

It is convenient to introduce the Madelüng transform [49]

ψ ¼
ffiffiffiffi
ρ
m

r
eiS: ð13Þ

This defines the effective density field ρ, which coincides
with the scalar-field energy density in this nonrelativistic
limit. The phase S defines an effective curl-free velocity
field v⃗,

v⃗ ¼ ∇⃗S
ma

: ð14Þ

Then, the equations of motion take a familiar form, i.e., the
one of hydrodynamics [39]. The real part of the nonlinear
Schrödinger equation gives the continuity equation

_ρþ 3Hρþ 1

a
∇ · ðρv⃗Þ ¼ 0: ð15Þ

We can see that the self-interactions due to VI do not
modify this continuity equation. The imaginary part of the
nonlinear Schrödinger equation becomes the Hamilton-
Jacobi relation

_Sþ ð∇SÞ2

2ma2
¼ −mΦ −m

dVI

dρ
þ 1

2ma2
∇2 ffiffiffi

ρ
p
ffiffiffi
ρ

p ; ð16Þ

where the nonrelativistic self-interaction potential VIðρÞ is
directly obtained from VIðψ ;ψ⋆Þ in Eq. (12) with
ψψ⋆ ¼ ρ=m,

VIðρÞ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ρ

2m2Λ2

#
p
: ð17Þ

Then, taking the gradient of Eq. (16) gives the hydrody-
namical Euler equation,

_v⃗þHv⃗þ 1

a
ðv⃗ ·∇Þv⃗ ¼ −

1

a
∇ðΦþΦI þΦQÞ; ð18Þ

where we used ∇ðv⃗2Þ ¼ 2ðv⃗ ·∇Þv⃗ as ∇ × v⃗ ¼ 0. The self-
interaction potential ΦIðρÞ is defined by

ΦIðρÞ ¼
dVI

dρ
; ð19Þ

and we have introduced the “quantum pressure” term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2a2
ffiffiffi
ρ

p : ð20Þ

The continuity equation and the Euler equation will show
unstable solutions in the examples we consider in this
article, because of attractive self-interactions ΦI at low
densities. This description is valid provided the nonlinear
terms are small compared to the quadratic terms in the
original action, as in (7). This translates into the conditions

VI ≪ ρ; hence ΦI ≪ 1: ð21Þ

C. Cosmological background

1. Real scalar field ϕ

We now restrict our attention to the cosmological
background, where the scalar field ϕ̄ only depends on
time. The corresponding equation of motion is
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At linear order in the gravitational potential Φ and for
m ≫ H, where H is the Hubble expansion rate, the
equation of motion of the real scalar field ϕ in a perturbed
Friedmann-Lemaître-Robertson-Walker universe (FLRW)
is

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕþ ð1þ 2ΦÞm2ϕþ dVI

dϕ
¼ 0; ð8Þ

where a is the scale factor of the Universe, normalized to
unity now. As we are interested in the classical behavior of
the field ϕ in the nonrelativistic limit, it is convenient to
decompose

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðψe−imt þ ψ⋆eimtÞ; ð9Þ

when the spatial and time variations of ψ are small
compared to m. This ansatz emphasizes the fact that the
scalar field oscillates with a pulsation m as the quadratic
terms in the scalar field action (5) dominate, following (7).
From this we can deduce the equation of motion of the
nonrelativistic complex scalar field ψ ,

i
"
_ψ þ 3

2
Hψ

#
¼ −

∇2ψ
2ma2

þmΦψ þ ∂VI

∂ψ⋆ ; ð10Þ

which is a nonlinear version of the Schrödinger equation.
Here we introduced the effective nonrelativistic self-inter-
action potential VIðψ ;ψ⋆Þ, which is obtained from VI by
averaging over the leading oscillations e%imt of ϕ. For
polynomial self-interactions, or analytic potentials that can
be defined by their Taylor expansion, with

VIðϕÞ ¼ Λ4
X

p≥3

λp
p

"
ϕ
Λ

#
p
; ð11Þ

one obtains [33]

VIðψ ;ψ⋆Þ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ψψ⋆

2mΛ2

#
p
: ð12Þ

It is convenient to introduce the Madelüng transform [49]

ψ ¼
ffiffiffiffi
ρ
m

r
eiS: ð13Þ

This defines the effective density field ρ, which coincides
with the scalar-field energy density in this nonrelativistic
limit. The phase S defines an effective curl-free velocity
field v⃗,

v⃗ ¼ ∇⃗S
ma

: ð14Þ

Then, the equations of motion take a familiar form, i.e., the
one of hydrodynamics [39]. The real part of the nonlinear
Schrödinger equation gives the continuity equation

_ρþ 3Hρþ 1

a
∇ · ðρv⃗Þ ¼ 0: ð15Þ

We can see that the self-interactions due to VI do not
modify this continuity equation. The imaginary part of the
nonlinear Schrödinger equation becomes the Hamilton-
Jacobi relation

_Sþ ð∇SÞ2

2ma2
¼ −mΦ −m

dVI

dρ
þ 1

2ma2
∇2 ffiffiffi

ρ
p
ffiffiffi
ρ

p ; ð16Þ

where the nonrelativistic self-interaction potential VIðρÞ is
directly obtained from VIðψ ;ψ⋆Þ in Eq. (12) with
ψψ⋆ ¼ ρ=m,

VIðρÞ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ρ

2m2Λ2

#
p
: ð17Þ

Then, taking the gradient of Eq. (16) gives the hydrody-
namical Euler equation,

_v⃗þHv⃗þ 1

a
ðv⃗ ·∇Þv⃗ ¼ −

1

a
∇ðΦþΦI þΦQÞ; ð18Þ

where we used ∇ðv⃗2Þ ¼ 2ðv⃗ ·∇Þv⃗ as ∇ × v⃗ ¼ 0. The self-
interaction potential ΦIðρÞ is defined by

ΦIðρÞ ¼
dVI

dρ
; ð19Þ

and we have introduced the “quantum pressure” term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2a2
ffiffiffi
ρ

p : ð20Þ

The continuity equation and the Euler equation will show
unstable solutions in the examples we consider in this
article, because of attractive self-interactions ΦI at low
densities. This description is valid provided the nonlinear
terms are small compared to the quadratic terms in the
original action, as in (7). This translates into the conditions

VI ≪ ρ; hence ΦI ≪ 1: ð21Þ

C. Cosmological background

1. Real scalar field ϕ

We now restrict our attention to the cosmological
background, where the scalar field ϕ̄ only depends on
time. The corresponding equation of motion is
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At linear order in the gravitational potential Φ and for
m ≫ H, where H is the Hubble expansion rate, the
equation of motion of the real scalar field ϕ in a perturbed
Friedmann-Lemaître-Robertson-Walker universe (FLRW)
is

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕþ ð1þ 2ΦÞm2ϕþ dVI

dϕ
¼ 0; ð8Þ

where a is the scale factor of the Universe, normalized to
unity now. As we are interested in the classical behavior of
the field ϕ in the nonrelativistic limit, it is convenient to
decompose

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðψe−imt þ ψ⋆eimtÞ; ð9Þ

when the spatial and time variations of ψ are small
compared to m. This ansatz emphasizes the fact that the
scalar field oscillates with a pulsation m as the quadratic
terms in the scalar field action (5) dominate, following (7).
From this we can deduce the equation of motion of the
nonrelativistic complex scalar field ψ ,

i
"
_ψ þ 3

2
Hψ

#
¼ −

∇2ψ
2ma2

þmΦψ þ ∂VI

∂ψ⋆ ; ð10Þ

which is a nonlinear version of the Schrödinger equation.
Here we introduced the effective nonrelativistic self-inter-
action potential VIðψ ;ψ⋆Þ, which is obtained from VI by
averaging over the leading oscillations e%imt of ϕ. For
polynomial self-interactions, or analytic potentials that can
be defined by their Taylor expansion, with

VIðϕÞ ¼ Λ4
X

p≥3

λp
p

"
ϕ
Λ

#
p
; ð11Þ

one obtains [33]

VIðψ ;ψ⋆Þ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ψψ⋆

2mΛ2

#
p
: ð12Þ

It is convenient to introduce the Madelüng transform [49]

ψ ¼
ffiffiffiffi
ρ
m

r
eiS: ð13Þ

This defines the effective density field ρ, which coincides
with the scalar-field energy density in this nonrelativistic
limit. The phase S defines an effective curl-free velocity
field v⃗,

v⃗ ¼ ∇⃗S
ma

: ð14Þ

Then, the equations of motion take a familiar form, i.e., the
one of hydrodynamics [39]. The real part of the nonlinear
Schrödinger equation gives the continuity equation

_ρþ 3Hρþ 1

a
∇ · ðρv⃗Þ ¼ 0: ð15Þ

We can see that the self-interactions due to VI do not
modify this continuity equation. The imaginary part of the
nonlinear Schrödinger equation becomes the Hamilton-
Jacobi relation

_Sþ ð∇SÞ2

2ma2
¼ −mΦ −m

dVI

dρ
þ 1

2ma2
∇2 ffiffiffi

ρ
p
ffiffiffi
ρ

p ; ð16Þ

where the nonrelativistic self-interaction potential VIðρÞ is
directly obtained from VIðψ ;ψ⋆Þ in Eq. (12) with
ψψ⋆ ¼ ρ=m,

VIðρÞ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ρ

2m2Λ2

#
p
: ð17Þ

Then, taking the gradient of Eq. (16) gives the hydrody-
namical Euler equation,

_v⃗þHv⃗þ 1

a
ðv⃗ ·∇Þv⃗ ¼ −

1

a
∇ðΦþΦI þΦQÞ; ð18Þ

where we used ∇ðv⃗2Þ ¼ 2ðv⃗ ·∇Þv⃗ as ∇ × v⃗ ¼ 0. The self-
interaction potential ΦIðρÞ is defined by

ΦIðρÞ ¼
dVI

dρ
; ð19Þ

and we have introduced the “quantum pressure” term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2a2
ffiffiffi
ρ

p : ð20Þ

The continuity equation and the Euler equation will show
unstable solutions in the examples we consider in this
article, because of attractive self-interactions ΦI at low
densities. This description is valid provided the nonlinear
terms are small compared to the quadratic terms in the
original action, as in (7). This translates into the conditions

VI ≪ ρ; hence ΦI ≪ 1: ð21Þ

C. Cosmological background

1. Real scalar field ϕ

We now restrict our attention to the cosmological
background, where the scalar field ϕ̄ only depends on
time. The corresponding equation of motion is
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At linear order in the gravitational potential Φ and for
m ≫ H, where H is the Hubble expansion rate, the
equation of motion of the real scalar field ϕ in a perturbed
Friedmann-Lemaître-Robertson-Walker universe (FLRW)
is

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕþ ð1þ 2ΦÞm2ϕþ dVI

dϕ
¼ 0; ð8Þ

where a is the scale factor of the Universe, normalized to
unity now. As we are interested in the classical behavior of
the field ϕ in the nonrelativistic limit, it is convenient to
decompose

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðψe−imt þ ψ⋆eimtÞ; ð9Þ

when the spatial and time variations of ψ are small
compared to m. This ansatz emphasizes the fact that the
scalar field oscillates with a pulsation m as the quadratic
terms in the scalar field action (5) dominate, following (7).
From this we can deduce the equation of motion of the
nonrelativistic complex scalar field ψ ,

i
"
_ψ þ 3

2
Hψ

#
¼ −

∇2ψ
2ma2

þmΦψ þ ∂VI

∂ψ⋆ ; ð10Þ

which is a nonlinear version of the Schrödinger equation.
Here we introduced the effective nonrelativistic self-inter-
action potential VIðψ ;ψ⋆Þ, which is obtained from VI by
averaging over the leading oscillations e%imt of ϕ. For
polynomial self-interactions, or analytic potentials that can
be defined by their Taylor expansion, with
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one obtains [33]
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It is convenient to introduce the Madelüng transform [49]

ψ ¼
ffiffiffiffi
ρ
m

r
eiS: ð13Þ

This defines the effective density field ρ, which coincides
with the scalar-field energy density in this nonrelativistic
limit. The phase S defines an effective curl-free velocity
field v⃗,

v⃗ ¼ ∇⃗S
ma

: ð14Þ

Then, the equations of motion take a familiar form, i.e., the
one of hydrodynamics [39]. The real part of the nonlinear
Schrödinger equation gives the continuity equation

_ρþ 3Hρþ 1

a
∇ · ðρv⃗Þ ¼ 0: ð15Þ

We can see that the self-interactions due to VI do not
modify this continuity equation. The imaginary part of the
nonlinear Schrödinger equation becomes the Hamilton-
Jacobi relation
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where the nonrelativistic self-interaction potential VIðρÞ is
directly obtained from VIðψ ;ψ⋆Þ in Eq. (12) with
ψψ⋆ ¼ ρ=m,
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Then, taking the gradient of Eq. (16) gives the hydrody-
namical Euler equation,

_v⃗þHv⃗þ 1
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ðv⃗ ·∇Þv⃗ ¼ −
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a
∇ðΦþΦI þΦQÞ; ð18Þ

where we used ∇ðv⃗2Þ ¼ 2ðv⃗ ·∇Þv⃗ as ∇ × v⃗ ¼ 0. The self-
interaction potential ΦIðρÞ is defined by

ΦIðρÞ ¼
dVI

dρ
; ð19Þ

and we have introduced the “quantum pressure” term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p
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ρ

p : ð20Þ

The continuity equation and the Euler equation will show
unstable solutions in the examples we consider in this
article, because of attractive self-interactions ΦI at low
densities. This description is valid provided the nonlinear
terms are small compared to the quadratic terms in the
original action, as in (7). This translates into the conditions

VI ≪ ρ; hence ΦI ≪ 1: ð21Þ

C. Cosmological background

1. Real scalar field ϕ

We now restrict our attention to the cosmological
background, where the scalar field ϕ̄ only depends on
time. The corresponding equation of motion is

NONRELATIVISTIC FORMATION OF SCALAR CLUMPS AS A … PHYS. REV. D 102, 083012 (2020)

083012-5

One can map the Schrödinger eq. to the hydrodynamical eqs.: 

At linear order in the gravitational potential Φ and for
m ≫ H, where H is the Hubble expansion rate, the
equation of motion of the real scalar field ϕ in a perturbed
Friedmann-Lemaître-Robertson-Walker universe (FLRW)
is

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕþ ð1þ 2ΦÞm2ϕþ dVI

dϕ
¼ 0; ð8Þ
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compared to m. This ansatz emphasizes the fact that the
scalar field oscillates with a pulsation m as the quadratic
terms in the scalar field action (5) dominate, following (7).
From this we can deduce the equation of motion of the
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This defines the effective density field ρ, which coincides
with the scalar-field energy density in this nonrelativistic
limit. The phase S defines an effective curl-free velocity
field v⃗,

v⃗ ¼ ∇⃗S
ma

: ð14Þ

Then, the equations of motion take a familiar form, i.e., the
one of hydrodynamics [39]. The real part of the nonlinear
Schrödinger equation gives the continuity equation

_ρþ 3Hρþ 1
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∇ · ðρv⃗Þ ¼ 0: ð15Þ

We can see that the self-interactions due to VI do not
modify this continuity equation. The imaginary part of the
nonlinear Schrödinger equation becomes the Hamilton-
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Then, taking the gradient of Eq. (16) gives the hydrody-
namical Euler equation,

_v⃗þHv⃗þ 1

a
ðv⃗ ·∇Þv⃗ ¼ −
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where we used ∇ðv⃗2Þ ¼ 2ðv⃗ ·∇Þv⃗ as ∇ × v⃗ ¼ 0. The self-
interaction potential ΦIðρÞ is defined by

ΦIðρÞ ¼
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and we have introduced the “quantum pressure” term

ΦQ ¼ −
∇2 ffiffiffi
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The continuity equation and the Euler equation will show
unstable solutions in the examples we consider in this
article, because of attractive self-interactions ΦI at low
densities. This description is valid provided the nonlinear
terms are small compared to the quadratic terms in the
original action, as in (7). This translates into the conditions

VI ≪ ρ; hence ΦI ≪ 1: ð21Þ
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1. Real scalar field ϕ

We now restrict our attention to the cosmological
background, where the scalar field ϕ̄ only depends on
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The real and imaginary parts of the Schrödinger eq. lead to the continuity and Euler eqs.:

At linear order in the gravitational potential Φ and for
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equation of motion of the real scalar field ϕ in a perturbed
Friedmann-Lemaître-Robertson-Walker universe (FLRW)
is

ϕ̈þ 3H _ϕ −
1
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∇2ϕþ ð1þ 2ΦÞm2ϕþ dVI

dϕ
¼ 0; ð8Þ

where a is the scale factor of the Universe, normalized to
unity now. As we are interested in the classical behavior of
the field ϕ in the nonrelativistic limit, it is convenient to
decompose

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðψe−imt þ ψ⋆eimtÞ; ð9Þ

when the spatial and time variations of ψ are small
compared to m. This ansatz emphasizes the fact that the
scalar field oscillates with a pulsation m as the quadratic
terms in the scalar field action (5) dominate, following (7).
From this we can deduce the equation of motion of the
nonrelativistic complex scalar field ψ ,

i
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Hψ
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¼ −

∇2ψ
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∂ψ⋆ ; ð10Þ

which is a nonlinear version of the Schrödinger equation.
Here we introduced the effective nonrelativistic self-inter-
action potential VIðψ ;ψ⋆Þ, which is obtained from VI by
averaging over the leading oscillations e%imt of ϕ. For
polynomial self-interactions, or analytic potentials that can
be defined by their Taylor expansion, with
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one obtains [33]
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It is convenient to introduce the Madelüng transform [49]

ψ ¼
ffiffiffiffi
ρ
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r
eiS: ð13Þ

This defines the effective density field ρ, which coincides
with the scalar-field energy density in this nonrelativistic
limit. The phase S defines an effective curl-free velocity
field v⃗,

v⃗ ¼ ∇⃗S
ma

: ð14Þ

Then, the equations of motion take a familiar form, i.e., the
one of hydrodynamics [39]. The real part of the nonlinear
Schrödinger equation gives the continuity equation

_ρþ 3Hρþ 1

a
∇ · ðρv⃗Þ ¼ 0: ð15Þ

We can see that the self-interactions due to VI do not
modify this continuity equation. The imaginary part of the
nonlinear Schrödinger equation becomes the Hamilton-
Jacobi relation
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where the nonrelativistic self-interaction potential VIðρÞ is
directly obtained from VIðψ ;ψ⋆Þ in Eq. (12) with
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Then, taking the gradient of Eq. (16) gives the hydrody-
namical Euler equation,

_v⃗þHv⃗þ 1

a
ðv⃗ ·∇Þv⃗ ¼ −

1
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∇ðΦþΦI þΦQÞ; ð18Þ

where we used ∇ðv⃗2Þ ¼ 2ðv⃗ ·∇Þv⃗ as ∇ × v⃗ ¼ 0. The self-
interaction potential ΦIðρÞ is defined by

ΦIðρÞ ¼
dVI

dρ
; ð19Þ

and we have introduced the “quantum pressure” term

ΦQ ¼ −
∇2 ffiffiffi
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The continuity equation and the Euler equation will show
unstable solutions in the examples we consider in this
article, because of attractive self-interactions ΦI at low
densities. This description is valid provided the nonlinear
terms are small compared to the quadratic terms in the
original action, as in (7). This translates into the conditions

VI ≪ ρ; hence ΦI ≪ 1: ð21Þ

C. Cosmological background

1. Real scalar field ϕ

We now restrict our attention to the cosmological
background, where the scalar field ϕ̄ only depends on
time. The corresponding equation of motion is
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At linear order in the gravitational potential Φ and for
m ≫ H, where H is the Hubble expansion rate, the
equation of motion of the real scalar field ϕ in a perturbed
Friedmann-Lemaître-Robertson-Walker universe (FLRW)
is

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕþ ð1þ 2ΦÞm2ϕþ dVI

dϕ
¼ 0; ð8Þ

where a is the scale factor of the Universe, normalized to
unity now. As we are interested in the classical behavior of
the field ϕ in the nonrelativistic limit, it is convenient to
decompose

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðψe−imt þ ψ⋆eimtÞ; ð9Þ

when the spatial and time variations of ψ are small
compared to m. This ansatz emphasizes the fact that the
scalar field oscillates with a pulsation m as the quadratic
terms in the scalar field action (5) dominate, following (7).
From this we can deduce the equation of motion of the
nonrelativistic complex scalar field ψ ,

i
"
_ψ þ 3

2
Hψ

#
¼ −

∇2ψ
2ma2

þmΦψ þ ∂VI

∂ψ⋆ ; ð10Þ

which is a nonlinear version of the Schrödinger equation.
Here we introduced the effective nonrelativistic self-inter-
action potential VIðψ ;ψ⋆Þ, which is obtained from VI by
averaging over the leading oscillations e%imt of ϕ. For
polynomial self-interactions, or analytic potentials that can
be defined by their Taylor expansion, with

VIðϕÞ ¼ Λ4
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one obtains [33]

VIðψ ;ψ⋆Þ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ψψ⋆

2mΛ2

#
p
: ð12Þ

It is convenient to introduce the Madelüng transform [49]

ψ ¼
ffiffiffiffi
ρ
m

r
eiS: ð13Þ

This defines the effective density field ρ, which coincides
with the scalar-field energy density in this nonrelativistic
limit. The phase S defines an effective curl-free velocity
field v⃗,

v⃗ ¼ ∇⃗S
ma

: ð14Þ

Then, the equations of motion take a familiar form, i.e., the
one of hydrodynamics [39]. The real part of the nonlinear
Schrödinger equation gives the continuity equation

_ρþ 3Hρþ 1

a
∇ · ðρv⃗Þ ¼ 0: ð15Þ

We can see that the self-interactions due to VI do not
modify this continuity equation. The imaginary part of the
nonlinear Schrödinger equation becomes the Hamilton-
Jacobi relation
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where the nonrelativistic self-interaction potential VIðρÞ is
directly obtained from VIðψ ;ψ⋆Þ in Eq. (12) with
ψψ⋆ ¼ ρ=m,
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Then, taking the gradient of Eq. (16) gives the hydrody-
namical Euler equation,

_v⃗þHv⃗þ 1

a
ðv⃗ ·∇Þv⃗ ¼ −

1
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∇ðΦþΦI þΦQÞ; ð18Þ

where we used ∇ðv⃗2Þ ¼ 2ðv⃗ ·∇Þv⃗ as ∇ × v⃗ ¼ 0. The self-
interaction potential ΦIðρÞ is defined by

ΦIðρÞ ¼
dVI
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; ð19Þ

and we have introduced the “quantum pressure” term

ΦQ ¼ −
∇2 ffiffiffi
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p : ð20Þ

The continuity equation and the Euler equation will show
unstable solutions in the examples we consider in this
article, because of attractive self-interactions ΦI at low
densities. This description is valid provided the nonlinear
terms are small compared to the quadratic terms in the
original action, as in (7). This translates into the conditions

VI ≪ ρ; hence ΦI ≪ 1: ð21Þ

C. Cosmological background

1. Real scalar field ϕ

We now restrict our attention to the cosmological
background, where the scalar field ϕ̄ only depends on
time. The corresponding equation of motion is
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At linear order in the gravitational potential Φ and for
m ≫ H, where H is the Hubble expansion rate, the
equation of motion of the real scalar field ϕ in a perturbed
Friedmann-Lemaître-Robertson-Walker universe (FLRW)
is

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕþ ð1þ 2ΦÞm2ϕþ dVI

dϕ
¼ 0; ð8Þ

where a is the scale factor of the Universe, normalized to
unity now. As we are interested in the classical behavior of
the field ϕ in the nonrelativistic limit, it is convenient to
decompose

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðψe−imt þ ψ⋆eimtÞ; ð9Þ

when the spatial and time variations of ψ are small
compared to m. This ansatz emphasizes the fact that the
scalar field oscillates with a pulsation m as the quadratic
terms in the scalar field action (5) dominate, following (7).
From this we can deduce the equation of motion of the
nonrelativistic complex scalar field ψ ,

i
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_ψ þ 3

2
Hψ

#
¼ −

∇2ψ
2ma2

þmΦψ þ ∂VI

∂ψ⋆ ; ð10Þ

which is a nonlinear version of the Schrödinger equation.
Here we introduced the effective nonrelativistic self-inter-
action potential VIðψ ;ψ⋆Þ, which is obtained from VI by
averaging over the leading oscillations e%imt of ϕ. For
polynomial self-interactions, or analytic potentials that can
be defined by their Taylor expansion, with
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one obtains [33]
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It is convenient to introduce the Madelüng transform [49]

ψ ¼
ffiffiffiffi
ρ
m

r
eiS: ð13Þ

This defines the effective density field ρ, which coincides
with the scalar-field energy density in this nonrelativistic
limit. The phase S defines an effective curl-free velocity
field v⃗,

v⃗ ¼ ∇⃗S
ma

: ð14Þ

Then, the equations of motion take a familiar form, i.e., the
one of hydrodynamics [39]. The real part of the nonlinear
Schrödinger equation gives the continuity equation

_ρþ 3Hρþ 1

a
∇ · ðρv⃗Þ ¼ 0: ð15Þ

We can see that the self-interactions due to VI do not
modify this continuity equation. The imaginary part of the
nonlinear Schrödinger equation becomes the Hamilton-
Jacobi relation
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where the nonrelativistic self-interaction potential VIðρÞ is
directly obtained from VIðψ ;ψ⋆Þ in Eq. (12) with
ψψ⋆ ¼ ρ=m,
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Then, taking the gradient of Eq. (16) gives the hydrody-
namical Euler equation,

_v⃗þHv⃗þ 1

a
ðv⃗ ·∇Þv⃗ ¼ −

1

a
∇ðΦþΦI þΦQÞ; ð18Þ

where we used ∇ðv⃗2Þ ¼ 2ðv⃗ ·∇Þv⃗ as ∇ × v⃗ ¼ 0. The self-
interaction potential ΦIðρÞ is defined by

ΦIðρÞ ¼
dVI

dρ
; ð19Þ

and we have introduced the “quantum pressure” term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2a2
ffiffiffi
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p : ð20Þ

The continuity equation and the Euler equation will show
unstable solutions in the examples we consider in this
article, because of attractive self-interactions ΦI at low
densities. This description is valid provided the nonlinear
terms are small compared to the quadratic terms in the
original action, as in (7). This translates into the conditions

VI ≪ ρ; hence ΦI ≪ 1: ð21Þ

C. Cosmological background

1. Real scalar field ϕ

We now restrict our attention to the cosmological
background, where the scalar field ϕ̄ only depends on
time. The corresponding equation of motion is
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comes from part of the kinetic terms in  

Madelung 1927, Chavanis 2012, ....
Hydrodynamic picture

Therefore, gravity is negligible during the formation of
these structures if we have

Φ ≪ ΦI∶
ρcs

M2
Plm

2
≪ jΦIcs

j2; ð52Þ

which reads

10−37
!

m
1 GeV

"−2 ρcs
1 GeV4

≪ jΦIcs
j2 ≪ 1: ð53Þ

C. Scalar-field solitons

Shortly after the entry into the nonlinear regime, the
collapse of the first structures builds scalar-field clumps
that can grow through collisions. We will analyse this
aggregation process below in Sec. III D. However, after the
scale factor aðtÞ has increased by a factor two or so, the
expansion of the Universe dilutes these scalar-field clumps.
Then, they behave like isolated compact objects, such as
MACHOs, and play the role of CDM particles.
In this section, we describe the way clumps, which are

formed by the linear instability studied previously, even-
tually settle to equilibrium configurations. Of course, we
cannot describe analytically the full time-dependent evo-
lution of the scalar field, from the initial instability to the
stable configurations that we find below. This would
require numerical simulations that go beyond the present
treatment. However, we check that the scalar-field dynam-
ics admit static configurations, often called “solitons,”
which are solutions to the equations of motion and are
natural candidates for the end-point of the scalar-field
structure-formation process. In particular, they correspond
to minima of the total energy at fixed mass, which ensures
their dynamical stability with respect to small nonlinear
perturbations.
Therefore, we expect that the collapse of the first

nonlinear structures, illustrated by the third column in
Fig. 1, will build halos that are not too far from these
solitons. Moreover, as they are later diluted by the Hubble
expansion, these isolated clouds should naturally relax
toward these solitons, possibly radiating a small amount of
scalar waves that can be accreted by those clumps. This
picture is also corroborated by a thermodynamical analysis,
which we present in the Appendix A.

1. Hydrostatic equilibrium as a minimum of the total
energy

Neglecting the expansion of the Universe and using the
fact that the velocity field is curl-free, the continuity and
Euler equations (15) and (18) conserve the total energy

E ¼ Ekin þ Egrav þ EI þ EQ; ð54Þ

where the kinetic, gravitational, self-interaction and quan-
tum-pressure energies are given by

Ekin ¼
Z

dr⃗ρ
v⃗2

2
; Egrav ¼

1

2

Z
dr⃗ρΦ;

EI ¼
Z

dr⃗VI; EQ ¼
Z

dr⃗
ð∇ρÞ2

8m2ρ
: ð55Þ

Following [39,50], we can obtain the properties of isolated
scalar clumps from an energy principle. Indeed, the con-
servation of energy implies that local minima of E are
dynamically stable with respect to small perturbations. This
variational analysis goes beyond linear stability and infini-
tesimal perturbations, and we can expect isolated clumps to
follow such profiles. Local minima at fixed mass M are
given by the equation δE − αδM ¼ 0, where α is the
Lagrangian multiplier associated with the constraint of
fixed mass [39,50]. For the energy (55), the first variation
with respect to ρ and v⃗ gives

δρ
v⃗2

2
þ ρv⃗ · δv⃗þ δρðΦþΦI þΦQ − αÞ ¼ 0: ð56Þ

This implies that v⃗ ¼ 0 and

ΦþΦI þΦQ ¼ α: ð57Þ

Thus, we recover the hydrostatic equilibrium of the Euler
equation (18), ∇ðΦþΦI þΦQÞ ¼ 0. In the following we
analyze the solutions to this equation.

2. Gaussian ansatz for the radial profile

It is not possible to obtain an explicit solution of
Eq. (57), but we can understand the main features of the
equilibrium by minimizing the energy over a class of trial
functions. Thus, as in [39,50], let us consider static
Gaussian spherical density profiles at constant mass M,

ρðrÞ ¼ ρce−ðr=RÞ
2
; with ρc ¼

M
π3=2R3

: ð58Þ

For the polynomial case (30), their energies are

Egrav ¼ −
Gffiffiffi
2

p M5=3ρ1=3c ; EQ ¼ 3πM1=3ρ2=3c

4m2
;

EI ¼ M
$
−

c1
25=2

ρc
ρΛ

þ c2
35=2

ρ2c
ρ2Λ

%
: ð59Þ

Let us neglect the gravitational energy, in agreement with
(52). If we only had the quadratic term in EI, both EQ and
EI would be increasing functions of ρ. Then, the minimum
of the energy would be at ρc ¼ 0. Indeed, both the quantum
pressure and the self-interactions would be repulsive, so
that there would be no stable state and the scalar cloud
would keep expanding and diluting (until gravity comes
into play). Therefore, for small stable clumps to exist, the
linear attractive term in EI must balance the quantum
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~v = 0

⇢̇ = 0 determines the radial density profile.

This compact (exponential tail) spherical solution is often called a “soliton”.

Hydrostatic equilibrium (also minimum of the total energy)

�4 > 0 repulsive self-interactions



α ¼ 3

Z
U

0
duu2y1=ðn−1Þ: ð165Þ

Thus, for each index n, we must find the value α that
satisfies the condition (165), where yðuÞ is the α-
dependent solution of Eq. (163) with the boundary
conditions yð0Þ ¼ 1 and y0ð0Þ ¼ 0. From this fundamental
solution, we obtain the profile for any mass M from
Eq. (164), which gives ΦIð0Þ ¼ α1−nðM=MaÞ2ðn−1Þ=ð3n−4Þ.
This gives in turn the scaling laws (154). In the case
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α3 ≃ 2.6, and for n ¼ 4 the values U4 ≃ 1.4 and α4 ≃ 1.9.
We compare in Fig. 2 the profiles of the nonrelativistic

potential ΦI and of the density ρ for the cases n ¼ 2, 3,
and 4, normalized to their value at the center. The radial
coordinate is normalized to the radius Rs of the soliton. We
can see that the shape of the potential ΦI does not vary
much from n ¼ 2 to n ¼ 4 but the density profile looks
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and a vertical slope at the boundary Rs for n > 2.

G. The cosine model

For the cosine model described in Sec. II G 3, the
nonrelativistic potential ΦIðρÞ is given by Eq. (73). In
terms of the dimensionless variables p and y defined by

p ¼ ρ
ρb

; ΦIðρÞ ¼
8ρb
ρa

yðpÞ; ð166Þ

we have

yðpÞ ¼ 1 − 2J1ð
ffiffiffiffi
p

p Þ= ffiffiffiffi
p

p
: ð167Þ

As shown in Fig. 3, the function yðpÞ behaves as p=8
for p ≪ 1, it reaches a maximum of ymax ≃ 1.13 at
pmax ≃ 26.37, and goes to unity at large p with decreasing
oscillations. Defining again the characteristic radius
ra ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρa

p
, and the dimensionless coordinate

x ¼ r=ra, the soliton profile is given by the nonlinear
equation

d2y
dx2

þ 2

x
dy
dx

þ pðyÞ
8

¼ 0: ð168Þ

At low density ρ and potential ΦI, we recover the linear
equation (157) of the quartic case. At pmaxρb the potential
ΦI becomes attractive, which gives rise to an instability.
At greater densities it shows a series of attractive and
repulsive domains but remains of finite amplitude.
Therefore, it cannot support massive and high-density
halos. Thus, a well-defined and smooth soliton profile
only exists for halos with a central density that is below
the critical value ρmax ¼ pmaxρb.

H. Stability

Stable equilibria of isolated systems correspond to
minima of the total energy at fixed mass. Saddle points
are given by the equation δE − αδM ¼ 0 for the first-order
variations, where α is the Lagrange multiplier associated
with the constraint of fixed mass [37]. From Eq. (137) this
yields

Z
dr⃗
"
δρ

v⃗2

2
þ ρv⃗ · δv⃗þ δρðΦþΦIÞ − αδρ

#
¼ 0: ð169Þ

FIG. 2. Profiles of the nonrelativistic self-interaction potential
ΦI (upper panel) and of the density ρ (lower panel) for the power-
law cases n ¼ 2, 3, and 4.
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FIG. 3. Nonrelativistic self-interaction potential ΦIðρÞ for a
cosine scalar field potential VIðϕÞ.
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Numerical simulations indeed find that solitons form, from gravitational collapse, within an extended NFW-like out-of-equilibrium halo. 
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Boson star growth with no self-interactions

FIG. 1. Snapshots of the density field from one simulation
with eN = 1005.3, eL = 18. (a) Projected density at the initial
time. (b) Projected density at et = 10, which shows that
minicluster is forming in the box. (c )Projected density at
et = 30. (d) Projected density at et = 200. A single dense
object is visible at the centre of the minicluster.

FIG. 2. Density profiles of the minicluster at di↵erent times
(colored dots) compared with solitonic profiles (solid lines) as
given by Eq. (C10) with the same central densities.

is the core-halo mass relation [38], M
⇤

/ M

1/3
halo

, where
M

halo

is mass of the halo, and we assume the mass of
stable halos in box is proportional to the total mass in
the box, e

N .

FIG. 3. The mean stacked maximum density evolution (solid

lines) for di↵erent box sizes eL = 25, 20, 18, 15 and total mass
eN = 691, 754, 817, 880, 942, 1005, 1131. The data from simu-
lation with the same box size eL but di↵erent total mass eN
are divided into 500 time bins. The shaded regions show the
1� � intervals. The time and maximum density are normal-
ized by the condensation time, ⌧gravity and the total mass,
eN4/3
691 , where eN691 = eN/691. Note that here ⌧gravity is com-

puted using Eq. (9) for the initial configuration, i.e. R = L,
v = v0, and n = N/L3, to avoid ambiguities in the definitions
of halo radius and density.

B. Condensation of bosons with self-interactions

Here we include self-interaction. Attractive self-
interactions can promote condensation of bosons, while
repulsive self-interactions can impede condensation of
bosons. Simulating the GPP equations, we study the
evolution of bosons with self-interactions.

1. Boss with attractive self-interactions

Levkov et al. [40] predict that su�ciently weak at-
tractive self-interactions, like those of the QCD axion,
have a negligible e↵ect on boson star formation. How-
ever, this prediction has not been directly demonstrated.
For bosons with weak attractive self-interaction, such
as QCD axions with v ⇡ 10�9, and decay constant
fa ⇡ 1011GeV, where fa = �1/

p�12g, we obtain an
estimate on the self-interaction coupling of eg ⇡ �10�2 .
We run some simulations at this range of eg. One of these
simulations is shown in Fig. 4. We can see the process
of formation of the minicluster and condensation of the
boson star. This process is similar to the pure gravity
case, Fig. 1. The radial density profiles of the miniclus-
ter and analytic profiles of soliton with and without self-
interactions are given in Fig. 5 and fitted by Eq. (C11)
and Eq. (C10), respectively. We discover that the radial
density profile of the minicluster coincides with the den-
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m � 10�18eV :
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governed by the balance between the quantum pressure and self-gravity.



Impact of the supermassive BH at the center of galaxies ?

- Does the scalar field falls onto the BH ?
- Is the soliton  lifetime greater than the age of the Universe ?

Relativistic regime:

ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð6Þ

The range of radii from the central BH can be divided in the
following three regimes.

1. Strong-gravity regime dominated by the BH

Close to the BH, that is, below a radius rNL, we are in the
strong-gravity regime, with nonlinear deviations from the
Minkowski metric, dominated by the BH gravity. There, we
recover the Schwarzschild metric but written in the isotropic
coordinate system (t; r) of (6) instead of the Schwarzschild
coordinate system ðt; r̃Þ of (5). This determines the isotropic
metric functions fðrÞ and hðrÞ as [93]

rs
4
< r < rNL∶ fðrÞ ¼

!
1 − rs=ð4rÞ
1þ rs=ð4rÞ

"
2

;

hðrÞ ¼ ð1þ rs=ð4rÞÞ4; ð7Þ

where r is related to the Schwarzschild radial coordinate r̃ by

r̃ > rs; r >
rs
4
∶ r̃ ¼ r

!
1þ rs

4r

"
2

: ð8Þ

In particular, the BH event horizon (Schwarzschild radius)
reads in these coordinates as

BH horizon∶ r̃ ¼ rs ≡ 2GM; r ¼ rs
4
¼ GM

2
: ð9Þ

2. Weak-gravity regime dominated by the BH

Further away from the BH and up to a radius rsg, we are in
the weak-gravity regime but still dominated by the super-
massive BH gravity. Therefore, the metric is still given by
Eq. (7), where the functions fðrÞ and hðrÞ are close to unity.
Then, we recover the standard Newtonian gauge

r ≫ rNL∶ ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdr⃗2;
with Φ ≪ 1; f ¼ 1þ 2Φ; h ¼ 1 − 2Φ: ð10Þ

From the explicit expressions of fðrÞ and hðrÞ in (7),
we recover the Newtonian gravitational potential due to
the BH:

rNL ≪ r ≪ rsg∶ Φ ¼ −
rs
2r

¼ −
GM
r

: ð11Þ

3. Weak-gravity regime dominated by the scalar cloud

Beyond the radius rsg, the metric potentials become
dominated by the self-gravity of the DM cloud. This also
corresponds to the radius where metric fluctuations have
decreased down to 10−6 − 10−5, as these values are the
typical depths of the DM potential wells built on galactic

scales. Then, the metric still takes the Newtonian gauge
form (10), whereΦ is now given by the scalar-field Poisson
equation

r ≫ rsg∶ ∇2Φ ¼ 4πGρϕ; ð12Þ

where ρϕ is the scalar-field energy density. This in turn
determines the metric functions fðrÞ and hðrÞ through the
second line in (10).

D. Equation of motion

To summarize, at all radii the metric is given by Eq. (6),
and in most of this paper we work in this framework. We
are dominated by the BH gravity up to radius rsg. At these
small radii, the metric functions fðrÞ and hðrÞ are given by
Eq. (7). Beyond rsg, we are dominated by the scalar cloud
gravity, and the metric functions are determined by the
Poisson equation (12). The range dominated by the BH
gravity can be further split over the strong-gravity regime,
for rs=4 < r < rNL, and the weak-gravity regime, for
rNL ≪ r ≪ rsg, where the metric functions can be approxi-
mated from (11).
Then, in the static spherical metric (6), the scalar-field

Klein-Gordon equation is written

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
∇⃗ · ð

ffiffiffiffiffiffi
fh

p ∇⃗ϕÞ þ f
∂V
∂ϕ ¼ 0: ð13Þ

This also directly follows from the action Sϕ written in
spherical coordinates:

Sϕ¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
fh3

q
r2 sinθ

$
1

2f

!∂ϕ
∂t

"
2

−
1

2h

!∂ϕ
∂r

"
2

−
1

2hr2

!∂ϕ
∂θ

"
2

−
1

2hr2sin2θ

!∂ϕ
∂φ

"
2

−VðϕÞ
%
: ð14Þ

III. FREE SCALAR FIELD

We first consider the scalar-field inflow profile around
the supermassive BH in the free case, without self-
interactions.

A. Equations of motion

In the case of the free massive scalar field, that is, when
the self-interaction vanishes, the same decomposition of the
scalar field as for the nonrelativistic case can be applied.
Thus, we can write the real scalar field ϕ in terms of a
complex scalar field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð15Þ

As in the nonrelativistic limit, we assume that the time
derivative of ψ is much smaller than mψ , that is,
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following three regimes.
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r ≫ rNL∶ ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdr⃗2;
with Φ ≪ 1; f ¼ 1þ 2Φ; h ¼ 1 − 2Φ: ð10Þ

From the explicit expressions of fðrÞ and hðrÞ in (7),
we recover the Newtonian gravitational potential due to
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3. Weak-gravity regime dominated by the scalar cloud

Beyond the radius rsg, the metric potentials become
dominated by the self-gravity of the DM cloud. This also
corresponds to the radius where metric fluctuations have
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typical depths of the DM potential wells built on galactic
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equation
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and in most of this paper we work in this framework. We
are dominated by the BH gravity up to radius rsg. At these
small radii, the metric functions fðrÞ and hðrÞ are given by
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III. FREE SCALAR FIELD

We first consider the scalar-field inflow profile around
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- metric fluctuations are large close to the BH horizon

* Schwarzschild metric close to the BH:

static spherical symmetry: (isotropic coordinates)

* small metric fluctuations and self-gravity far from the BH, in the galactic-scale soliton:

ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð6Þ

The range of radii from the central BH can be divided in the
following three regimes.

1. Strong-gravity regime dominated by the BH

Close to the BH, that is, below a radius rNL, we are in the
strong-gravity regime, with nonlinear deviations from the
Minkowski metric, dominated by the BH gravity. There, we
recover the Schwarzschild metric but written in the isotropic
coordinate system (t; r) of (6) instead of the Schwarzschild
coordinate system ðt; r̃Þ of (5). This determines the isotropic
metric functions fðrÞ and hðrÞ as [93]

rs
4
< r < rNL∶ fðrÞ ¼

!
1 − rs=ð4rÞ
1þ rs=ð4rÞ

"
2

;

hðrÞ ¼ ð1þ rs=ð4rÞÞ4; ð7Þ

where r is related to the Schwarzschild radial coordinate r̃ by

r̃ > rs; r >
rs
4
∶ r̃ ¼ r

!
1þ rs

4r

"
2

: ð8Þ

In particular, the BH event horizon (Schwarzschild radius)
reads in these coordinates as

BH horizon∶ r̃ ¼ rs ≡ 2GM; r ¼ rs
4
¼ GM

2
: ð9Þ

2. Weak-gravity regime dominated by the BH

Further away from the BH and up to a radius rsg, we are in
the weak-gravity regime but still dominated by the super-
massive BH gravity. Therefore, the metric is still given by
Eq. (7), where the functions fðrÞ and hðrÞ are close to unity.
Then, we recover the standard Newtonian gauge

r ≫ rNL∶ ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdr⃗2;
with Φ ≪ 1; f ¼ 1þ 2Φ; h ¼ 1 − 2Φ: ð10Þ

From the explicit expressions of fðrÞ and hðrÞ in (7),
we recover the Newtonian gravitational potential due to
the BH:

rNL ≪ r ≪ rsg∶ Φ ¼ −
rs
2r

¼ −
GM
r

: ð11Þ

3. Weak-gravity regime dominated by the scalar cloud

Beyond the radius rsg, the metric potentials become
dominated by the self-gravity of the DM cloud. This also
corresponds to the radius where metric fluctuations have
decreased down to 10−6 − 10−5, as these values are the
typical depths of the DM potential wells built on galactic

scales. Then, the metric still takes the Newtonian gauge
form (10), whereΦ is now given by the scalar-field Poisson
equation

r ≫ rsg∶ ∇2Φ ¼ 4πGρϕ; ð12Þ

where ρϕ is the scalar-field energy density. This in turn
determines the metric functions fðrÞ and hðrÞ through the
second line in (10).

D. Equation of motion

To summarize, at all radii the metric is given by Eq. (6),
and in most of this paper we work in this framework. We
are dominated by the BH gravity up to radius rsg. At these
small radii, the metric functions fðrÞ and hðrÞ are given by
Eq. (7). Beyond rsg, we are dominated by the scalar cloud
gravity, and the metric functions are determined by the
Poisson equation (12). The range dominated by the BH
gravity can be further split over the strong-gravity regime,
for rs=4 < r < rNL, and the weak-gravity regime, for
rNL ≪ r ≪ rsg, where the metric functions can be approxi-
mated from (11).
Then, in the static spherical metric (6), the scalar-field

Klein-Gordon equation is written

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
∇⃗ · ð

ffiffiffiffiffiffi
fh

p ∇⃗ϕÞ þ f
∂V
∂ϕ ¼ 0: ð13Þ

This also directly follows from the action Sϕ written in
spherical coordinates:

Sϕ¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
fh3

q
r2 sinθ

$
1

2f

!∂ϕ
∂t

"
2

−
1

2h

!∂ϕ
∂r

"
2

−
1

2hr2

!∂ϕ
∂θ

"
2

−
1

2hr2sin2θ

!∂ϕ
∂φ

"
2

−VðϕÞ
%
: ð14Þ

III. FREE SCALAR FIELD

We first consider the scalar-field inflow profile around
the supermassive BH in the free case, without self-
interactions.

A. Equations of motion

In the case of the free massive scalar field, that is, when
the self-interaction vanishes, the same decomposition of the
scalar field as for the nonrelativistic case can be applied.
Thus, we can write the real scalar field ϕ in terms of a
complex scalar field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð15Þ

As in the nonrelativistic limit, we assume that the time
derivative of ψ is much smaller than mψ , that is,
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ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð6Þ

The range of radii from the central BH can be divided in the
following three regimes.

1. Strong-gravity regime dominated by the BH

Close to the BH, that is, below a radius rNL, we are in the
strong-gravity regime, with nonlinear deviations from the
Minkowski metric, dominated by the BH gravity. There, we
recover the Schwarzschild metric but written in the isotropic
coordinate system (t; r) of (6) instead of the Schwarzschild
coordinate system ðt; r̃Þ of (5). This determines the isotropic
metric functions fðrÞ and hðrÞ as [93]

rs
4
< r < rNL∶ fðrÞ ¼

!
1 − rs=ð4rÞ
1þ rs=ð4rÞ

"
2

;

hðrÞ ¼ ð1þ rs=ð4rÞÞ4; ð7Þ

where r is related to the Schwarzschild radial coordinate r̃ by

r̃ > rs; r >
rs
4
∶ r̃ ¼ r

!
1þ rs

4r

"
2

: ð8Þ

In particular, the BH event horizon (Schwarzschild radius)
reads in these coordinates as

BH horizon∶ r̃ ¼ rs ≡ 2GM; r ¼ rs
4
¼ GM

2
: ð9Þ

2. Weak-gravity regime dominated by the BH

Further away from the BH and up to a radius rsg, we are in
the weak-gravity regime but still dominated by the super-
massive BH gravity. Therefore, the metric is still given by
Eq. (7), where the functions fðrÞ and hðrÞ are close to unity.
Then, we recover the standard Newtonian gauge

r ≫ rNL∶ ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdr⃗2;
with Φ ≪ 1; f ¼ 1þ 2Φ; h ¼ 1 − 2Φ: ð10Þ

From the explicit expressions of fðrÞ and hðrÞ in (7),
we recover the Newtonian gravitational potential due to
the BH:

rNL ≪ r ≪ rsg∶ Φ ¼ −
rs
2r

¼ −
GM
r

: ð11Þ

3. Weak-gravity regime dominated by the scalar cloud

Beyond the radius rsg, the metric potentials become
dominated by the self-gravity of the DM cloud. This also
corresponds to the radius where metric fluctuations have
decreased down to 10−6 − 10−5, as these values are the
typical depths of the DM potential wells built on galactic

scales. Then, the metric still takes the Newtonian gauge
form (10), whereΦ is now given by the scalar-field Poisson
equation

r ≫ rsg∶ ∇2Φ ¼ 4πGρϕ; ð12Þ

where ρϕ is the scalar-field energy density. This in turn
determines the metric functions fðrÞ and hðrÞ through the
second line in (10).

D. Equation of motion

To summarize, at all radii the metric is given by Eq. (6),
and in most of this paper we work in this framework. We
are dominated by the BH gravity up to radius rsg. At these
small radii, the metric functions fðrÞ and hðrÞ are given by
Eq. (7). Beyond rsg, we are dominated by the scalar cloud
gravity, and the metric functions are determined by the
Poisson equation (12). The range dominated by the BH
gravity can be further split over the strong-gravity regime,
for rs=4 < r < rNL, and the weak-gravity regime, for
rNL ≪ r ≪ rsg, where the metric functions can be approxi-
mated from (11).
Then, in the static spherical metric (6), the scalar-field

Klein-Gordon equation is written

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
∇⃗ · ð

ffiffiffiffiffiffi
fh

p ∇⃗ϕÞ þ f
∂V
∂ϕ ¼ 0: ð13Þ

This also directly follows from the action Sϕ written in
spherical coordinates:

Sϕ¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
fh3

q
r2 sinθ

$
1

2f

!∂ϕ
∂t

"
2

−
1

2h

!∂ϕ
∂r

"
2

−
1

2hr2

!∂ϕ
∂θ

"
2

−
1

2hr2sin2θ

!∂ϕ
∂φ

"
2

−VðϕÞ
%
: ð14Þ

III. FREE SCALAR FIELD

We first consider the scalar-field inflow profile around
the supermassive BH in the free case, without self-
interactions.

A. Equations of motion

In the case of the free massive scalar field, that is, when
the self-interaction vanishes, the same decomposition of the
scalar field as for the nonrelativistic case can be applied.
Thus, we can write the real scalar field ϕ in terms of a
complex scalar field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð15Þ

As in the nonrelativistic limit, we assume that the time
derivative of ψ is much smaller than mψ , that is,
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- field oscillations are large and the cosine is significantly deformed by the self-interactions 

nonlinear approach on the K.G. eq.

simulations, which agree with the well-known Navarro-
Frenk-White (NFW) profile [87]. In fact, supermassive
BHs are expected to involve baryonic physics, as cooling
and dissipation allow baryons to fall into gravitational
potential wells. Nonequilibrium physics may also come
into play through the mergers of smaller BHs, whereas the
initial seeds could result from the remnants of massive stars
or the collapse of large gas clouds or of stellar clusters.
See, for instance, Ref. [88] for a recent review of scenarios
for the assembly of supermassive BHs. Similar baryonic
processes should also be present in scalar DM cosmologies;
hence, we expect supermassive BHs to form as well in these
scenarios.
Thus, in this paper, we investigate the smooth accretion

onto the supermassive BH after a solitonic halo profile has
formed on the galactic scale (similar to the NFW halo
profile for CDM scenarios). We find that outside the
Schwarzschild radius and close enough to the black hole
the scalar dynamics are described by a stationary solution
with nonvanishing flux. This corresponds to the infall of
dark matter into the central BH. Far away from the center,
the dynamics reproduce the static soliton behavior, with a
solution whose density is nearly constant in the core before
falling off rapidly towards zero [89]. This selects a unique
solution with constant flux and nearly vanishing velocity
far away from the BH, which is similar to the transonic
solution obtained for the hydrodynamic case. We find
typically that the lifetime of the soliton, despite the falling
of matter into the BH, is larger than the age of the Universe.
Moreover, the constraints on the density profile of dark
matter inferred from the stellar dynamics in the vicinity of
the central BH [90,91] are easily met.
This manuscript is arranged as follows. In Sec. II,

we describe the main equations of a generic model of
scalar DM within a Schwarzschild geometry, in both
isotropic coordinates (Sec. II A 2) and Eddington coordi-
nates (Sec. III D). In Sec. III, we analyze the main features
of the scalar DM solitons for the harmonic case. In Sec. IV,
we extend this analysis to the self-interacting case deter-
mined by a quartic term. In Sec. V, we derive the long
lifetime associated with the scalar-field soliton found in the
previous section. Finally, the main conclusions are sum-
marized in Sec. VI.

II. DARK MATTER SCALAR FIELD

A. Scalar-field action

The scalar-field action is

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

#
: ð1Þ

We also write the scalar-field potential as

VðϕÞ ¼ m2

2
ϕ2 þ VIðϕÞ; ð2Þ

where VI is the self-interaction potential. In this work, we
focus on the quartic self-interaction potential

VIðϕÞ ¼
λ4
4
ϕ4: ð3Þ

Such scalar fields can play the role of DM and build scalar
solitons, i.e., static profiles with a finite core, at the center
of galactic halos. These solitons can be the result of the
balance between the self-gravity of the scalar cloud and a
“quantum pressure” (due to the fact that the underlying
equations of motion are the Klein-Gordon equation, or the
Schrödinger equation in the nonrelativistic limit, rather
than the hydrodynamical Euler equation) or to a repulsive
self-interaction, associated with λ4 > 0. In this paper,
following our previous work [89], we focus on the large
scalar-mass limit

m ≫ 10−21 eV; ð4Þ

which ensures that the quantum pressure is negligible from
cosmological to galactic scales. Then, the galactic solitons
are due to the balance between gravity and the repulsive
self-interaction. In the large scalar-mass limit, the analysis
simplifies, and we can derive in the next sections explicit
expressions for the scalar-field profile and its inflow onto
the supermassive BH. Around a Schwarzschild BH, we
shall see below that the large-mass limit becomes defined
by the lower bound (40), which is somewhat larger than (4).

B. Schwarzschild metric

Close to the BH, the contribution from the scalar field is
negligible, and the metric is the standard Schwarzschild
metric [92,93]

ds2 ¼ −
$
1 −

rs
r̃

%
dt2 þ

$
1 −

rs
r̃

%−1
dr̃2 þ r̃2dΩ⃗2; ð5Þ

where r̃ is the Schwarzschild radial coordinate and rs ¼
2GM is the Schwarzschild radius of the BH of mass M.
Throughout this paper, we work in natural units with c ¼ 1.

C. Isotropic coordinates

We focus on spherically symmetric systems, as we
consider a spherical scalar cloud around a supermassive
Schwarzschild BH. To simplify the matching with the
Newtonian gauge at large scales, we work with the
isotropic radial coordinate r and the time t throughout
this paper, except in Secs. III D, IV F, and IVG. Then, the
static spherically symmetric metric can be written in the
isotropic form
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case

quartic repulsive self-interaction



3. Density profile

From Eqs. (20) and (46), the energy density associated
with the Eddington coordinates is given, at leading order in
the large-m limit, by

ρ̃ϕ ¼ ρ

!
sin2ðmt − sÞ

"
2 − f þ 1

f
ð1 − f −

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
Þ2
$

þ cos2ðmt − sÞ
%
: ð49Þ

In terms of the flux F, we obtain using Eq. (38)

hρ̃ϕi ¼ −
F
r2s

r2s
2r2h

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
"
3 − f þ 1

f
ð1 − f −

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
Þ2
$
;

ð50Þ

where we took the average over the fast oscillations of
period 2π=m. As expected, this scalar-field energy density
remains finite at the Schwarzschild radius, with

r̃ ¼ rs; r ¼ rs
4
∶ hρ̃ϕi ¼ −

3F
2r2s

: ð51Þ

At larger radii that are still dominated by the BH gravi-
tational potential, this gives

rs ≪ r ≪ rsg∶ hρ̃ϕi ∝ r−3=2 and vr ∝ r−1=2: ð52Þ

The scaling vr ∝ r−1=2 corresponds to the free fall from rest
at infinity, which also gives v2r ∼Φ ∼ GM=r. The require-
ment of constant flux through spherical shells then implies
ρϕ ∝ r−3=2. The density ρϕ grows linearly with jFj, as there
are no self-interactions (and we neglect self-gravity near
the BH).
The unit velocity obtained in the ingoing wave (48), or of

the order of unity in Eq. (51) if we define an effective
velocity by F ¼ hρ̃ϕir2ṽeffr , shows that as expected the
scalar-field dynamics are strongly relativistic at the
Schwarzschild radius. In particular, the phase s is not
small, and the exponent eis of the wave function ψ cannot
be expanded over, as it must precisely combine with the
factor e−imt to give the regular solution (48). Also, whereas
ρ given by Eq. (41) remains finite at the Schwarzschild
radius, s given by Eq. (42) diverges. This means that,
whereas density gradients remain small, as compared with
the scalar mass, as long as the bound (39) is fulfilled, the
radial derivatives of the phase s and of the wave functions ψ
and ϕ are not small and even diverge at the Schwarzschild
radius. Again, this means that one cannot use a perturbative
approach in the scalar field, even in the large scalar-mass
limit. One must keep the nonlinearities of the scalar-
field phase.

IV. QUARTIC INTERACTION

We now consider the scalar-field inflow profile around
the supermassive BH in the case of quartic self-inter-
actions (3).

A. Large-mass approximation

For spherical modes and the quartic self-interaction (3),
the nonlinear Klein-Gordon equation (13) reads

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
1

r2
∂
∂r

" ffiffiffiffiffiffi
fh

p
r2
∂ϕ
∂r

$
þ fm2ϕþ fλ4ϕ3 ¼ 0:

ð53Þ

If we discard the radial derivatives, we recognize the
standard Duffing equation, which describes a nonlinear
oscillator with a cubic nonlinearity [95]. Its solution can be
written as ϕ0cnðωt − β; kÞ, where cnðu; kÞ is the Jacobi
elliptic function [96,97] of argument u and modulus k. The
angular frequency ω and the modulus k are functions of the
amplitude ϕ0, as for anharmonic oscillators the frequency
depends on the amplitude of the oscillations. The harmonic
case λ4 ¼ 0 corresponds to k ¼ 0 as cnðu; 0Þ ¼ cosðuÞ. For
general k, the Jacobi elliptic function cnðu; kÞ is a periodic
function of u with period 4K, where KðkÞ is the complete
elliptic integral of the first kind, defined by [96,97]

0 ≤ k < 1∶ KðkÞ ¼
Z

π=2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p ; ð54Þ

and Kð0Þ ¼ π=2.
Taking into account the radial dependence, we can look

for a solution of the form

ϕ ¼ ϕ0ðrÞcn½ωðrÞt −KðrÞβðrÞ; kðrÞ&; ð55Þ

where we noted KðrÞ≡K½kðrÞ&. This is understood as the
leading-order approximation in the limit m → ∞, where
spatial gradients of the amplitude ϕ0 and the modulus k are
much below m, while both ω and β are of the order of m.
The amplitude ϕ0, the angular frequency ω, the phase β,
and the modulus k are slow functions of the radius. Thus,
Eq. (55) is a generalization of the free-scalar solution (20)
to the case of nonzero quartic self-interaction, in the same
large-mass approximation.
We could absorb the factor KðrÞ in Eq. (55) in βðrÞ and

write the solution as ϕ0cnðωt − β; kÞ. However, it is
convenient to introduce the factor K in the definition of
β to simplify the Fourier expansion (57) below, which also
simplifies the radial derivative (59) below. Removing the
factor K in Eq. (55) would make new factors K and K0

appear in Eqs. (57) and (59) below.
The factors ϕ0, ω, β, and k are then determined by the

equation of motion (53). This will relate them to the
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3. Density profile

From Eqs. (20) and (46), the energy density associated
with the Eddington coordinates is given, at leading order in
the large-m limit, by

ρ̃ϕ ¼ ρ

!
sin2ðmt − sÞ

"
2 − f þ 1

f
ð1 − f −

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
Þ2
$

þ cos2ðmt − sÞ
%
: ð49Þ

In terms of the flux F, we obtain using Eq. (38)

hρ̃ϕi ¼ −
F
r2s

r2s
2r2h

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
"
3 − f þ 1

f
ð1 − f −

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
Þ2
$
;

ð50Þ

where we took the average over the fast oscillations of
period 2π=m. As expected, this scalar-field energy density
remains finite at the Schwarzschild radius, with

r̃ ¼ rs; r ¼ rs
4
∶ hρ̃ϕi ¼ −

3F
2r2s

: ð51Þ

At larger radii that are still dominated by the BH gravi-
tational potential, this gives

rs ≪ r ≪ rsg∶ hρ̃ϕi ∝ r−3=2 and vr ∝ r−1=2: ð52Þ

The scaling vr ∝ r−1=2 corresponds to the free fall from rest
at infinity, which also gives v2r ∼Φ ∼ GM=r. The require-
ment of constant flux through spherical shells then implies
ρϕ ∝ r−3=2. The density ρϕ grows linearly with jFj, as there
are no self-interactions (and we neglect self-gravity near
the BH).
The unit velocity obtained in the ingoing wave (48), or of

the order of unity in Eq. (51) if we define an effective
velocity by F ¼ hρ̃ϕir2ṽeffr , shows that as expected the
scalar-field dynamics are strongly relativistic at the
Schwarzschild radius. In particular, the phase s is not
small, and the exponent eis of the wave function ψ cannot
be expanded over, as it must precisely combine with the
factor e−imt to give the regular solution (48). Also, whereas
ρ given by Eq. (41) remains finite at the Schwarzschild
radius, s given by Eq. (42) diverges. This means that,
whereas density gradients remain small, as compared with
the scalar mass, as long as the bound (39) is fulfilled, the
radial derivatives of the phase s and of the wave functions ψ
and ϕ are not small and even diverge at the Schwarzschild
radius. Again, this means that one cannot use a perturbative
approach in the scalar field, even in the large scalar-mass
limit. One must keep the nonlinearities of the scalar-
field phase.

IV. QUARTIC INTERACTION

We now consider the scalar-field inflow profile around
the supermassive BH in the case of quartic self-inter-
actions (3).

A. Large-mass approximation

For spherical modes and the quartic self-interaction (3),
the nonlinear Klein-Gordon equation (13) reads

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
1

r2
∂
∂r

" ffiffiffiffiffiffi
fh

p
r2
∂ϕ
∂r

$
þ fm2ϕþ fλ4ϕ3 ¼ 0:

ð53Þ

If we discard the radial derivatives, we recognize the
standard Duffing equation, which describes a nonlinear
oscillator with a cubic nonlinearity [95]. Its solution can be
written as ϕ0cnðωt − β; kÞ, where cnðu; kÞ is the Jacobi
elliptic function [96,97] of argument u and modulus k. The
angular frequency ω and the modulus k are functions of the
amplitude ϕ0, as for anharmonic oscillators the frequency
depends on the amplitude of the oscillations. The harmonic
case λ4 ¼ 0 corresponds to k ¼ 0 as cnðu; 0Þ ¼ cosðuÞ. For
general k, the Jacobi elliptic function cnðu; kÞ is a periodic
function of u with period 4K, where KðkÞ is the complete
elliptic integral of the first kind, defined by [96,97]

0 ≤ k < 1∶ KðkÞ ¼
Z

π=2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p ; ð54Þ

and Kð0Þ ¼ π=2.
Taking into account the radial dependence, we can look

for a solution of the form

ϕ ¼ ϕ0ðrÞcn½ωðrÞt −KðrÞβðrÞ; kðrÞ&; ð55Þ

where we noted KðrÞ≡K½kðrÞ&. This is understood as the
leading-order approximation in the limit m → ∞, where
spatial gradients of the amplitude ϕ0 and the modulus k are
much below m, while both ω and β are of the order of m.
The amplitude ϕ0, the angular frequency ω, the phase β,
and the modulus k are slow functions of the radius. Thus,
Eq. (55) is a generalization of the free-scalar solution (20)
to the case of nonzero quartic self-interaction, in the same
large-mass approximation.
We could absorb the factor KðrÞ in Eq. (55) in βðrÞ and

write the solution as ϕ0cnðωt − β; kÞ. However, it is
convenient to introduce the factor K in the definition of
β to simplify the Fourier expansion (57) below, which also
simplifies the radial derivative (59) below. Removing the
factor K in Eq. (55) would make new factors K and K0

appear in Eqs. (57) and (59) below.
The factors ϕ0, ω, β, and k are then determined by the

equation of motion (53). This will relate them to the
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scalar-field physical parameters m and λ4, and to the mass
of the BH, through Eqs. (62) and (63) below.
First, to ensure that spatial gradients do not increase with

time, we note that the field at each radius must oscillate in
phase. Otherwise, the phase difference between the fields at
two arbitrarily close radii would eventually become large,
giving rise to a secular growth of radial gradients. Denoting
the common period of the oscillations by T ¼ 2π=ω0,
where ω0 is the common angular frequency, we can see
from Eq. (55) that we must have at each radius
ωðrÞT ¼ 4KðrÞ, because the period of the Jacobi function
of modulus k is 4K. Therefore, the function ωðrÞ is set by
the modulus kðrÞ according to

ωðrÞ ¼ 2KðrÞ
π

ω0: ð56Þ

This synchronous oscillation can also be seen from the
Fourier series expansion of the Jacobi elliptic function
[96,97]. Substituting into Eq. (55), we obtain

ϕ¼ϕ0

2π
kK

X∞

n¼0

qnþ1=2

1þq2nþ1
cos½ð2nþ1Þðω0t−πβ=2Þ&; ð57Þ

with q ¼ e−πK
0=K, where K0 ¼ Kðk0Þ with k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
.

This expression explicitly shows the global oscillation of
the field, with the common fundamental angular fre-
quency ω0.
From Eq. (55), the time derivative is

∂ϕ
∂t ¼ ϕ0ω

∂cn
∂u : ð58Þ

At leading order in the large-m limit, the radial derivative
reads from Eq. (57) as

∂ϕ
∂r ¼ −ϕ0Kβ0

∂cn
∂u þ ' ' ' ; ð59Þ

where the dots stand for subleading terms, as we assume
that the phase β is formally of the order of m. Here,
β0 ¼ dβ=dr. Substituting into the nonlinear Klein-Gordon
equation (53) gives

ϕ0

"
ω2 −

f
h
ðKβ0Þ2

# ∂2cn
∂u2 þ fm2ϕ0cnþ fλ4ϕ3

0cn
3 ¼ 0;

ð60Þ

where we kept only the term of the order of m2 among the
radial derivative contributions. Thus, at this order, we can
see that the radial derivatives do not change the structure of
Eq. (60). This is why it again admits the Jacobi elliptic
function as a solution. Thus, using the property

∂2cn
∂u2 ¼ ð2k2 − 1Þcn − 2k2cn3; ð61Þ

the Klein-Gordon equation (60) is satisfied as soon as the
coefficients of the factors cn and cn3 vanish. This gives the
two conditions

π2f
4h

β02 ¼ ω2
0 −

fm2π2

ð1 − 2k2Þ4K2
; ð62Þ

λ4ϕ2
0

m2
¼ 2k2

1 − 2k2
: ð63Þ

We recover in Eq. (63) that the free scalar case λ4 ¼ 0
corresponds to k ¼ 0. Equation (62) is the generalization of
the Euler equation (27), πβ0=ð2mÞ plays the role of the
radial velocity vr ¼ m−1ds=dr, and πβ=2 plays the role of
the phase s. More precisely, Eq. (62) can be rewritten as a
relativistic dispersion relation for a particle of mass m, i.e.,

E2 ¼ p2
r þm2, where we identify pr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2k2

h K
q

β0 and

E ¼
ffiffiffiffiffiffiffiffiffi
1−2k2

f

q
2K
π ω0 in the local Minkowski frame. In the

large-radius limit, as we shall see in Sec. IV B 1 b corre-
sponding to k ≪ 1, this reduces to the dispersion relation of
the nonrelativistic particles as identified thanks to the Euler
equation, and we have pr ≃ πβ0=2. In the general case, we
can identify the velocity field as vr ≡ pr

E . In the relativistic
regime close to the BH, this velocity goes to unity.
However, the connection between the dispersion relation
and a velocity field is mostly formal, as beyond the
nonrelativistic regime there is no direct link between the
profile of the solution ϕ given by Eq. (55) and a particle
interpretation.

B. Boundary conditions

1. Large-radius boundary condition

At large radii, r ≫ rsg, the gravitational field is small and
set by the self-gravity of the scalar cloud. Therefore, we
match the solution (55) to the soliton profile obtained for
the self-gravitational nonrelativistic scalar cloud [89].

Scalar-field soliton.—In this regime, we can decompose the
scalar field ϕ as in Eq. (15) and use the Madelung
transformation (20) for the complex field ψ . Taking into
account the quartic self-interaction, which is subdominant
with respect to the quadratic potential m2ϕ2=2, the
continuity equations (26) and (28) take again the usual
form (30)

_ρþ ∇⃗ · ðρ∇⃗sÞ
m

¼ 0; _ρþ ∇⃗ · ðρv⃗Þ ¼ 0; ð64Þ

whereas the Euler equations (27) and (29) become
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the last term in the generalized Euler equation (62) becomes
negligible as f → 0 at the Schwarzschild radius, and
Eq. (62) gives

r →
rs
4
∶

π
2
β0 ¼ −ω0

ffiffiffi
h
f

s

: ð81Þ

This agrees indeed with Eq. (36) (except for the prefactor α
associated with the finite soliton size).

C. Steady state and constant flux

So far, any profile kðrÞ with the outer boundary con-
dition (80) and kðrÞ < 1=

ffiffiffi
2

p
at all radii provides a leading-

order solution (55). Indeed, given kðrÞ, Eq. (62) provides
the velocity β0, while Eq. (63) provides the amplitude ϕ0,
i.e., the “density.” Clearly, we do not expect such a large
space of physical solutions. It would seem more natural to
recover a specific profile, such as the unique transonic
solution found for hydrodynamics in nonrelativistic [98]
and relativistic [99] infall. In fact, at this stage we miss a
constant flux constraint associated with a continuity equa-
tion, as in Eq. (35). In the relativistic case, the continuity
equation is associated with the component ν ¼ 0 of the
conservation equations ∇μT

μ
ν ¼ 0. The energy-momentum

tensor of the scalar field ϕ gives

ρϕ ≡ −T0
0 ¼

1

2f

"∂ϕ
∂t

#
2

þ 1

2h

"∂ϕ
∂r

#
2

þ V ð82Þ

and

Tr
0 ¼

1

h
∂ϕ
∂r

∂ϕ
∂t : ð83Þ

At leading order in the large-mass limit, we obtain from
Eqs. (55), (58), (59), (62), and (63)

ρϕ ¼ ð1 − k2Þm2ϕ2
0

2ð1 − 2k2Þ
þ ϕ2

0

ðKβ0Þ2

h

× ½1 − k2 þ ð2k2 − 1Þcn2 − k2cn4& ð84Þ

and

Tr
0 ¼ −ϕ2

0ω
Kβ0

h

"∂cn
∂u

#
2

: ð85Þ

Then, using again Eqs. (58), (59), and (61), we can check
that the conservation equation ∇μT

μ
0 ¼ 0, which reads

_ρ −
1ffiffiffiffiffiffiffiffi
fh3

p
r2

∂
∂r

$ ffiffiffiffiffiffiffiffi
fh3

q
r2Tr

0

%
¼ 0; ð86Þ

is satisfied at the leading order. We can note that ρϕ is not
constant with time, as the terms cn2 and cn4 in the bracket

in Eq. (84) oscillate with the frequency ω0. At the leading
order, the continuity equation (86) is governed by the fast
oscillation of these terms. However, to ensure that sub-
leading orders do not show secular terms that grow with
time, we clearly require that in the steady state the averaged
value of ρϕ over one oscillation period does not depend on
time. This gives the condition of constant flux

F ¼ −
ffiffiffiffiffiffiffiffi
fh3

q
r2hTr

0i ¼
ffiffiffiffiffiffi
fh

p
r2ϕ2

0ωKβ0
&"∂cn

∂u
#

2
'
; ð87Þ

where h…i denotes the average over one oscillation period
T ¼ 2π=ω0. Using Eqs. (56), (62), (63), and (78), we can
write the flux in terms of kðrÞ:

F ¼ Fsx2h
"
2K
π

#
2
&"∂cn

∂u
#

2
'

2k2

1 − 2k2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
π2f

ð1þ αÞ24K2ð1 − 2k2Þ

s

; ð88Þ

where we defined the dimensionless radial coordinate

x ¼ r
rs

>
1

4
ð89Þ

and the characteristic flux

Fs ¼ −
r2sm4ð1þ αÞ2

λ4
≃ −

r2sm4

λ4
; ð90Þ

as typically α≲ 10−5. The average value of ð∂cn∂u Þ
2 is

&"∂cn
∂u

#
2
'

¼ 1 − k2 þ ð2k2 − 1ÞC2 − k2C4 ð91Þ

with [95]

C2 ≡ hcn2i ¼ 1

k2

"
E
K

þ k2 − 1

#
; ð92Þ

C4 ≡ hcn4i ¼ 1

3k2
ð2ð2k2 − 1ÞC2 þ 1 − k2Þ; ð93Þ

where EðkÞ is the complete elliptic integral of the second
kind, defined by [96,97]

0 ≤ k < 1∶ EðkÞ ¼
Z

π=2

0
dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p
: ð94Þ

We can see from Eq. (90) that the flux diverges as 1=λ4.
This is not surprising, since for a vanishing self-interaction
we must recover the free-scalar case studied in Sec. III,
where the flux is arbitrary and has no upper bound. We also
find that the flux scales as r2sm4, which is also natural, as we
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the last term in the generalized Euler equation (62) becomes
negligible as f → 0 at the Schwarzschild radius, and
Eq. (62) gives

r →
rs
4
∶

π
2
β0 ¼ −ω0

ffiffiffi
h
f

s

: ð81Þ

This agrees indeed with Eq. (36) (except for the prefactor α
associated with the finite soliton size).

C. Steady state and constant flux

So far, any profile kðrÞ with the outer boundary con-
dition (80) and kðrÞ < 1=

ffiffiffi
2

p
at all radii provides a leading-

order solution (55). Indeed, given kðrÞ, Eq. (62) provides
the velocity β0, while Eq. (63) provides the amplitude ϕ0,
i.e., the “density.” Clearly, we do not expect such a large
space of physical solutions. It would seem more natural to
recover a specific profile, such as the unique transonic
solution found for hydrodynamics in nonrelativistic [98]
and relativistic [99] infall. In fact, at this stage we miss a
constant flux constraint associated with a continuity equa-
tion, as in Eq. (35). In the relativistic case, the continuity
equation is associated with the component ν ¼ 0 of the
conservation equations ∇μT

μ
ν ¼ 0. The energy-momentum

tensor of the scalar field ϕ gives

ρϕ ≡ −T0
0 ¼

1

2f

"∂ϕ
∂t

#
2

þ 1

2h

"∂ϕ
∂r

#
2

þ V ð82Þ

and

Tr
0 ¼

1

h
∂ϕ
∂r

∂ϕ
∂t : ð83Þ

At leading order in the large-mass limit, we obtain from
Eqs. (55), (58), (59), (62), and (63)

ρϕ ¼ ð1 − k2Þm2ϕ2
0

2ð1 − 2k2Þ
þ ϕ2

0

ðKβ0Þ2

h

× ½1 − k2 þ ð2k2 − 1Þcn2 − k2cn4& ð84Þ

and

Tr
0 ¼ −ϕ2

0ω
Kβ0

h

"∂cn
∂u

#
2

: ð85Þ

Then, using again Eqs. (58), (59), and (61), we can check
that the conservation equation ∇μT

μ
0 ¼ 0, which reads

_ρ −
1ffiffiffiffiffiffiffiffi
fh3

p
r2

∂
∂r

$ ffiffiffiffiffiffiffiffi
fh3

q
r2Tr

0

%
¼ 0; ð86Þ

is satisfied at the leading order. We can note that ρϕ is not
constant with time, as the terms cn2 and cn4 in the bracket

in Eq. (84) oscillate with the frequency ω0. At the leading
order, the continuity equation (86) is governed by the fast
oscillation of these terms. However, to ensure that sub-
leading orders do not show secular terms that grow with
time, we clearly require that in the steady state the averaged
value of ρϕ over one oscillation period does not depend on
time. This gives the condition of constant flux

F ¼ −
ffiffiffiffiffiffiffiffi
fh3

q
r2hTr

0i ¼
ffiffiffiffiffiffi
fh

p
r2ϕ2

0ωKβ0
&"∂cn

∂u
#

2
'
; ð87Þ

where h…i denotes the average over one oscillation period
T ¼ 2π=ω0. Using Eqs. (56), (62), (63), and (78), we can
write the flux in terms of kðrÞ:

F ¼ Fsx2h
"
2K
π

#
2
&"∂cn

∂u
#

2
'

2k2

1 − 2k2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
π2f

ð1þ αÞ24K2ð1 − 2k2Þ

s

; ð88Þ

where we defined the dimensionless radial coordinate

x ¼ r
rs

>
1

4
ð89Þ

and the characteristic flux

Fs ¼ −
r2sm4ð1þ αÞ2

λ4
≃ −

r2sm4

λ4
; ð90Þ

as typically α≲ 10−5. The average value of ð∂cn∂u Þ
2 is

&"∂cn
∂u

#
2
'

¼ 1 − k2 þ ð2k2 − 1ÞC2 − k2C4 ð91Þ

with [95]

C2 ≡ hcn2i ¼ 1

k2

"
E
K

þ k2 − 1

#
; ð92Þ

C4 ≡ hcn4i ¼ 1

3k2
ð2ð2k2 − 1ÞC2 þ 1 − k2Þ; ð93Þ

where EðkÞ is the complete elliptic integral of the second
kind, defined by [96,97]

0 ≤ k < 1∶ EðkÞ ¼
Z

π=2

0
dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p
: ð94Þ

We can see from Eq. (90) that the flux diverges as 1=λ4.
This is not surprising, since for a vanishing self-interaction
we must recover the free-scalar case studied in Sec. III,
where the flux is arbitrary and has no upper bound. We also
find that the flux scales as r2sm4, which is also natural, as we
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the last term in the generalized Euler equation (62) becomes
negligible as f → 0 at the Schwarzschild radius, and
Eq. (62) gives

r →
rs
4
∶

π
2
β0 ¼ −ω0

ffiffiffi
h
f

s

: ð81Þ

This agrees indeed with Eq. (36) (except for the prefactor α
associated with the finite soliton size).

C. Steady state and constant flux

So far, any profile kðrÞ with the outer boundary con-
dition (80) and kðrÞ < 1=

ffiffiffi
2

p
at all radii provides a leading-

order solution (55). Indeed, given kðrÞ, Eq. (62) provides
the velocity β0, while Eq. (63) provides the amplitude ϕ0,
i.e., the “density.” Clearly, we do not expect such a large
space of physical solutions. It would seem more natural to
recover a specific profile, such as the unique transonic
solution found for hydrodynamics in nonrelativistic [98]
and relativistic [99] infall. In fact, at this stage we miss a
constant flux constraint associated with a continuity equa-
tion, as in Eq. (35). In the relativistic case, the continuity
equation is associated with the component ν ¼ 0 of the
conservation equations ∇μT

μ
ν ¼ 0. The energy-momentum

tensor of the scalar field ϕ gives

ρϕ ≡ −T0
0 ¼

1

2f

"∂ϕ
∂t

#
2

þ 1

2h

"∂ϕ
∂r

#
2

þ V ð82Þ

and

Tr
0 ¼

1

h
∂ϕ
∂r

∂ϕ
∂t : ð83Þ

At leading order in the large-mass limit, we obtain from
Eqs. (55), (58), (59), (62), and (63)

ρϕ ¼ ð1 − k2Þm2ϕ2
0

2ð1 − 2k2Þ
þ ϕ2

0

ðKβ0Þ2

h

× ½1 − k2 þ ð2k2 − 1Þcn2 − k2cn4& ð84Þ

and

Tr
0 ¼ −ϕ2

0ω
Kβ0

h

"∂cn
∂u

#
2

: ð85Þ

Then, using again Eqs. (58), (59), and (61), we can check
that the conservation equation ∇μT

μ
0 ¼ 0, which reads

_ρ −
1ffiffiffiffiffiffiffiffi
fh3

p
r2

∂
∂r

$ ffiffiffiffiffiffiffiffi
fh3

q
r2Tr

0

%
¼ 0; ð86Þ

is satisfied at the leading order. We can note that ρϕ is not
constant with time, as the terms cn2 and cn4 in the bracket

in Eq. (84) oscillate with the frequency ω0. At the leading
order, the continuity equation (86) is governed by the fast
oscillation of these terms. However, to ensure that sub-
leading orders do not show secular terms that grow with
time, we clearly require that in the steady state the averaged
value of ρϕ over one oscillation period does not depend on
time. This gives the condition of constant flux

F ¼ −
ffiffiffiffiffiffiffiffi
fh3

q
r2hTr

0i ¼
ffiffiffiffiffiffi
fh

p
r2ϕ2

0ωKβ0
&"∂cn

∂u
#

2
'
; ð87Þ

where h…i denotes the average over one oscillation period
T ¼ 2π=ω0. Using Eqs. (56), (62), (63), and (78), we can
write the flux in terms of kðrÞ:

F ¼ Fsx2h
"
2K
π

#
2
&"∂cn

∂u
#

2
'

2k2

1 − 2k2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
π2f

ð1þ αÞ24K2ð1 − 2k2Þ

s

; ð88Þ

where we defined the dimensionless radial coordinate

x ¼ r
rs

>
1

4
ð89Þ

and the characteristic flux

Fs ¼ −
r2sm4ð1þ αÞ2

λ4
≃ −

r2sm4

λ4
; ð90Þ

as typically α≲ 10−5. The average value of ð∂cn∂u Þ
2 is

&"∂cn
∂u

#
2
'

¼ 1 − k2 þ ð2k2 − 1ÞC2 − k2C4 ð91Þ

with [95]

C2 ≡ hcn2i ¼ 1

k2

"
E
K

þ k2 − 1

#
; ð92Þ

C4 ≡ hcn4i ¼ 1

3k2
ð2ð2k2 − 1ÞC2 þ 1 − k2Þ; ð93Þ

where EðkÞ is the complete elliptic integral of the second
kind, defined by [96,97]

0 ≤ k < 1∶ EðkÞ ¼
Z

π=2

0
dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p
: ð94Þ

We can see from Eq. (90) that the flux diverges as 1=λ4.
This is not surprising, since for a vanishing self-interaction
we must recover the free-scalar case studied in Sec. III,
where the flux is arbitrary and has no upper bound. We also
find that the flux scales as r2sm4, which is also natural, as we
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Nonlinear KG eq. of motion:

nonlinear term due to 
the self-interactions 

In the large-mass limit, use a nonlinear local approximation:

is a generalization of the cosine to the nonlinear (cubic) oscillator:cn(u, k)

k = 0 : cn(u, k = 0) = cos(u) (Jacobi elliptic function) 

are slow functions of r rr ⌧ m

the frequency and the phase are of the order of m

Nonlinear oscillator:

! ⇠ � ⇠ m

�0(r), !(r), �(r), K(r), k(r)

Substituting into the K.G. eq. determines all parameters                        in terms of  {�0, !, �, K} k(r)

(at leading order)

k(r) is determined by a self-consistency constraint: the mean flux (averaged over the fast oscillations) 
must be constant over radius



can expect F ∼ ρr2vr, with r ¼ rs=4, vr ∼ 1 at the
Schwarzschild radius, and ρ ∼m4 from dimensional
analysis.

D. Critical solution

1. Function Fðk; xÞ
For each radius x, Eq. (88) gives the flux F as a function

of k. We show in Fig. 1 the normalized flux F=Fs as a
function of the modulus k for several values of the radial
coordinate x. The modulus k is constrained to range
between 0 and the value kþðxÞ < 1=

ffiffiffi
2

p
where the square

root vanishes. The flux vanishes at both boundaries, k ¼ 0
and k ¼ kþ, and shows a single maximum jFmaxðxÞj at a
position kmaxðxÞ somewhat below kþðxÞ. The upper bound
kþ and the peak at kmax shift to lower values as x grows.
The maximum jFmaxðxÞj grows at both small and large x
and shows a minimum at x⋆ ≃ 2.43 with

Fc ≡ Fmaxðx⋆Þ ¼ F⋆Fs with F⋆ ≃ 0.66: ð95Þ

We show FmaxðxÞ=Fs in Fig. 2. In Figs. 1 and 2, we use for
the metric functions hðxÞ and fðxÞ the Schwarzschild
functions (7). At the transition radius rsg, the gravitational
potential receives equal contributions from the central BH
and the scalar cloud, and at a larger radius inside the soliton
core it remains almost constant, equal to the soliton core
value Φsð0Þ. Therefore, beyond rsg the factors h and f are
almost constant, and the flux function Fðx; kÞ keeps a
constant shape in k, with a simple multiplicative factor x2.
Thus, beyond rsg the peak value jFmaxðxÞj keeps increasing
as x2.
This behavior of Fðk; xÞ selects a unique value for the

flux, in a fashion similar to the unique transonic solution
found in the case of hydrodynamical infall onto a BH

[98,99]. First, we can see that jFj must be smaller than or
equal to the critical value jFcj; otherwise, there would exist
no solution kðxÞ to the flux constraint equation (88) around
x⋆. If jFj < jFcj, there exist two distinct solutions k1ðxÞ <
k2ðxÞ at each radius, on either side of the peak kmaxðxÞ, and
a continuous function kðxÞmust remain on the same side of
the peak throughout. It is only for the critical value F ¼ Fc
that the function kðxÞ can switch from the branch k1ðxÞ to
k2ðxÞ, at the radius x⋆where both solutions coincidewith the
peak. The two solutions k1ðxÞ < k2ðxÞ are shown in Fig. 3
forF ¼ Fc=3 (the upper and lower dashed curves that do not
meet) and for F ¼ Fc [the inner dotted curves that meet at
x⋆ ≃ 2.43, which coincide with the critical solution kcðxÞ,
shown by the solid line, on either side of x⋆].
As we shall see below, the boundary conditions require

that k ¼ k2ðxÞ at large radii and k ¼ k1ðxÞ close to the
Schwarzschild radius. Therefore, the function kðxÞ must
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FIG. 1. Normalized flux Fðk; xÞ=Fs as a function of the
modulus k, for various values of the radial coordinate x, from
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0.66 of the peak, reached for x ¼ x⋆ ≃ 2.43.
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the last term in the generalized Euler equation (62) becomes
negligible as f → 0 at the Schwarzschild radius, and
Eq. (62) gives

r →
rs
4
∶

π
2
β0 ¼ −ω0

ffiffiffi
h
f

s

: ð81Þ

This agrees indeed with Eq. (36) (except for the prefactor α
associated with the finite soliton size).

C. Steady state and constant flux

So far, any profile kðrÞ with the outer boundary con-
dition (80) and kðrÞ < 1=

ffiffiffi
2

p
at all radii provides a leading-

order solution (55). Indeed, given kðrÞ, Eq. (62) provides
the velocity β0, while Eq. (63) provides the amplitude ϕ0,
i.e., the “density.” Clearly, we do not expect such a large
space of physical solutions. It would seem more natural to
recover a specific profile, such as the unique transonic
solution found for hydrodynamics in nonrelativistic [98]
and relativistic [99] infall. In fact, at this stage we miss a
constant flux constraint associated with a continuity equa-
tion, as in Eq. (35). In the relativistic case, the continuity
equation is associated with the component ν ¼ 0 of the
conservation equations ∇μT

μ
ν ¼ 0. The energy-momentum

tensor of the scalar field ϕ gives

ρϕ ≡ −T0
0 ¼

1

2f

"∂ϕ
∂t

#
2

þ 1

2h

"∂ϕ
∂r

#
2
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and
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1
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At leading order in the large-mass limit, we obtain from
Eqs. (55), (58), (59), (62), and (63)

ρϕ ¼ ð1 − k2Þm2ϕ2
0

2ð1 − 2k2Þ
þ ϕ2

0

ðKβ0Þ2

h

× ½1 − k2 þ ð2k2 − 1Þcn2 − k2cn4& ð84Þ

and

Tr
0 ¼ −ϕ2

0ω
Kβ0

h

"∂cn
∂u

#
2

: ð85Þ

Then, using again Eqs. (58), (59), and (61), we can check
that the conservation equation ∇μT

μ
0 ¼ 0, which reads

_ρ −
1ffiffiffiffiffiffiffiffi
fh3

p
r2

∂
∂r

$ ffiffiffiffiffiffiffiffi
fh3

q
r2Tr

0

%
¼ 0; ð86Þ

is satisfied at the leading order. We can note that ρϕ is not
constant with time, as the terms cn2 and cn4 in the bracket

in Eq. (84) oscillate with the frequency ω0. At the leading
order, the continuity equation (86) is governed by the fast
oscillation of these terms. However, to ensure that sub-
leading orders do not show secular terms that grow with
time, we clearly require that in the steady state the averaged
value of ρϕ over one oscillation period does not depend on
time. This gives the condition of constant flux

F ¼ −
ffiffiffiffiffiffiffiffi
fh3

q
r2hTr

0i ¼
ffiffiffiffiffiffi
fh

p
r2ϕ2

0ωKβ0
&"∂cn

∂u
#

2
'
; ð87Þ

where h…i denotes the average over one oscillation period
T ¼ 2π=ω0. Using Eqs. (56), (62), (63), and (78), we can
write the flux in terms of kðrÞ:

F ¼ Fsx2h
"
2K
π

#
2
&"∂cn

∂u
#

2
'

2k2

1 − 2k2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
π2f

ð1þ αÞ24K2ð1 − 2k2Þ

s

; ð88Þ

where we defined the dimensionless radial coordinate

x ¼ r
rs

>
1

4
ð89Þ

and the characteristic flux

Fs ¼ −
r2sm4ð1þ αÞ2

λ4
≃ −

r2sm4

λ4
; ð90Þ

as typically α≲ 10−5. The average value of ð∂cn∂u Þ
2 is

&"∂cn
∂u

#
2
'

¼ 1 − k2 þ ð2k2 − 1ÞC2 − k2C4 ð91Þ

with [95]

C2 ≡ hcn2i ¼ 1

k2

"
E
K

þ k2 − 1

#
; ð92Þ

C4 ≡ hcn4i ¼ 1

3k2
ð2ð2k2 − 1ÞC2 þ 1 − k2Þ; ð93Þ

where EðkÞ is the complete elliptic integral of the second
kind, defined by [96,97]

0 ≤ k < 1∶ EðkÞ ¼
Z

π=2

0
dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p
: ð94Þ

We can see from Eq. (90) that the flux diverges as 1=λ4.
This is not surprising, since for a vanishing self-interaction
we must recover the free-scalar case studied in Sec. III,
where the flux is arbitrary and has no upper bound. We also
find that the flux scales as r2sm4, which is also natural, as we
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the last term in the generalized Euler equation (62) becomes
negligible as f → 0 at the Schwarzschild radius, and
Eq. (62) gives

r →
rs
4
∶

π
2
β0 ¼ −ω0

ffiffiffi
h
f

s

: ð81Þ

This agrees indeed with Eq. (36) (except for the prefactor α
associated with the finite soliton size).

C. Steady state and constant flux

So far, any profile kðrÞ with the outer boundary con-
dition (80) and kðrÞ < 1=

ffiffiffi
2

p
at all radii provides a leading-

order solution (55). Indeed, given kðrÞ, Eq. (62) provides
the velocity β0, while Eq. (63) provides the amplitude ϕ0,
i.e., the “density.” Clearly, we do not expect such a large
space of physical solutions. It would seem more natural to
recover a specific profile, such as the unique transonic
solution found for hydrodynamics in nonrelativistic [98]
and relativistic [99] infall. In fact, at this stage we miss a
constant flux constraint associated with a continuity equa-
tion, as in Eq. (35). In the relativistic case, the continuity
equation is associated with the component ν ¼ 0 of the
conservation equations ∇μT

μ
ν ¼ 0. The energy-momentum

tensor of the scalar field ϕ gives

ρϕ ≡ −T0
0 ¼

1

2f

"∂ϕ
∂t

#
2

þ 1

2h

"∂ϕ
∂r

#
2

þ V ð82Þ

and

Tr
0 ¼

1

h
∂ϕ
∂r

∂ϕ
∂t : ð83Þ

At leading order in the large-mass limit, we obtain from
Eqs. (55), (58), (59), (62), and (63)

ρϕ ¼ ð1 − k2Þm2ϕ2
0

2ð1 − 2k2Þ
þ ϕ2

0

ðKβ0Þ2

h

× ½1 − k2 þ ð2k2 − 1Þcn2 − k2cn4& ð84Þ

and

Tr
0 ¼ −ϕ2

0ω
Kβ0

h

"∂cn
∂u

#
2

: ð85Þ

Then, using again Eqs. (58), (59), and (61), we can check
that the conservation equation ∇μT

μ
0 ¼ 0, which reads

_ρ −
1ffiffiffiffiffiffiffiffi
fh3

p
r2

∂
∂r

$ ffiffiffiffiffiffiffiffi
fh3

q
r2Tr

0

%
¼ 0; ð86Þ

is satisfied at the leading order. We can note that ρϕ is not
constant with time, as the terms cn2 and cn4 in the bracket

in Eq. (84) oscillate with the frequency ω0. At the leading
order, the continuity equation (86) is governed by the fast
oscillation of these terms. However, to ensure that sub-
leading orders do not show secular terms that grow with
time, we clearly require that in the steady state the averaged
value of ρϕ over one oscillation period does not depend on
time. This gives the condition of constant flux

F ¼ −
ffiffiffiffiffiffiffiffi
fh3

q
r2hTr

0i ¼
ffiffiffiffiffiffi
fh

p
r2ϕ2

0ωKβ0
&"∂cn

∂u
#

2
'
; ð87Þ

where h…i denotes the average over one oscillation period
T ¼ 2π=ω0. Using Eqs. (56), (62), (63), and (78), we can
write the flux in terms of kðrÞ:

F ¼ Fsx2h
"
2K
π

#
2
&"∂cn

∂u
#

2
'

2k2

1 − 2k2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
π2f

ð1þ αÞ24K2ð1 − 2k2Þ

s

; ð88Þ

where we defined the dimensionless radial coordinate

x ¼ r
rs

>
1

4
ð89Þ

and the characteristic flux

Fs ¼ −
r2sm4ð1þ αÞ2

λ4
≃ −

r2sm4

λ4
; ð90Þ

as typically α≲ 10−5. The average value of ð∂cn∂u Þ
2 is

&"∂cn
∂u

#
2
'

¼ 1 − k2 þ ð2k2 − 1ÞC2 − k2C4 ð91Þ

with [95]

C2 ≡ hcn2i ¼ 1

k2

"
E
K

þ k2 − 1

#
; ð92Þ

C4 ≡ hcn4i ¼ 1

3k2
ð2ð2k2 − 1ÞC2 þ 1 − k2Þ; ð93Þ

where EðkÞ is the complete elliptic integral of the second
kind, defined by [96,97]

0 ≤ k < 1∶ EðkÞ ¼
Z

π=2

0
dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p
: ð94Þ

We can see from Eq. (90) that the flux diverges as 1=λ4.
This is not surprising, since for a vanishing self-interaction
we must recover the free-scalar case studied in Sec. III,
where the flux is arbitrary and has no upper bound. We also
find that the flux scales as r2sm4, which is also natural, as we
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At any radius   , the constant-flux constraint                    selects 2 possible values of    ,kx

k1  k2

k1 : k2 :high-velocity branch low-velocity branch

F (k, x) = F0

1) To have a solution to the constraint at all radii, we need
F (k, x) = F0 F0  F?

3) To switch in a continuous manner from the left (high-velocity) branch at low radii, to 
the right (low-velocity) branch at large radii, the flux must be equal to the critical value: F0 = F?

Mean flux              
as a function of parameter    , 
at several radii

k
F (k, x)

x

high-velocity branch

low-velocity branch

critical value of the flux

2) The boundary conditions require to be on the high-velocity branch close to the BH 
(~ free fall into the BH) and on the low-velocity branch at large radii (static soliton).

Critical flux:

This is similar to the hydrodynamic case, which selects a unique transonic solution.
Bondi 1952, Michel 1972



Because the metric function fðrÞ goes to zero at the
Schwarzschild radius, as fðrÞ ∼ ðr − rs=4Þ2, the velocity
vr ∼ ðr − rs=4Þ−1 and the density hρi ∼ ðr − rs=4Þ−2
diverge at the Schwarzschild radius. On the other hand,
at a large distance, Eq. (104) gives

r ≫ rsg∶ vr ¼ −
F⋆m4

λ4ρx2
: ð106Þ

E. Behavior at the Schwarzschild radius in
isotropic coordinates

As for the case of the free scalar field studied in Sec. III,
the radial velocity vr (104) and the density ρϕ (105),
defined by the energy-momentum tensor associated with
the isotropic metric, diverge at the Schwarzschild radius
because of the metric factor 1=f. Thus, from Eq. (104) we
obtain close to the Schwarzschild radius

r → rs=4∶
πβ0

2m
∼ −

16ð1þ αÞmrs
πð4r − rsÞ

; ð107Þ

β ∼ −
4ð1þ αÞmrs

π
ln
!
4r − rs
4rs

"
: ð108Þ

F. Behavior at the Schwarzschild radius in
Eddington coordinates

Again, the divergence at the horizon is an artifact due to
the choice of coordinates, and by going to the more
appropriate Eddington metric (45) we obtain finite quan-
tities. Thus, substituting the result (108) into Eq. (55) and
using the Eddington coordinates as in the metric (45), we
obtain

r̃ → rs∶ ϕ ¼ ϕscn
#
2Ks

π
ð1þ αÞmðt̃þ r̃Þ; ks

$
; ð109Þ

where the modulus ks at the Schwarzschild radius was
obtained in Eq. (102) and the amplitude ϕs is given by
Eq. (63) in terms of ks. As for the free scalar (48), the scalar
field is well defined at the horizon, and we recover an
ingoing solution with unity velocity. However, the self-
interactions remain relevant down to the horizon, as (109)
differs from the cosine (i.e., harmonic) expression (48) of
the free case. We now obtain a nonlinear radial wave, with
higher-order harmonics as given by the expansion (57).

G. Density profile

From Eqs. (46) and (55), using Eqs. (58) and (59), the
energy density associated with the Eddington coordinates is
given, at leading order in the large-m limit, by

ρ̃ϕ ¼
m4

λ4

k2

1−2k2

%
½1−k2þð2k2−1Þcn2−k2cn4&

×

"
2−fþ 1

f

 
1−f−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− π2f
ð1−2k2Þ4K2ð1þαÞ2

s !2#

×
!
2Kð1þαÞ

π

"
2

þ cn2þ k2

1−2k2
cn4

'
: ð110Þ

This is the generalization of Eq. (49) to the case of quartic
self-interaction. In terms of the flux Fc, we obtain, using
Eq. (90) and averaging over the fast oscillations,

hρ̃ϕi¼−
Fc

F⋆r2s

k2

1−2k2

%
½1−k2þð2k2−1ÞC2−k2C4&

×

2

42−fþ1

f

0

@1−f−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−
π2f

ð1−2k2Þ4K2ð1þαÞ2

s 1

A
2
3

5

×
!
2K
π

"
2

þ 1

ð1þαÞ2

!
C2þ

k2

1−2k2
C4

"'
; ð111Þ

which generalizes Eq. (50). Again, this energy density
remains finite at the Schwarzschild radius. Neglecting α≪1
and using ks ≃ 0.54, we obtain

r̃ ¼ rs; r ¼ rs
4
∶ hρ̃ϕi ≃ 1.2

m4

λ4
≃ 0.9ρa: ð112Þ

Contrary to the case of the free scalar, the flux Fc and the
density ρ̃ϕ cannot grow arbitrarily large and take only one
specific value, determined by the self-interactions. As could
be expected, the density (112) is set by the characteristic
density ρa defined in Eq. (66), which measures the strength
of the self-interactions. The unboundedness of the free case
is recovered by the fact that hρ̃ϕi → ∞ when λ4 → 0.
We can see that all terms in Eq. (110) are of the same

order. This means that the terms associated with the self-
interaction potential are of the same order as those
associated with the quadratic part. Thus, close to the
BH, the self-interaction potential can no longer be treated
as a perturbation, which was the case on cosmological and
galactic scales. This also corresponds to the fact that the
modulus kc becomes of the order of unity close to the
Schwarzschild radius [see (102)], and the Jacobi elliptic
function significantly deviates from a cosine. Moreover, we
can see that the slope of the density profile is different from
the exponent −3=2 obtained in the free case in Eq. (52).
Indeed, from Eq. (96), we obtain

rs ≪ r ≪ rsg∶ k ≃ kþ ≃
ffiffiffiffiffiffiffi
2rs
3r

r
: ð113Þ

This leads to
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- at the horizon: nonlinear ingoing radial wave:

Schwarzschild radial coordinate, 
Eddington time

The self-interactions remain relevant and 
determine higher-order harmonics.

characteristic density:

_s
m
þ ð∇⃗sÞ2

2m2
¼ −ðΦþΦIÞ;

_v⃗þ ðv⃗ · ∇⃗Þv⃗ ¼ −∇⃗ðΦþΦIÞ; ð65Þ

where ΦI is given by [89]

ΦIðρÞ ¼
ρ
ρa

; ρa ≡ 4m4

3λ4
: ð66Þ

This pressure associated with the self-interaction ΦI allows
the scalar cloud to reach an hydrostatic equilibrium, where
this repulsive self-interaction balances the self-gravity. This
gives the soliton profile [89]

ρðrÞ ¼ ρsð0Þ
sinðr=raÞ
r=ra

; ΦIðrÞ ¼ ΦIsð0Þ
sinðr=raÞ
r=ra

;

ð67Þ

with v⃗ ¼ 0 and

ra ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4πGρa
p : ð68Þ

The soliton has a flat inner core and a finite radius
Rs ¼ πra. Inside the soliton, the hydrostatic equilibrium
condition (65) gives ∇⃗ðΦþΦIÞ ¼ 0, and we have

r ≤ Rs∶ ΦþΦI ¼ α; ð69Þ

where α is a constant, given by the value of the Newtonian
potential at the boundary of the soliton,

α ¼ ΦðRsÞ; ð70Þ

as ΦIðRsÞ ¼ 0. In terms of the scalar fields ψ and ϕ, this
gives

ψ ¼
ffiffiffiffi
ρ
m

r
e−iαmt; hence; s ¼ −αmt; ð71Þ

and

ϕ ¼
ffiffiffiffiffi
2ρ

p

m
cos½ð1þ αÞmt&: ð72Þ

Large-radius solution.—At large radii but within the
soliton radius, rsg ≪ r ≪ Rs, we are in the weak-gravity
regime and we approach the soliton core solution, with
Φ ≃Φsð0Þ ≲ 10−5 and ρ ≃ ρsð0Þ. We also have ΦI ¼ α−
Φ ≃ −Φsð0Þ, and the self-interaction potential VI ∼ ρΦI ≪
ρ is much smaller than the quadratic part; hence,
λ4ϕ4 ≪ m2ϕ2. Therefore, we can see from Eq. (63) that
we have at leading order

k2 ¼ λ4ϕ2
0

2m2
þ ' ' ' ≪ 1; ð73Þ

where the dots stand for higher-order terms. From the
expansion (57) and the series expansions [97]

KðkÞ ¼ π
2

"
1þ k2

4
þ ' ' '

#
; ð74Þ

qðkÞ ¼ k2

16

"
1þ k2

8
þ ' ' '

#
; ð75Þ

we obtain at leading order

k ≪ 1∶ ϕ ¼ ϕ0 cosðω0t − πβ=2Þ þ ' ' ' : ð76Þ

The comparison with Eq. (72) gives

rsg ≪ r ≪ Rs∶ ϕ0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρsð0Þ

p

m
; β ≃ 0; ð77Þ

and

ω0 ¼ ð1þ αÞm: ð78Þ

Indeed, as the soliton solution (72) corresponds to hydro-
static equilibrium with v⃗ ¼ 0, the velocity β must become
negligible at large radii in order tomatchwith the soliton.We
can now check that this is consistent with Eqs. (62) and (63).
Equation (62) with β ¼ 0 gives, at leading order inΦ and k2,

ω0 ¼ m
"
1þΦþ 3

4
k2
#
: ð79Þ

On theother hand, Eq. (63) gaveEq. (73).UsingEq. (77), this
yields

k2 ¼ λ4ρ
m4

¼ 4

3
ΦI: ð80Þ

Then, Eq. (79) reads ω0 ¼ mð1þΦþΦIÞ ¼ mð1þ αÞ,
where we used the hydrostatic result (69), and we recover
Eq. (78). This shows that this large-radius asymptote is self-
consistent, provided β is negligible. This gives the large-
radius asymptotic values of ϕ0ðrÞ and kðrÞ, from Eqs. (77)
and (80), in the constant-density core of the soliton. The
uniform oscillation frequency ω0 is then set by this large-
radius boundary condition in Eq. (78). Note that typically
α≲ 10−5 from Eq. (70). Thus, the angular oscillation
frequency ω0 remains very close to m.

2. Small-radius boundary condition

Close to the Schwarzschild radius, we can expect the
self-interaction pressure to be negligible and to recover the
free-scalar infall (36) (but we shall see below that the self-
interaction plays a role for the scalar profile down to the
Schwarzschild radius, as it dictates the constant flux of
the steady state). Indeed, as long as k remains below 1=

ffiffiffi
2

p
,
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characteristic flux: Fs =
r2sm

4

�4

greater repulsive self-interactions decrease the scalar-field energy density and flux.

- intermediate radii (weak gravity dominated by the BH mass): rs ≪ r ≪ rsg∶ hρ̃ϕi ∝ r−1 and vr ∝ r−1: ð114Þ

As compared with the free case (52), the density falls off
more slowly at large radii while the velocity decreases
faster.
We show in Fig. 4 the scalar-field profiles of the free and

interacting cases, for the same value Fc of the flux. Both
densities are of the same order at the Schwarzschild radius,
but we can clearly see the two different slopes for r ≫ rs,
with the slower falloff for the interacting case. This
corresponds in turns to a faster decay of the radial velocity.
This is not surprising, since the pressure support provided
by the self-interaction balances gravity and stabilizes the
scalar-field soliton obtained at large radii, as recalled in
Sec. IV B 1, and slows down the infall onto the central BH
at smaller radii. On the other hand, near the Schwarzschild
radius, gravity cannot be resisted, and the radial velocity
becomes of the order of unity in both cases.

H. Transition radius

From Eq. (114), we obtain the more explicit scalings

rs < r < rsg∶ ρ̃ϕ ∼ ρa
rs
r
; vr ∼ −

rs
r
: ð115Þ

This BH-dominated regime stops at the radius rsg where the
scalar-field density has decreased down to the soliton core
density ρs. This gives

rsg ¼ rs
ρa
ρs

: ð116Þ

From Eqs. (11) and (66), we find at this radius

r¼ rsg∶ΦBH ¼−
ρs
2ρa

; ΦI ¼
ρs
ρa

; vr∼−
ρs
ρa

; ð117Þ

where ΦBH is the Newtonian potential associated with the
central BH. Normalizing the scalar-field Newtonian poten-
tial Φϕ at large radii, beyond the soliton radius, it follows
the soliton profile (69) down to rsg, where the mass
distribution starts to deviate from the flat soliton solution.
Thus, we also have

r ¼ rsg∶ Φϕ ¼ α −ΦI ∼ −
ρs
ρa

: ð118Þ

Then, we can check that we indeed have Φϕ ∼ΦBH at the
transition radius rsg given by Eq. (116). From Eq. (106), we
find that at larger radii, up to the soliton radius Rs, we have

rsg < r < Rs∶ ρ̃ϕ ∼ ρs; vr ∼ −
ρs
ρa

r2sg
r2

: ð119Þ

Of course, the spherical flux r2ρ̃ϕvr scales as r0, that is,
remains constant, in both small and large radii regimes
(115) and (119).
For this analysis to be valid, we must check that the

transition radius rsg is smaller than the soliton radius Rs.
Using Eqs. (68) and (116), with Rs ∼ ra, we find that rsg <
Rs corresponds to M < Ms, whereMs ∼ ρsr3a is the soliton
mass. The ratio M=Mh of the supermassive central BH
mass to the halo dark matter mass is of the order of 10−5 −
10−4 [100]. On the other hand, the ratio Ms=Mh of the
soliton mass to the halo dark matter mass is of the order of
10−3 − 1 [89]. Therefore, we typically have M ≪ Ms, and
the radius rsg that marks the central region dominated
by the BH gravitational potential is significantly smaller
than the soliton radius Rs.

I. Scalar dark matter mass at small radii

Some scalar-field dark matter models can be constrained
by the measurement of stellar dynamics at small radii, near
the central supermassive BH. For instance, an extended
dark matter distribution around the BH can affect the orbits
of local stars and lead to significant precession. This
requires accurate measurements at very small radii, which
start to be available for a few cases, such as the Sgr A* BH
in the MilkyWay or the M87* BH in the M87 galaxy. In the
first case, the mass distribution is known up to the few
percent level [90], whereas for the latter one, the distribu-
tion is constrained at the order of 10% [91]. This type of
observation has been recently studied in this context
[71,72,101].
In our case, where the scalar dark matter is supported by

the self-interaction pressure, the orders of magnitude are
significantly different from the fuzzy dark matter scenario.
Let us consider the case ρa ∼ 1 eV4 and Rs ≃ 20 kpc. For
theMilkyWay, with a darkmatter halomassMh ∼ 1012 M⊙
and a soliton mass ratio Ms=Mh ∼ 0.03 [89], we obtain a
scalar soliton mass Ms ≃ 3 × 1010 M⊙. On the other hand,
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λ4=0

λ4>0

〈~  
 

ρ φ
〉 /

 |F
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x

FIG. 4. Scalar-field energy density computed in the Eddington
metric, from the Schwarzschild radius up to 104rs, where the
metric potentials are still dominated by the central BH. We show
the free case (50) (dashed line) and the self-interaction case (111)
(solid line), for the same value Fc of the flux.
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- large radii (weak gravity dominated by the scalar-field soliton self-gravity):

rs ≪ r ≪ rsg∶ hρ̃ϕi ∝ r−1 and vr ∝ r−1: ð114Þ

As compared with the free case (52), the density falls off
more slowly at large radii while the velocity decreases
faster.
We show in Fig. 4 the scalar-field profiles of the free and

interacting cases, for the same value Fc of the flux. Both
densities are of the same order at the Schwarzschild radius,
but we can clearly see the two different slopes for r ≫ rs,
with the slower falloff for the interacting case. This
corresponds in turns to a faster decay of the radial velocity.
This is not surprising, since the pressure support provided
by the self-interaction balances gravity and stabilizes the
scalar-field soliton obtained at large radii, as recalled in
Sec. IV B 1, and slows down the infall onto the central BH
at smaller radii. On the other hand, near the Schwarzschild
radius, gravity cannot be resisted, and the radial velocity
becomes of the order of unity in both cases.

H. Transition radius

From Eq. (114), we obtain the more explicit scalings

rs < r < rsg∶ ρ̃ϕ ∼ ρa
rs
r
; vr ∼ −

rs
r
: ð115Þ

This BH-dominated regime stops at the radius rsg where the
scalar-field density has decreased down to the soliton core
density ρs. This gives

rsg ¼ rs
ρa
ρs

: ð116Þ

From Eqs. (11) and (66), we find at this radius

r¼ rsg∶ΦBH ¼−
ρs
2ρa

; ΦI ¼
ρs
ρa

; vr∼−
ρs
ρa

; ð117Þ

where ΦBH is the Newtonian potential associated with the
central BH. Normalizing the scalar-field Newtonian poten-
tial Φϕ at large radii, beyond the soliton radius, it follows
the soliton profile (69) down to rsg, where the mass
distribution starts to deviate from the flat soliton solution.
Thus, we also have

r ¼ rsg∶ Φϕ ¼ α −ΦI ∼ −
ρs
ρa

: ð118Þ

Then, we can check that we indeed have Φϕ ∼ΦBH at the
transition radius rsg given by Eq. (116). From Eq. (106), we
find that at larger radii, up to the soliton radius Rs, we have

rsg < r < Rs∶ ρ̃ϕ ∼ ρs; vr ∼ −
ρs
ρa

r2sg
r2

: ð119Þ

Of course, the spherical flux r2ρ̃ϕvr scales as r0, that is,
remains constant, in both small and large radii regimes
(115) and (119).
For this analysis to be valid, we must check that the

transition radius rsg is smaller than the soliton radius Rs.
Using Eqs. (68) and (116), with Rs ∼ ra, we find that rsg <
Rs corresponds to M < Ms, whereMs ∼ ρsr3a is the soliton
mass. The ratio M=Mh of the supermassive central BH
mass to the halo dark matter mass is of the order of 10−5 −
10−4 [100]. On the other hand, the ratio Ms=Mh of the
soliton mass to the halo dark matter mass is of the order of
10−3 − 1 [89]. Therefore, we typically have M ≪ Ms, and
the radius rsg that marks the central region dominated
by the BH gravitational potential is significantly smaller
than the soliton radius Rs.

I. Scalar dark matter mass at small radii

Some scalar-field dark matter models can be constrained
by the measurement of stellar dynamics at small radii, near
the central supermassive BH. For instance, an extended
dark matter distribution around the BH can affect the orbits
of local stars and lead to significant precession. This
requires accurate measurements at very small radii, which
start to be available for a few cases, such as the Sgr A* BH
in the MilkyWay or the M87* BH in the M87 galaxy. In the
first case, the mass distribution is known up to the few
percent level [90], whereas for the latter one, the distribu-
tion is constrained at the order of 10% [91]. This type of
observation has been recently studied in this context
[71,72,101].
In our case, where the scalar dark matter is supported by

the self-interaction pressure, the orders of magnitude are
significantly different from the fuzzy dark matter scenario.
Let us consider the case ρa ∼ 1 eV4 and Rs ≃ 20 kpc. For
theMilkyWay, with a darkmatter halomassMh ∼ 1012 M⊙
and a soliton mass ratio Ms=Mh ∼ 0.03 [89], we obtain a
scalar soliton mass Ms ≃ 3 × 1010 M⊙. On the other hand,
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rs ≪ r ≪ rsg∶ hρ̃ϕi ∝ r−1 and vr ∝ r−1: ð114Þ
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at smaller radii. On the other hand, near the Schwarzschild
radius, gravity cannot be resisted, and the radial velocity
becomes of the order of unity in both cases.
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where ΦBH is the Newtonian potential associated with the
central BH. Normalizing the scalar-field Newtonian poten-
tial Φϕ at large radii, beyond the soliton radius, it follows
the soliton profile (69) down to rsg, where the mass
distribution starts to deviate from the flat soliton solution.
Thus, we also have

r ¼ rsg∶ Φϕ ¼ α −ΦI ∼ −
ρs
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Then, we can check that we indeed have Φϕ ∼ΦBH at the
transition radius rsg given by Eq. (116). From Eq. (106), we
find that at larger radii, up to the soliton radius Rs, we have
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Of course, the spherical flux r2ρ̃ϕvr scales as r0, that is,
remains constant, in both small and large radii regimes
(115) and (119).
For this analysis to be valid, we must check that the

transition radius rsg is smaller than the soliton radius Rs.
Using Eqs. (68) and (116), with Rs ∼ ra, we find that rsg <
Rs corresponds to M < Ms, whereMs ∼ ρsr3a is the soliton
mass. The ratio M=Mh of the supermassive central BH
mass to the halo dark matter mass is of the order of 10−5 −
10−4 [100]. On the other hand, the ratio Ms=Mh of the
soliton mass to the halo dark matter mass is of the order of
10−3 − 1 [89]. Therefore, we typically have M ≪ Ms, and
the radius rsg that marks the central region dominated
by the BH gravitational potential is significantly smaller
than the soliton radius Rs.

I. Scalar dark matter mass at small radii

Some scalar-field dark matter models can be constrained
by the measurement of stellar dynamics at small radii, near
the central supermassive BH. For instance, an extended
dark matter distribution around the BH can affect the orbits
of local stars and lead to significant precession. This
requires accurate measurements at very small radii, which
start to be available for a few cases, such as the Sgr A* BH
in the MilkyWay or the M87* BH in the M87 galaxy. In the
first case, the mass distribution is known up to the few
percent level [90], whereas for the latter one, the distribu-
tion is constrained at the order of 10% [91]. This type of
observation has been recently studied in this context
[71,72,101].
In our case, where the scalar dark matter is supported by

the self-interaction pressure, the orders of magnitude are
significantly different from the fuzzy dark matter scenario.
Let us consider the case ρa ∼ 1 eV4 and Rs ≃ 20 kpc. For
theMilkyWay, with a darkmatter halomassMh ∼ 1012 M⊙
and a soliton mass ratio Ms=Mh ∼ 0.03 [89], we obtain a
scalar soliton mass Ms ≃ 3 × 1010 M⊙. On the other hand,
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the central supermassiveBH has amassM ≃ 4.3 × 106 M⊙.
This gives a Schwarzschild radius rs ≃ 4 × 10−7 pc and a
transition radius rsg ≃ 0.1 pc. From Eq. (119), we have
in the large-radius regime rsg < r < Rs the scaling
Mϕð< rÞ ∝ r3. Therefore, we obtain at the transition radius
Mϕð< 0.1 pcÞ ≃ 4 × 10−6 M⊙. From Eq. (115), we have in
the small-radius regime rs < r < rsg the scaling
Mϕð< rÞ ∝ r2. This gives, in particular,Mϕð< 0.005 pcÞ≃
10−8 M⊙. The observational constraints areMϕ < 105 M⊙
within 0.005 pc andMϕ < 106 M⊙ within 0.3 pc. Thus, the
soliton mass at small radii is far below the observational
upper bounds. On the other hand, thesemeasurements could
constrain scalar-field models such as the one studied in this
paper but with very different parameters, which would then
play no role on galactic scales and only become relevant at
milliparsec scales.

V. LIFETIME OF THE SCALAR-FIELD SOLITON

At the typical soliton radius ra ¼ Rs=π, Eqs. (116) and
(119) give for the radial velocity vr and the evolution
timescale tc, respectively,

vrðraÞ ∼ −
ρa
ρs

r2s
r2a

; tc ≡ ra
jvrj

∼ ra
ρs
ρa

r2a
r2s

: ð120Þ

To compare the time tc with cosmological timescales,
we define the Hubble time tH and Hubble radius RH as,
respectively,

tH ¼ 1=H; RH ¼ 1=H; ð121Þ

and we obtain

tc ∼ tH

!
ρ̄c
ρa

"
5=2 ρs

ρ̄c

!
RH

rs

"
2

; ð122Þ

where ρ̄c ¼ 3H2=ð8πGÞ is the cosmological critical density.
This also reads at z ¼ 0 as

tc ∼ 103tH
ρs
ρ̄c

!
ρa

1 eV4

"−5=2! M
108 M⊙

"−2
: ð123Þ

For the soliton to have a radius of 20 kpc, so that it shows a
significant departure from the CDM profiles on galactic
scales, we must have ρa ∼ 1 eV4 [89]. Larger characteristic
densities lead to smaller soliton radii. We typically have
ρs=ρ̄c ∼ 105 for the DM overdensity in the soliton core.
Therefore, we find that tc ≫ tH. This means that the DM
solitonic cores can easily survive until today, despite the
infall of their inner layers onto the central supermas-
sive BH.
We also find that astrophysical stellar mass BHs cannot

eat a significant fraction of the galactic DM soliton. Indeed,

for N BHs of unit solar mass, the typical timescale for the
soliton depletion reads

tN ∼ 1019
tH
N

ρs
ρ̄c

!
ρa

1 eV4

"−5=2
: ð124Þ

Since we typically have N < 1011, as only a fraction of the
galactic baryonic mass can be within stellar BHs, we obtain
tN ≫ 108tH and the soliton mass loss is negligible.

VI. DISCUSSION AND CONCLUSION

In this work, we have analyzed steady solutions of
coherent scalar fields in galactic centers that harbor a
supermassive central BH. Neglecting the central BH, such
ultralight scalar DM typically builds a stationary coherent
profile, called a soliton, with a finite radius Rs and a flat
core. This soliton is also embedded in an extended halo of
fluctuating density granules, with a spherically averaged
density profile that is similar to the NFW profile [87] found
in numerical simulations of standard collisionless dark
matter. If Rs is of the order of a few kiloparsecs, this
flattened dark matter profile can have interesting observa-
tional consequences for cosmological and galactic studies.
In contrast with the fuzzy dark matter scenarios, with a
scalar mass m ∼ 10−22 eV, where the soliton is due to the
balance between gravity and the quantum pressure (asso-
ciated with the wave features of the scalar field), we focus
on the case of large scalar mass, typically m ≫ 10−18 eV,
where gravity is instead counterbalanced by the repulsive
self-interaction associated with a quartic potential and the
quantum pressure is negligible.
In this paper, we have considered the impact of the

central supermassive BH on the profile of this soliton and
its lifetime, as it gradually falls onto the BH. As we focus
on the limit of large scalar mass, we are able to perform a
fully nonrelativistic study, from the radius Rs of the soliton
down to the Schwarzschild radius rs. For simplicity, we
discard baryonic effects, but the main features of both the
relativistic infall at small radii and the soliton core at large
radii should remain valid. Baryonic matter will increase
only somewhat the soliton density at intermediate radii,
where it dominates over both the central BH and scalar
gravitational fields. Then, our analysis extends from the
large-radius regime r≲ Rs dominated by the scalar dark
matter self-gravity down to the small-radius regime r ∼ rs
dominated by the BH gravity. The boundary conditions at
both ends determine the profile and the steady infall onto
the supermassive central BH.
First, we have studied the free massive case, associated

with a quadratic scalar potential. As the scalar-field
equation of motion is linear, this behaves in a fashion
similar to a collection of independent particles, with a flux
onto the central BH that is arbitrary and unbounded,
proportional to the density at large radii. As expected, at
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the central supermassiveBH has amassM ≃ 4.3 × 106 M⊙.
This gives a Schwarzschild radius rs ≃ 4 × 10−7 pc and a
transition radius rsg ≃ 0.1 pc. From Eq. (119), we have
in the large-radius regime rsg < r < Rs the scaling
Mϕð< rÞ ∝ r3. Therefore, we obtain at the transition radius
Mϕð< 0.1 pcÞ ≃ 4 × 10−6 M⊙. From Eq. (115), we have in
the small-radius regime rs < r < rsg the scaling
Mϕð< rÞ ∝ r2. This gives, in particular,Mϕð< 0.005 pcÞ≃
10−8 M⊙. The observational constraints areMϕ < 105 M⊙
within 0.005 pc andMϕ < 106 M⊙ within 0.3 pc. Thus, the
soliton mass at small radii is far below the observational
upper bounds. On the other hand, thesemeasurements could
constrain scalar-field models such as the one studied in this
paper but with very different parameters, which would then
play no role on galactic scales and only become relevant at
milliparsec scales.

V. LIFETIME OF THE SCALAR-FIELD SOLITON

At the typical soliton radius ra ¼ Rs=π, Eqs. (116) and
(119) give for the radial velocity vr and the evolution
timescale tc, respectively,

vrðraÞ ∼ −
ρa
ρs

r2s
r2a

; tc ≡ ra
jvrj

∼ ra
ρs
ρa

r2a
r2s

: ð120Þ

To compare the time tc with cosmological timescales,
we define the Hubble time tH and Hubble radius RH as,
respectively,

tH ¼ 1=H; RH ¼ 1=H; ð121Þ

and we obtain

tc ∼ tH
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ρ̄c
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"
5=2 ρs

ρ̄c

!
RH

rs

"
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; ð122Þ

where ρ̄c ¼ 3H2=ð8πGÞ is the cosmological critical density.
This also reads at z ¼ 0 as

tc ∼ 103tH
ρs
ρ̄c

!
ρa

1 eV4

"−5=2! M
108 M⊙

"−2
: ð123Þ

For the soliton to have a radius of 20 kpc, so that it shows a
significant departure from the CDM profiles on galactic
scales, we must have ρa ∼ 1 eV4 [89]. Larger characteristic
densities lead to smaller soliton radii. We typically have
ρs=ρ̄c ∼ 105 for the DM overdensity in the soliton core.
Therefore, we find that tc ≫ tH. This means that the DM
solitonic cores can easily survive until today, despite the
infall of their inner layers onto the central supermas-
sive BH.
We also find that astrophysical stellar mass BHs cannot

eat a significant fraction of the galactic DM soliton. Indeed,

for N BHs of unit solar mass, the typical timescale for the
soliton depletion reads

tN ∼ 1019
tH
N

ρs
ρ̄c

!
ρa

1 eV4

"−5=2
: ð124Þ

Since we typically have N < 1011, as only a fraction of the
galactic baryonic mass can be within stellar BHs, we obtain
tN ≫ 108tH and the soliton mass loss is negligible.

VI. DISCUSSION AND CONCLUSION

In this work, we have analyzed steady solutions of
coherent scalar fields in galactic centers that harbor a
supermassive central BH. Neglecting the central BH, such
ultralight scalar DM typically builds a stationary coherent
profile, called a soliton, with a finite radius Rs and a flat
core. This soliton is also embedded in an extended halo of
fluctuating density granules, with a spherically averaged
density profile that is similar to the NFW profile [87] found
in numerical simulations of standard collisionless dark
matter. If Rs is of the order of a few kiloparsecs, this
flattened dark matter profile can have interesting observa-
tional consequences for cosmological and galactic studies.
In contrast with the fuzzy dark matter scenarios, with a
scalar mass m ∼ 10−22 eV, where the soliton is due to the
balance between gravity and the quantum pressure (asso-
ciated with the wave features of the scalar field), we focus
on the case of large scalar mass, typically m ≫ 10−18 eV,
where gravity is instead counterbalanced by the repulsive
self-interaction associated with a quartic potential and the
quantum pressure is negligible.
In this paper, we have considered the impact of the

central supermassive BH on the profile of this soliton and
its lifetime, as it gradually falls onto the BH. As we focus
on the limit of large scalar mass, we are able to perform a
fully nonrelativistic study, from the radius Rs of the soliton
down to the Schwarzschild radius rs. For simplicity, we
discard baryonic effects, but the main features of both the
relativistic infall at small radii and the soliton core at large
radii should remain valid. Baryonic matter will increase
only somewhat the soliton density at intermediate radii,
where it dominates over both the central BH and scalar
gravitational fields. Then, our analysis extends from the
large-radius regime r≲ Rs dominated by the scalar dark
matter self-gravity down to the small-radius regime r ∼ rs
dominated by the BH gravity. The boundary conditions at
both ends determine the profile and the steady infall onto
the supermassive central BH.
First, we have studied the free massive case, associated

with a quadratic scalar potential. As the scalar-field
equation of motion is linear, this behaves in a fashion
similar to a collection of independent particles, with a flux
onto the central BH that is arbitrary and unbounded,
proportional to the density at large radii. As expected, at
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Soliton lifetime:

From the value of the inward flux, we can estimate the soliton lifetime, 
until it completely falls into the BH:

To have a soliton of galactic scale (kpc) we need:

the central supermassiveBH has amassM ≃ 4.3 × 106 M⊙.
This gives a Schwarzschild radius rs ≃ 4 × 10−7 pc and a
transition radius rsg ≃ 0.1 pc. From Eq. (119), we have
in the large-radius regime rsg < r < Rs the scaling
Mϕð< rÞ ∝ r3. Therefore, we obtain at the transition radius
Mϕð< 0.1 pcÞ ≃ 4 × 10−6 M⊙. From Eq. (115), we have in
the small-radius regime rs < r < rsg the scaling
Mϕð< rÞ ∝ r2. This gives, in particular,Mϕð< 0.005 pcÞ≃
10−8 M⊙. The observational constraints areMϕ < 105 M⊙
within 0.005 pc andMϕ < 106 M⊙ within 0.3 pc. Thus, the
soliton mass at small radii is far below the observational
upper bounds. On the other hand, thesemeasurements could
constrain scalar-field models such as the one studied in this
paper but with very different parameters, which would then
play no role on galactic scales and only become relevant at
milliparsec scales.

V. LIFETIME OF THE SCALAR-FIELD SOLITON

At the typical soliton radius ra ¼ Rs=π, Eqs. (116) and
(119) give for the radial velocity vr and the evolution
timescale tc, respectively,

vrðraÞ ∼ −
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ρs

r2s
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; tc ≡ ra
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To compare the time tc with cosmological timescales,
we define the Hubble time tH and Hubble radius RH as,
respectively,

tH ¼ 1=H; RH ¼ 1=H; ð121Þ

and we obtain

tc ∼ tH
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where ρ̄c ¼ 3H2=ð8πGÞ is the cosmological critical density.
This also reads at z ¼ 0 as
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For the soliton to have a radius of 20 kpc, so that it shows a
significant departure from the CDM profiles on galactic
scales, we must have ρa ∼ 1 eV4 [89]. Larger characteristic
densities lead to smaller soliton radii. We typically have
ρs=ρ̄c ∼ 105 for the DM overdensity in the soliton core.
Therefore, we find that tc ≫ tH. This means that the DM
solitonic cores can easily survive until today, despite the
infall of their inner layers onto the central supermas-
sive BH.
We also find that astrophysical stellar mass BHs cannot

eat a significant fraction of the galactic DM soliton. Indeed,

for N BHs of unit solar mass, the typical timescale for the
soliton depletion reads

tN ∼ 1019
tH
N

ρs
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: ð124Þ

Since we typically have N < 1011, as only a fraction of the
galactic baryonic mass can be within stellar BHs, we obtain
tN ≫ 108tH and the soliton mass loss is negligible.

VI. DISCUSSION AND CONCLUSION

In this work, we have analyzed steady solutions of
coherent scalar fields in galactic centers that harbor a
supermassive central BH. Neglecting the central BH, such
ultralight scalar DM typically builds a stationary coherent
profile, called a soliton, with a finite radius Rs and a flat
core. This soliton is also embedded in an extended halo of
fluctuating density granules, with a spherically averaged
density profile that is similar to the NFW profile [87] found
in numerical simulations of standard collisionless dark
matter. If Rs is of the order of a few kiloparsecs, this
flattened dark matter profile can have interesting observa-
tional consequences for cosmological and galactic studies.
In contrast with the fuzzy dark matter scenarios, with a
scalar mass m ∼ 10−22 eV, where the soliton is due to the
balance between gravity and the quantum pressure (asso-
ciated with the wave features of the scalar field), we focus
on the case of large scalar mass, typically m ≫ 10−18 eV,
where gravity is instead counterbalanced by the repulsive
self-interaction associated with a quartic potential and the
quantum pressure is negligible.
In this paper, we have considered the impact of the

central supermassive BH on the profile of this soliton and
its lifetime, as it gradually falls onto the BH. As we focus
on the limit of large scalar mass, we are able to perform a
fully nonrelativistic study, from the radius Rs of the soliton
down to the Schwarzschild radius rs. For simplicity, we
discard baryonic effects, but the main features of both the
relativistic infall at small radii and the soliton core at large
radii should remain valid. Baryonic matter will increase
only somewhat the soliton density at intermediate radii,
where it dominates over both the central BH and scalar
gravitational fields. Then, our analysis extends from the
large-radius regime r≲ Rs dominated by the scalar dark
matter self-gravity down to the small-radius regime r ∼ rs
dominated by the BH gravity. The boundary conditions at
both ends determine the profile and the steady infall onto
the supermassive central BH.
First, we have studied the free massive case, associated

with a quadratic scalar potential. As the scalar-field
equation of motion is linear, this behaves in a fashion
similar to a collection of independent particles, with a flux
onto the central BH that is arbitrary and unbounded,
proportional to the density at large radii. As expected, at
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the central supermassiveBH has amassM ≃ 4.3 × 106 M⊙.
This gives a Schwarzschild radius rs ≃ 4 × 10−7 pc and a
transition radius rsg ≃ 0.1 pc. From Eq. (119), we have
in the large-radius regime rsg < r < Rs the scaling
Mϕð< rÞ ∝ r3. Therefore, we obtain at the transition radius
Mϕð< 0.1 pcÞ ≃ 4 × 10−6 M⊙. From Eq. (115), we have in
the small-radius regime rs < r < rsg the scaling
Mϕð< rÞ ∝ r2. This gives, in particular,Mϕð< 0.005 pcÞ≃
10−8 M⊙. The observational constraints areMϕ < 105 M⊙
within 0.005 pc andMϕ < 106 M⊙ within 0.3 pc. Thus, the
soliton mass at small radii is far below the observational
upper bounds. On the other hand, thesemeasurements could
constrain scalar-field models such as the one studied in this
paper but with very different parameters, which would then
play no role on galactic scales and only become relevant at
milliparsec scales.

V. LIFETIME OF THE SCALAR-FIELD SOLITON

At the typical soliton radius ra ¼ Rs=π, Eqs. (116) and
(119) give for the radial velocity vr and the evolution
timescale tc, respectively,
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To compare the time tc with cosmological timescales,
we define the Hubble time tH and Hubble radius RH as,
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and we obtain
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where ρ̄c ¼ 3H2=ð8πGÞ is the cosmological critical density.
This also reads at z ¼ 0 as
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For the soliton to have a radius of 20 kpc, so that it shows a
significant departure from the CDM profiles on galactic
scales, we must have ρa ∼ 1 eV4 [89]. Larger characteristic
densities lead to smaller soliton radii. We typically have
ρs=ρ̄c ∼ 105 for the DM overdensity in the soliton core.
Therefore, we find that tc ≫ tH. This means that the DM
solitonic cores can easily survive until today, despite the
infall of their inner layers onto the central supermas-
sive BH.
We also find that astrophysical stellar mass BHs cannot

eat a significant fraction of the galactic DM soliton. Indeed,

for N BHs of unit solar mass, the typical timescale for the
soliton depletion reads

tN ∼ 1019
tH
N

ρs
ρ̄c

!
ρa

1 eV4

"−5=2
: ð124Þ

Since we typically have N < 1011, as only a fraction of the
galactic baryonic mass can be within stellar BHs, we obtain
tN ≫ 108tH and the soliton mass loss is negligible.

VI. DISCUSSION AND CONCLUSION

In this work, we have analyzed steady solutions of
coherent scalar fields in galactic centers that harbor a
supermassive central BH. Neglecting the central BH, such
ultralight scalar DM typically builds a stationary coherent
profile, called a soliton, with a finite radius Rs and a flat
core. This soliton is also embedded in an extended halo of
fluctuating density granules, with a spherically averaged
density profile that is similar to the NFW profile [87] found
in numerical simulations of standard collisionless dark
matter. If Rs is of the order of a few kiloparsecs, this
flattened dark matter profile can have interesting observa-
tional consequences for cosmological and galactic studies.
In contrast with the fuzzy dark matter scenarios, with a
scalar mass m ∼ 10−22 eV, where the soliton is due to the
balance between gravity and the quantum pressure (asso-
ciated with the wave features of the scalar field), we focus
on the case of large scalar mass, typically m ≫ 10−18 eV,
where gravity is instead counterbalanced by the repulsive
self-interaction associated with a quartic potential and the
quantum pressure is negligible.
In this paper, we have considered the impact of the

central supermassive BH on the profile of this soliton and
its lifetime, as it gradually falls onto the BH. As we focus
on the limit of large scalar mass, we are able to perform a
fully nonrelativistic study, from the radius Rs of the soliton
down to the Schwarzschild radius rs. For simplicity, we
discard baryonic effects, but the main features of both the
relativistic infall at small radii and the soliton core at large
radii should remain valid. Baryonic matter will increase
only somewhat the soliton density at intermediate radii,
where it dominates over both the central BH and scalar
gravitational fields. Then, our analysis extends from the
large-radius regime r≲ Rs dominated by the scalar dark
matter self-gravity down to the small-radius regime r ∼ rs
dominated by the BH gravity. The boundary conditions at
both ends determine the profile and the steady infall onto
the supermassive central BH.
First, we have studied the free massive case, associated

with a quadratic scalar potential. As the scalar-field
equation of motion is linear, this behaves in a fashion
similar to a collection of independent particles, with a flux
onto the central BH that is arbitrary and unbounded,
proportional to the density at large radii. As expected, at
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scalar mass m ∼ 10−22 eV, where the soliton is due to the
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ciated with the wave features of the scalar field), we focus
on the case of large scalar mass, typically m ≫ 10−18 eV,
where gravity is instead counterbalanced by the repulsive
self-interaction associated with a quartic potential and the
quantum pressure is negligible.
In this paper, we have considered the impact of the
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on the limit of large scalar mass, we are able to perform a
fully nonrelativistic study, from the radius Rs of the soliton
down to the Schwarzschild radius rs. For simplicity, we
discard baryonic effects, but the main features of both the
relativistic infall at small radii and the soliton core at large
radii should remain valid. Baryonic matter will increase
only somewhat the soliton density at intermediate radii,
where it dominates over both the central BH and scalar
gravitational fields. Then, our analysis extends from the
large-radius regime r≲ Rs dominated by the scalar dark
matter self-gravity down to the small-radius regime r ∼ rs
dominated by the BH gravity. The boundary conditions at
both ends determine the profile and the steady infall onto
the supermassive central BH.
First, we have studied the free massive case, associated

with a quadratic scalar potential. As the scalar-field
equation of motion is linear, this behaves in a fashion
similar to a collection of independent particles, with a flux
onto the central BH that is arbitrary and unbounded,
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pressure that balances the gravitational attraction, allowing
for clouds of dark matter to be stable on large scales. Such
clouds form solitonlike objects that are candidates for
representing dark-matter halos with a finite core. This
behavior is typically obtained for dark-matter scalar fields
with a positive ϕ4 self-interaction. Moreover, as shown in
[33], these solitons are long lived even when the super-
massive black hole (BH) at the center of the halo is taken
into account. Indeed, the lifetime of such objects is longer
than the age of the Universe.
Here we consider models of scalar dark matter where the

scalar mass term is complemented with k-essence kinetic
terms [34]. On large scales and in the nonrelativistic limit,
these models are equivalent to self-interacting models of
scalars with polynomial interactions. We extend this
analysis to the case where there is a supermassive BH at
the center of the galaxies. In this case, the equivalence with
polynomial models is more subtle; in particular, we show
that regular dark-matter profiles with constant scalar fluxes,
which must behave as ingoing waves close to the BH
horizon, cannot always be connected to the solitonic
solution at large radii. This happens for the ð∂ϕÞ4 model,
where the scalar field cannot sustain a large scalar cloud in the
presence of the central BH. We give conditions for the
existence of regular solutions where the scalar profile exists
and is regular from the BH horizon to spatial infinity. On top
of the usual k-essence stability conditions for the absence of
ghosts and gradient instabilities, we find that the growth of
the k-essence function for large argument cannot be too
steep. In this case, this also guarantees that the models are
stable under quantum corrections, even though the model
becomes nonlinear close to the BH horizon.
The paper is arranged as follows. InSec. II,wedescribe the

models of scalar darkmatter with nonlinear kinetic terms and
connect them in the nonrelativistic regime with theories that
have nonlinear scalar potentials. In Sec. III, we present the
nonlinear solutions to the modified Klein-Gordon equation
and the constant flux solutions. In Sec. IV, we make the
connection between the nonlinear solutions and the large-
radius and nonrelativistic limits. We also consider the
behavior close to the horizon. In Sec. V, we give the example
of quartic Lagrangians for which constant flux solutions
connected to stable solitons at large radii do not exist. We
then discuss when global solutions exist in Sec. VI. Then, in
Sec. VII, we give an explicit example of models for which
constant flux solutions up to very large radii exist and the
lifetime of the soliton is larger than the age of theUniverse. In
Sec. VIII, we discuss the quantum stability of these models.
We finally conclude in Sec. IX.

II. DARK-MATTER SCALAR FIELD WITH
DERIVATIVE SELF-INTERACTIONS

A. Scalar-field action with nonstandard kinetic term

In this paper, we investigate scenarios where the dark-
matter scalar-field action is

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
Λ4KðXÞ −m2

2
ϕ2

#
; ð1Þ

where the normalized kinetic argument X is given by

X ¼ −
1

2Λ4
gμν∂μϕ∂νϕ; ð2Þ

and we decompose the nonstandard kinetic term KðXÞ as
the sum of the standard term X and a nonstandard nonlinear
contribution KI,

KðXÞ ¼ X þ KIðXÞ: ð3Þ

We assume that KI admits the small-X expansion

X ≪ 1∶ KIðXÞ ¼
X

n≥2

kn
n
Xn: ð4Þ

The scale Λ plays the role of the strong coupling scale. We
shall check that the models make sense quantum mechan-
ically even when X ≫ 1; see Sec. VIII.
As shown in [27], in the nonrelativistic and large-mass

regime, where KI ≪ X, the small nonlinear correction KI is
equivalent to a small nonlinear potential VI, with VI ≪
m2ϕ2=2 and

VIðϕÞ ¼ Λ4
X

n≥4

λn
n
ϕn

Λn ; ð5Þ

with

λ2n ¼ −2kn
$
m2

2Λ2

%n
: ð6Þ

This result is obtained at leading order in the large-mass
limit, when the dynamics are averaged over the fast
oscillations eimt driven by the zeroth-order quadratic
Lagrangian Λ4X −m2ϕ2=2.
In the case of a quartic derivative self-interaction, we

obtain

KIðXÞ ¼
k2
2
X2; VIðϕÞ ¼

λ4
4
ϕ4; λ4 ¼−k2

m4

2Λ4
: ð7Þ

For positive λ4, hence negative k2, this gives rise to an
effective pressure on small scales [27]. This leads to a
nonzero Jeans length for the growth of cosmological struc-
tures, and in virialized halos the scalar field can relax to a
static soliton, where the halo self-gravity is balanced by this
effective pressure due to the (derivative) self-interaction.
Therefore, in this paper we focus on the case

λ4 > 0; k2 < 0: ð8Þ
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these models are equivalent to self-interacting models of
scalars with polynomial interactions. We extend this
analysis to the case where there is a supermassive BH at
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polynomial models is more subtle; in particular, we show
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which must behave as ingoing waves close to the BH
horizon, cannot always be connected to the solitonic
solution at large radii. This happens for the ð∂ϕÞ4 model,
where the scalar field cannot sustain a large scalar cloud in the
presence of the central BH. We give conditions for the
existence of regular solutions where the scalar profile exists
and is regular from the BH horizon to spatial infinity. On top
of the usual k-essence stability conditions for the absence of
ghosts and gradient instabilities, we find that the growth of
the k-essence function for large argument cannot be too
steep. In this case, this also guarantees that the models are
stable under quantum corrections, even though the model
becomes nonlinear close to the BH horizon.
The paper is arranged as follows. InSec. II,wedescribe the
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connect them in the nonrelativistic regime with theories that
have nonlinear scalar potentials. In Sec. III, we present the
nonlinear solutions to the modified Klein-Gordon equation
and the constant flux solutions. In Sec. IV, we make the
connection between the nonlinear solutions and the large-
radius and nonrelativistic limits. We also consider the
behavior close to the horizon. In Sec. V, we give the example
of quartic Lagrangians for which constant flux solutions
connected to stable solitons at large radii do not exist. We
then discuss when global solutions exist in Sec. VI. Then, in
Sec. VII, we give an explicit example of models for which
constant flux solutions up to very large radii exist and the
lifetime of the soliton is larger than the age of theUniverse. In
Sec. VIII, we discuss the quantum stability of these models.
We finally conclude in Sec. IX.
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limit, when the dynamics are averaged over the fast
oscillations eimt driven by the zeroth-order quadratic
Lagrangian Λ4X −m2ϕ2=2.
In the case of a quartic derivative self-interaction, we

obtain
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For positive λ4, hence negative k2, this gives rise to an
effective pressure on small scales [27]. This leads to a
nonzero Jeans length for the growth of cosmological struc-
tures, and in virialized halos the scalar field can relax to a
static soliton, where the halo self-gravity is balanced by this
effective pressure due to the (derivative) self-interaction.
Therefore, in this paper we focus on the case
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pressure that balances the gravitational attraction, allowing
for clouds of dark matter to be stable on large scales. Such
clouds form solitonlike objects that are candidates for
representing dark-matter halos with a finite core. This
behavior is typically obtained for dark-matter scalar fields
with a positive ϕ4 self-interaction. Moreover, as shown in
[33], these solitons are long lived even when the super-
massive black hole (BH) at the center of the halo is taken
into account. Indeed, the lifetime of such objects is longer
than the age of the Universe.
Here we consider models of scalar dark matter where the

scalar mass term is complemented with k-essence kinetic
terms [34]. On large scales and in the nonrelativistic limit,
these models are equivalent to self-interacting models of
scalars with polynomial interactions. We extend this
analysis to the case where there is a supermassive BH at
the center of the galaxies. In this case, the equivalence with
polynomial models is more subtle; in particular, we show
that regular dark-matter profiles with constant scalar fluxes,
which must behave as ingoing waves close to the BH
horizon, cannot always be connected to the solitonic
solution at large radii. This happens for the ð∂ϕÞ4 model,
where the scalar field cannot sustain a large scalar cloud in the
presence of the central BH. We give conditions for the
existence of regular solutions where the scalar profile exists
and is regular from the BH horizon to spatial infinity. On top
of the usual k-essence stability conditions for the absence of
ghosts and gradient instabilities, we find that the growth of
the k-essence function for large argument cannot be too
steep. In this case, this also guarantees that the models are
stable under quantum corrections, even though the model
becomes nonlinear close to the BH horizon.
The paper is arranged as follows. InSec. II,wedescribe the

models of scalar darkmatter with nonlinear kinetic terms and
connect them in the nonrelativistic regime with theories that
have nonlinear scalar potentials. In Sec. III, we present the
nonlinear solutions to the modified Klein-Gordon equation
and the constant flux solutions. In Sec. IV, we make the
connection between the nonlinear solutions and the large-
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behavior close to the horizon. In Sec. V, we give the example
of quartic Lagrangians for which constant flux solutions
connected to stable solitons at large radii do not exist. We
then discuss when global solutions exist in Sec. VI. Then, in
Sec. VII, we give an explicit example of models for which
constant flux solutions up to very large radii exist and the
lifetime of the soliton is larger than the age of theUniverse. In
Sec. VIII, we discuss the quantum stability of these models.
We finally conclude in Sec. IX.

II. DARK-MATTER SCALAR FIELD WITH
DERIVATIVE SELF-INTERACTIONS

A. Scalar-field action with nonstandard kinetic term

In this paper, we investigate scenarios where the dark-
matter scalar-field action is

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
Λ4KðXÞ −m2

2
ϕ2

#
; ð1Þ

where the normalized kinetic argument X is given by

X ¼ −
1

2Λ4
gμν∂μϕ∂νϕ; ð2Þ

and we decompose the nonstandard kinetic term KðXÞ as
the sum of the standard term X and a nonstandard nonlinear
contribution KI,

KðXÞ ¼ X þ KIðXÞ: ð3Þ

We assume that KI admits the small-X expansion

X ≪ 1∶ KIðXÞ ¼
X

n≥2

kn
n
Xn: ð4Þ

The scale Λ plays the role of the strong coupling scale. We
shall check that the models make sense quantum mechan-
ically even when X ≫ 1; see Sec. VIII.
As shown in [27], in the nonrelativistic and large-mass

regime, where KI ≪ X, the small nonlinear correction KI is
equivalent to a small nonlinear potential VI, with VI ≪
m2ϕ2=2 and

VIðϕÞ ¼ Λ4
X

n≥4

λn
n
ϕn

Λn ; ð5Þ

with

λ2n ¼ −2kn
$
m2

2Λ2

%n
: ð6Þ

This result is obtained at leading order in the large-mass
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In the case of a quartic derivative self-interaction, we

obtain

KIðXÞ ¼
k2
2
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For positive λ4, hence negative k2, this gives rise to an
effective pressure on small scales [27]. This leads to a
nonzero Jeans length for the growth of cosmological struc-
tures, and in virialized halos the scalar field can relax to a
static soliton, where the halo self-gravity is balanced by this
effective pressure due to the (derivative) self-interaction.
Therefore, in this paper we focus on the case
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representing dark-matter halos with a finite core. This
behavior is typically obtained for dark-matter scalar fields
with a positive ϕ4 self-interaction. Moreover, as shown in
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than the age of the Universe.
Here we consider models of scalar dark matter where the

scalar mass term is complemented with k-essence kinetic
terms [34]. On large scales and in the nonrelativistic limit,
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ghosts and gradient instabilities, we find that the growth of
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steep. In this case, this also guarantees that the models are
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tures, and in virialized halos the scalar field can relax to a
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for clouds of dark matter to be stable on large scales. Such
clouds form solitonlike objects that are candidates for
representing dark-matter halos with a finite core. This
behavior is typically obtained for dark-matter scalar fields
with a positive ϕ4 self-interaction. Moreover, as shown in
[33], these solitons are long lived even when the super-
massive black hole (BH) at the center of the halo is taken
into account. Indeed, the lifetime of such objects is longer
than the age of the Universe.
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these models are equivalent to self-interacting models of
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analysis to the case where there is a supermassive BH at
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which must behave as ingoing waves close to the BH
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solution at large radii. This happens for the ð∂ϕÞ4 model,
where the scalar field cannot sustain a large scalar cloud in the
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existence of regular solutions where the scalar profile exists
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of the usual k-essence stability conditions for the absence of
ghosts and gradient instabilities, we find that the growth of
the k-essence function for large argument cannot be too
steep. In this case, this also guarantees that the models are
stable under quantum corrections, even though the model
becomes nonlinear close to the BH horizon.
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have nonlinear scalar potentials. In Sec. III, we present the
nonlinear solutions to the modified Klein-Gordon equation
and the constant flux solutions. In Sec. IV, we make the
connection between the nonlinear solutions and the large-
radius and nonrelativistic limits. We also consider the
behavior close to the horizon. In Sec. V, we give the example
of quartic Lagrangians for which constant flux solutions
connected to stable solitons at large radii do not exist. We
then discuss when global solutions exist in Sec. VI. Then, in
Sec. VII, we give an explicit example of models for which
constant flux solutions up to very large radii exist and the
lifetime of the soliton is larger than the age of theUniverse. In
Sec. VIII, we discuss the quantum stability of these models.
We finally conclude in Sec. IX.
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effective pressure on small scales [27]. This leads to a
nonzero Jeans length for the growth of cosmological struc-
tures, and in virialized halos the scalar field can relax to a
static soliton, where the halo self-gravity is balanced by this
effective pressure due to the (derivative) self-interaction.
Therefore, in this paper we focus on the case
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existence of regular solutions where the scalar profile exists
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k-essence models
Scalar-field models with a shift-symmetry only broken by the mass term.
K-essence model: only first-derivatives of the scalar field.

Small nonlinear corrections:

Galactic-scale solitons:

Nonrelativistic regime

In this regime, the model is equivalent to a theory with a standard kinetic term and a nonlinear 
self-interaction potential:

formation of stable equilibrium solitons, where the self-gravity is balanced by 
a pressure term associated with the effective repulsive self-interaction. 



B. Isotropic coordinates

Throughout most of this paper, we work with isotropic
coordinates and we consider static spherically symmetric
configurations. Then, the metric can be written as

ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð9Þ

We use natural units with c ¼ 1 throughout this paper.
The spacetime around the BH can be divided in three

regions. First, from the Schwarzschild radius and up to a
radius rNL, the metric is in the strong-gravity regime
dominated by the supermassive BH gravity. Then, the
metric functions fðrÞ and hðrÞ are given by the standard
Schwarzschild metric, but written in the isotropic coor-
dinates ðr; tÞ instead of the usual Schwarzschild coordi-
nates ðr̃; tÞ. This gives [35]

rs
4
< r < rNL∶ fðrÞ ¼

!
1 − rs=ð4rÞ
1þ rs=ð4rÞ

"
2

; ð10Þ

hðrÞ ¼ ð1þ rs=ð4rÞÞ4: ð11Þ

Here, rs ¼ 2GMBH is the Schwarzschild radius of the BH
of mass MBH,

rs ¼ 2GMBH ≃
!

MBH

108 M⊙

"
10−8 kpc; ð12Þ

r ¼ rs=4 is the Schwarzschild radius in the radial isotropic
coordinate r, which is related to the usual Schwarzschild
radial coordinate r̃ by [35]

r̃ > rs; r >
rs
4
∶ r̃ ¼ r

!
1þ rs

4r

"
2

: ð13Þ

Second, beyond rNL and up to rsg, the metric is in the
weak-gravity regime while the gravitational potential
remains dominated by the BH itself. This gives

r > rNL∶ fðrÞ ¼ 1þ 2Φ; hðrÞ ¼ 1 − 2Φ; ð14Þ

with

rNL < r ≪ rsg∶ ΦðrÞ ¼ −
rs
2r

¼ −
GMBH

r
: ð15Þ

Third, beyond the radius rsg the metric is also in the
weak-gravity regime, as in Eq. (14), but the gravitational
potential is dominated by the self-gravity of the dark-matter
scalar-field cloud. Then, Φ is given by the scalar-field
Poisson equation

r ≫ rsg∶ ∇2Φ ¼ 4πGρϕ; ð16Þ

where ρϕ is the scalar-field energy density.

C. Equations of motion

In the static spherical metric (9), the scalar-field Klein-
Gordon equation reads
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∂
∂r

# ffiffiffiffiffiffi
fh

p
r2K0∂ϕ

∂r
$
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where K0 ¼ dK=dX and
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!∂ϕ
∂t

"
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−
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2Λ4h

!∂ϕ
∂r

"
2

: ð18Þ

D. Large-radius soliton

At large radii, r ≫ rsg, the gravitational field is small and
set by the self-gravity of the scalar cloud. Therefore,
assuming the influence of the BH can indeed be neglected,
we recover the solitonic solution of the dark-matter halo as
analyzed in [27]. We briefly recall in this section their
results, which we need to set the large-radius boundary
conditions when we analyze the exact solution that takes
into account the central BH. In this nonrelativistic regime,
we can write the real scalar field ϕ in terms of a complex
scalar field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð19Þ

In the large-mass limit, where macroscopic momentum
scales are much below m, this actually decomposes ϕ in a
fast oscillation e%imt, which is associated with the zeroth
order of the Klein-Gordon equation (17), ∂2

tϕþm2ϕ ¼ 0,
and a slow time and space dependent part ψðr; tÞ, which is
associated with the variation of gravitational potentials and
matter densities on astrophysical time and length scales.
Next, the dynamics of the complex field ψ can be mapped
to hydrodynamics problem through the Madelung trans-
formation [36],

ψ ¼
ffiffiffiffi
ρ
m

r
eis; ϕ ¼

ffiffiffiffiffi
2ρ

p

m
cosðmt − sÞ; ð20Þ

where ρ plays the role of the scalar-field matter density
while the velocity field v⃗ is defined from the phase s by

v⃗ ¼ ∇⃗s
m

: ð21Þ

Then, the dynamics are governed by the continuity and
Euler equations,

_ρþ ∇⃗ · ðρv⃗Þ ¼ 0; ð22Þ

_v⃗þ ðv⃗ · ∇⃗Þv⃗ ¼ −∇⃗ðΦþΦIÞ; ð23Þ
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while the velocity field v⃗ is defined from the phase s by

v⃗ ¼ ∇⃗s
m

: ð21Þ

Then, the dynamics are governed by the continuity and
Euler equations,

_ρþ ∇⃗ · ðρv⃗Þ ¼ 0; ð22Þ

_v⃗þ ðv⃗ · ∇⃗Þv⃗ ¼ −∇⃗ðΦþΦIÞ; ð23Þ
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Relativistic regime:

ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð6Þ

The range of radii from the central BH can be divided in the
following three regimes.

1. Strong-gravity regime dominated by the BH

Close to the BH, that is, below a radius rNL, we are in the
strong-gravity regime, with nonlinear deviations from the
Minkowski metric, dominated by the BH gravity. There, we
recover the Schwarzschild metric but written in the isotropic
coordinate system (t; r) of (6) instead of the Schwarzschild
coordinate system ðt; r̃Þ of (5). This determines the isotropic
metric functions fðrÞ and hðrÞ as [93]

rs
4
< r < rNL∶ fðrÞ ¼

!
1 − rs=ð4rÞ
1þ rs=ð4rÞ

"
2

;

hðrÞ ¼ ð1þ rs=ð4rÞÞ4; ð7Þ

where r is related to the Schwarzschild radial coordinate r̃ by

r̃ > rs; r >
rs
4
∶ r̃ ¼ r

!
1þ rs

4r

"
2

: ð8Þ

In particular, the BH event horizon (Schwarzschild radius)
reads in these coordinates as

BH horizon∶ r̃ ¼ rs ≡ 2GM; r ¼ rs
4
¼ GM

2
: ð9Þ

2. Weak-gravity regime dominated by the BH

Further away from the BH and up to a radius rsg, we are in
the weak-gravity regime but still dominated by the super-
massive BH gravity. Therefore, the metric is still given by
Eq. (7), where the functions fðrÞ and hðrÞ are close to unity.
Then, we recover the standard Newtonian gauge

r ≫ rNL∶ ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdr⃗2;
with Φ ≪ 1; f ¼ 1þ 2Φ; h ¼ 1 − 2Φ: ð10Þ

From the explicit expressions of fðrÞ and hðrÞ in (7),
we recover the Newtonian gravitational potential due to
the BH:

rNL ≪ r ≪ rsg∶ Φ ¼ −
rs
2r

¼ −
GM
r

: ð11Þ

3. Weak-gravity regime dominated by the scalar cloud

Beyond the radius rsg, the metric potentials become
dominated by the self-gravity of the DM cloud. This also
corresponds to the radius where metric fluctuations have
decreased down to 10−6 − 10−5, as these values are the
typical depths of the DM potential wells built on galactic

scales. Then, the metric still takes the Newtonian gauge
form (10), whereΦ is now given by the scalar-field Poisson
equation

r ≫ rsg∶ ∇2Φ ¼ 4πGρϕ; ð12Þ

where ρϕ is the scalar-field energy density. This in turn
determines the metric functions fðrÞ and hðrÞ through the
second line in (10).

D. Equation of motion

To summarize, at all radii the metric is given by Eq. (6),
and in most of this paper we work in this framework. We
are dominated by the BH gravity up to radius rsg. At these
small radii, the metric functions fðrÞ and hðrÞ are given by
Eq. (7). Beyond rsg, we are dominated by the scalar cloud
gravity, and the metric functions are determined by the
Poisson equation (12). The range dominated by the BH
gravity can be further split over the strong-gravity regime,
for rs=4 < r < rNL, and the weak-gravity regime, for
rNL ≪ r ≪ rsg, where the metric functions can be approxi-
mated from (11).
Then, in the static spherical metric (6), the scalar-field

Klein-Gordon equation is written

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
∇⃗ · ð

ffiffiffiffiffiffi
fh

p ∇⃗ϕÞ þ f
∂V
∂ϕ ¼ 0: ð13Þ

This also directly follows from the action Sϕ written in
spherical coordinates:

Sϕ¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
fh3

q
r2 sinθ

$
1

2f

!∂ϕ
∂t

"
2

−
1

2h

!∂ϕ
∂r

"
2

−
1

2hr2

!∂ϕ
∂θ

"
2

−
1

2hr2sin2θ

!∂ϕ
∂φ

"
2

−VðϕÞ
%
: ð14Þ

III. FREE SCALAR FIELD

We first consider the scalar-field inflow profile around
the supermassive BH in the free case, without self-
interactions.

A. Equations of motion

In the case of the free massive scalar field, that is, when
the self-interaction vanishes, the same decomposition of the
scalar field as for the nonrelativistic case can be applied.
Thus, we can write the real scalar field ϕ in terms of a
complex scalar field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð15Þ

As in the nonrelativistic limit, we assume that the time
derivative of ψ is much smaller than mψ , that is,
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static spherical symmetry:

Nonlinear KG eq. of motion:

where Φ is the gravitational potential (16), where ρϕ ¼ ρ,
and ΦI is a repulsive self-interaction potential. In the
quartic case it is given by [27]

ΦIðρÞ ¼
ρ
ρa

with ρa ≡ 4m4

3λ4
¼ 8Λ4

3jk2j
: ð24Þ

Here we neglected the “quantum pressure” ΦQ, associated
with the wavelike nature of the scalar field, because we
consider large masses m ≫ 10−21 eV, beyond the ranges
associated with fuzzy dark-matter scenarios. The pressure
ΦI associated with the self-interactions allows the scalar
cloud to reach a hydrostatic equilibrium, where this
repulsive self-interaction balances the self-gravity. This
gives the soliton profile [27]

ρðrÞ ¼ ρsolð0Þ
sinðr=raÞ
r=ra

; ΦIðrÞ ¼ ΦI;solð0Þ
sinðr=raÞ
r=ra

;

ð25Þ

with v⃗ ¼ 0 and

ra ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4πGρa
p ¼

ffiffiffiffiffiffiffi
3λ4
2

r
MPl

m2
; ð26Þ

where we introduced the reduced Planck mass
M2

Pl ¼ 1=ð8πGÞ. The soliton has a flat inner core and a
finite radius Rsol ¼ πra, which can reach galactic size
depending on the value of λ4. More precisely, we can also
write (26) as

λ4 ¼
"

ra
20 kpc

#
2
"

m
1 eV

#
4

: ð27Þ

The constraint that the scalar field behaves as pressureless
dark-matter at the background level up to the radiation-matter
equality, at redshift zeq, implies [27] λ4 ≲ ðm=1 eVÞ4; there-
fore, we actually have ra ≲ 20 kpc.
Inside the soliton, the hydrostatic equilibrium condition

in Eq. (23) gives ∇⃗ðΦþΦIÞ ¼ 0, and we have

r ≤ Rsol∶ ΦþΦI ¼ α; ð28Þ

where α is a constant, given by the value of the Newtonian
potential at the boundary of the soliton,

α ¼ ΦðRsolÞ; ð29Þ

as ΦIðRsolÞ ¼ 0. In terms of the scalar fields ψ and ϕ this
gives [27]

ψ ¼
ffiffiffiffi
ρ
m

r
e−iαmt; hence s ¼ −αmt; ð30Þ

and

ϕ ¼
ffiffiffiffiffi
2ρ

p

m
cos½ð1þ αÞmt&: ð31Þ

III. NONLINEAR GLOBAL SOLUTION

A. Oscillating solution in the large-mass limit

As in [33], where we considered the case of a scalar field
with a standard kinetic term and a self-interaction potential,
we look for a solution in the large-mass limit. Then, the field
oscillates with a very high frequency determined bym, if we
only keep the zeroth-order terms that give the standard
Klein-Gordon equation ∂2

tϕþm2ϕ ¼ 0. However, the
nonlinearity associated with the higher-order kinetic factor
KI transforms this harmonic oscillator into an anharmonic
oscillator, with parameters that slowly changewith radius as
dictated by the radial derivative term. In a fashion similar to
the case of the quartic potential studied in [33], we look for
a solution of the nonlinear Klein-Gordon equation (17) of
the form

ϕðr; tÞ ¼ ϕ0ðrÞck½ωðrÞt −QðrÞβðrÞ; μðrÞ&: ð32Þ

Here ckðu; μÞ is the extension of the harmonic cosine
cosðuÞ, obtained for the free massive scalar field, and of
the Jacobi elliptic function cnðu; kÞ, obtained for the quartic
potential [33], to the case of derivative self-interactions (the
letter “k” refers to the “kinetic” nonlinearity). For μ ¼ 0we
recover the harmonic cosine, ckðu; 0Þ ¼ cosðuÞ, and for
nonzero μ we have an anharmonic oscillator, associated
with the kinetic factor KI that adds nonlinear contributions
to the Klein-Gordon equation. The factorQðrÞ is defined as
QðrÞ≡Q½μðrÞ&, whereQðμÞ is the quarter of the period of
the oscillator ckðuÞ for parameter μ. It is introduced in (32)
for future convenience, to simplify Eq. (38) below. Thus, μ
and Q play the role of the modulus k and the complete
elliptic integral K that appears in the case of the quartic
potential [33]. At this stage, ckðu; μÞ is not defined yet and it
is determined below from the analysis of the nonlinear
Klein-Gordon equation.
The expression (32) is understood as the leading-order

approximation in the limit m → ∞, where spatial gradients
of the functions ϕ0;ω;Q; β, and μ are much below m (i.e.,
∂r ≪ m), whereas both ω and β are of order m. Thus, the
scalar field shows fast oscillations with time at each radius,
at a frequency and a phase of order m, with a slow
modulation in space of the oscillation characteristics.
This behavior relies on the large separation of scales
∂r ≪ m, which in our case corresponds to rs ≫ m, as
radial derivatives typically scale as ∂r ∼ 1=r≲ 1=rs beyond
the horizon.
To ensure that spatial gradients do not increase with time,

the scalar field must oscillate with the same frequency over
all radii, with a common period T ¼ 2π=ω0, where ω0 is
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the common angular frequency. Otherwise, there would be
a secular growth with time of the phase difference between
neighboring points, hence a secular growth of radial
gradients. Since the period of the function ckðuÞ for
parameter μ is 4Q, this implies ωT ¼ 4Q and ωðrÞ is
fully determined by the oscillatory parameter μðrÞ as

ωðrÞ ¼ 2QðrÞ
π

ω0: ð33Þ

As we check in Sec. IV B and Eq. (88) below, the common
frequency ω0 must match the oscillation found at large radii
in the soliton solution (31). This implies

ω0 ¼ ð1þ αÞm: ð34Þ

As we see in Sec. III B, the oscillating function obeys the
Fourier series (62) below. Substituting into Eq. (32) gives

ϕ¼ϕ0ðrÞ
X∞

n¼0

a2nþ1ðrÞcos½ð2nþ1Þðω0t−πβðrÞ=2Þ&; ð35Þ

with a2nþ1ðrÞ≡ a2nþ1½μðrÞ&. Thanks to the relation (33),
we can see that the scalar field shows a coherent nonlinear
oscillation over all radii, at the common angular fre-
quency ω0.
From Eq. (32), the time derivative of the scalar field is

∂ϕ
∂t ¼ ϕ0ω

∂ck
∂u : ð36Þ

At leading order in the large-m limit, the radial derivative
reads from Eq. (35) as

∂ϕ
∂r ≃ ϕ0

X∞

n¼0

a2nþ1ð2nþ 1Þ πβ
0

2
sin

!
ð2nþ 1Þ

"
ω0t −

πβ
2

#$
;

ð37Þ

where β0 ¼ dβ=dr. Here we only kept the term of order m,
as we assume that ϕ0, μ, and β are slow functions of r, but β
is of order m. Thus, the factor β0 yields an additional power
of m as compared with ϕ0

0 or a02nþ1. Comparing with the
Fourier series of ∂ck

∂u , obtained from Eq. (62) below, this
gives

∂ϕ
∂r ≃ −ϕ0Qβ0

∂ck
∂u ; ð38Þ

in this large-m limit. The factor Q was introduced in
Eq. (32) to simplify this radial derivative (the change β →
β=Q would change the factor Qβ0 above to β0 − βQ0=Q).
Indeed, if we had written ϕ ¼ ϕ0ck½ωt − β; μ&, we would
have found that a slow radial change of μ, hence of the
period 4Q, generates a leading-order change of the phase of
the oscillation and must be taken into account. This effect is

automatically taken care of by renormalizing the phase β by
the quarter of period Q in Eq. (32).
In this approximation, the kinetic term X of Eq. (18)

reads

X ¼ ϕ2
0

2Λ4f

!
ω2 −

f
h
ðQβ0Þ2

$"∂ck
∂u

#
2

; ð39Þ

and the nonlinear Klein-Gordon equation (17) becomes

!
ω2 −

f
h
ðQβ0Þ2

$
ð1þ K̃IÞ

∂2ck
∂u2 þ fm2ck ¼ 0; ð40Þ

where we defined

K̃IðXÞ≡ K0
I þ 2XK00

I ; ð41Þ

where the prime denotes the derivative with respect to X. If
the self-interaction term K̃I vanishes we recover the
harmonic oscillator. For nonzero self-interaction, we obtain
an anharmonic oscillator, with a derivative nonlinearity.
The kinetic argument X of Eq. (39) can be decomposed in a
time-independent prefactor, with a slow radial dependence,
and a fast oscillatory term. Thus, we define the prefactor
μðrÞ by

μðrÞ≡ ϕ2
0

2Λ4f

!
ω2 −

f
h
ðQβ0Þ2

$
; ð42Þ

so that we have

X ¼ μðrÞ
"∂ck
∂u

#
2

: ð43Þ

Now, let us define an oscillatory function ckðu; μÞ, of
argument u and parameter μ, by the differential equation

∂2ck
∂u2 þ ckþ K̃I

!
μ

"∂ck
∂u

#
2
$ ∂2ck
∂u2 ≡ 0; ð44Þ

and the initial conditions

ckð0; μÞ≡ 1;
∂ck
∂u ð0; μÞ≡ 0: ð45Þ

From Eq. (4) we have K̃I → 0 for X → 0. Therefore, in the
limit μ → 0 the nonlinear differential equation (44) sim-
plifies to the linear harmonic oscillator, ∂2ck∂u2 þ ck ¼ 0, and
with the initial conditions (45) we recover the cosine
function,

ckðu; 0Þ ¼ cosðuÞ: ð46Þ

The initial conditions (45) do not entail any loss of
generality. They mean that ckðuÞ oscillates over the range
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the common angular frequency. Otherwise, there would be
a secular growth with time of the phase difference between
neighboring points, hence a secular growth of radial
gradients. Since the period of the function ckðuÞ for
parameter μ is 4Q, this implies ωT ¼ 4Q and ωðrÞ is
fully determined by the oscillatory parameter μðrÞ as

ωðrÞ ¼ 2QðrÞ
π

ω0: ð33Þ

As we check in Sec. IV B and Eq. (88) below, the common
frequency ω0 must match the oscillation found at large radii
in the soliton solution (31). This implies

ω0 ¼ ð1þ αÞm: ð34Þ

As we see in Sec. III B, the oscillating function obeys the
Fourier series (62) below. Substituting into Eq. (32) gives

ϕ¼ϕ0ðrÞ
X∞

n¼0

a2nþ1ðrÞcos½ð2nþ1Þðω0t−πβðrÞ=2Þ&; ð35Þ

with a2nþ1ðrÞ≡ a2nþ1½μðrÞ&. Thanks to the relation (33),
we can see that the scalar field shows a coherent nonlinear
oscillation over all radii, at the common angular fre-
quency ω0.
From Eq. (32), the time derivative of the scalar field is

∂ϕ
∂t ¼ ϕ0ω

∂ck
∂u : ð36Þ

At leading order in the large-m limit, the radial derivative
reads from Eq. (35) as

∂ϕ
∂r ≃ ϕ0

X∞

n¼0

a2nþ1ð2nþ 1Þ πβ
0

2
sin

!
ð2nþ 1Þ

"
ω0t −

πβ
2

#$
;

ð37Þ

where β0 ¼ dβ=dr. Here we only kept the term of order m,
as we assume that ϕ0, μ, and β are slow functions of r, but β
is of order m. Thus, the factor β0 yields an additional power
of m as compared with ϕ0

0 or a02nþ1. Comparing with the
Fourier series of ∂ck

∂u , obtained from Eq. (62) below, this
gives

∂ϕ
∂r ≃ −ϕ0Qβ0

∂ck
∂u ; ð38Þ

in this large-m limit. The factor Q was introduced in
Eq. (32) to simplify this radial derivative (the change β →
β=Q would change the factor Qβ0 above to β0 − βQ0=Q).
Indeed, if we had written ϕ ¼ ϕ0ck½ωt − β; μ&, we would
have found that a slow radial change of μ, hence of the
period 4Q, generates a leading-order change of the phase of
the oscillation and must be taken into account. This effect is

automatically taken care of by renormalizing the phase β by
the quarter of period Q in Eq. (32).
In this approximation, the kinetic term X of Eq. (18)

reads

X ¼ ϕ2
0

2Λ4f

!
ω2 −

f
h
ðQβ0Þ2

$"∂ck
∂u

#
2

; ð39Þ

and the nonlinear Klein-Gordon equation (17) becomes

!
ω2 −

f
h
ðQβ0Þ2

$
ð1þ K̃IÞ

∂2ck
∂u2 þ fm2ck ¼ 0; ð40Þ

where we defined

K̃IðXÞ≡ K0
I þ 2XK00

I ; ð41Þ

where the prime denotes the derivative with respect to X. If
the self-interaction term K̃I vanishes we recover the
harmonic oscillator. For nonzero self-interaction, we obtain
an anharmonic oscillator, with a derivative nonlinearity.
The kinetic argument X of Eq. (39) can be decomposed in a
time-independent prefactor, with a slow radial dependence,
and a fast oscillatory term. Thus, we define the prefactor
μðrÞ by

μðrÞ≡ ϕ2
0

2Λ4f

!
ω2 −

f
h
ðQβ0Þ2

$
; ð42Þ

so that we have

X ¼ μðrÞ
"∂ck
∂u

#
2

: ð43Þ

Now, let us define an oscillatory function ckðu; μÞ, of
argument u and parameter μ, by the differential equation

∂2ck
∂u2 þ ckþ K̃I

!
μ

"∂ck
∂u

#
2
$ ∂2ck
∂u2 ≡ 0; ð44Þ

and the initial conditions

ckð0; μÞ≡ 1;
∂ck
∂u ð0; μÞ≡ 0: ð45Þ

From Eq. (4) we have K̃I → 0 for X → 0. Therefore, in the
limit μ → 0 the nonlinear differential equation (44) sim-
plifies to the linear harmonic oscillator, ∂2ck∂u2 þ ck ¼ 0, and
with the initial conditions (45) we recover the cosine
function,

ckðu; 0Þ ¼ cosðuÞ: ð46Þ

The initial conditions (45) do not entail any loss of
generality. They mean that ckðuÞ oscillates over the range
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In the large-mass limit, use again a nonlinear local approximation:

ck(u, µ) is a generalization of the cosine to the nonlinear oscillator:

are slow functions of r

the frequency and the phase are of the order of m

�0(r), !(r), �(r), Q(r), µ(r) rr ⌧ m

! ⇠ � ⇠ m

Substituting into the K.G. eq. determines all parameters                         in terms of  

(at leading order)

is determined by a self-consistency constraint: the mean flux (averaged over the fast oscillations) 
must be constant over radius

{�0, !, �, Q} µ(r)

µ(r)



Quartic Lagrangian:

pressure that balances the gravitational attraction, allowing
for clouds of dark matter to be stable on large scales. Such
clouds form solitonlike objects that are candidates for
representing dark-matter halos with a finite core. This
behavior is typically obtained for dark-matter scalar fields
with a positive ϕ4 self-interaction. Moreover, as shown in
[33], these solitons are long lived even when the super-
massive black hole (BH) at the center of the halo is taken
into account. Indeed, the lifetime of such objects is longer
than the age of the Universe.
Here we consider models of scalar dark matter where the

scalar mass term is complemented with k-essence kinetic
terms [34]. On large scales and in the nonrelativistic limit,
these models are equivalent to self-interacting models of
scalars with polynomial interactions. We extend this
analysis to the case where there is a supermassive BH at
the center of the galaxies. In this case, the equivalence with
polynomial models is more subtle; in particular, we show
that regular dark-matter profiles with constant scalar fluxes,
which must behave as ingoing waves close to the BH
horizon, cannot always be connected to the solitonic
solution at large radii. This happens for the ð∂ϕÞ4 model,
where the scalar field cannot sustain a large scalar cloud in the
presence of the central BH. We give conditions for the
existence of regular solutions where the scalar profile exists
and is regular from the BH horizon to spatial infinity. On top
of the usual k-essence stability conditions for the absence of
ghosts and gradient instabilities, we find that the growth of
the k-essence function for large argument cannot be too
steep. In this case, this also guarantees that the models are
stable under quantum corrections, even though the model
becomes nonlinear close to the BH horizon.
The paper is arranged as follows. InSec. II,wedescribe the

models of scalar darkmatter with nonlinear kinetic terms and
connect them in the nonrelativistic regime with theories that
have nonlinear scalar potentials. In Sec. III, we present the
nonlinear solutions to the modified Klein-Gordon equation
and the constant flux solutions. In Sec. IV, we make the
connection between the nonlinear solutions and the large-
radius and nonrelativistic limits. We also consider the
behavior close to the horizon. In Sec. V, we give the example
of quartic Lagrangians for which constant flux solutions
connected to stable solitons at large radii do not exist. We
then discuss when global solutions exist in Sec. VI. Then, in
Sec. VII, we give an explicit example of models for which
constant flux solutions up to very large radii exist and the
lifetime of the soliton is larger than the age of theUniverse. In
Sec. VIII, we discuss the quantum stability of these models.
We finally conclude in Sec. IX.

II. DARK-MATTER SCALAR FIELD WITH
DERIVATIVE SELF-INTERACTIONS

A. Scalar-field action with nonstandard kinetic term

In this paper, we investigate scenarios where the dark-
matter scalar-field action is

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
Λ4KðXÞ −m2

2
ϕ2

#
; ð1Þ

where the normalized kinetic argument X is given by

X ¼ −
1

2Λ4
gμν∂μϕ∂νϕ; ð2Þ

and we decompose the nonstandard kinetic term KðXÞ as
the sum of the standard term X and a nonstandard nonlinear
contribution KI,

KðXÞ ¼ X þ KIðXÞ: ð3Þ

We assume that KI admits the small-X expansion

X ≪ 1∶ KIðXÞ ¼
X

n≥2

kn
n
Xn: ð4Þ

The scale Λ plays the role of the strong coupling scale. We
shall check that the models make sense quantum mechan-
ically even when X ≫ 1; see Sec. VIII.
As shown in [27], in the nonrelativistic and large-mass

regime, where KI ≪ X, the small nonlinear correction KI is
equivalent to a small nonlinear potential VI, with VI ≪
m2ϕ2=2 and

VIðϕÞ ¼ Λ4
X

n≥4

λn
n
ϕn

Λn ; ð5Þ

with

λ2n ¼ −2kn
$
m2

2Λ2

%n
: ð6Þ

This result is obtained at leading order in the large-mass
limit, when the dynamics are averaged over the fast
oscillations eimt driven by the zeroth-order quadratic
Lagrangian Λ4X −m2ϕ2=2.
In the case of a quartic derivative self-interaction, we

obtain

KIðXÞ ¼
k2
2
X2; VIðϕÞ ¼

λ4
4
ϕ4; λ4 ¼−k2

m4

2Λ4
: ð7Þ

For positive λ4, hence negative k2, this gives rise to an
effective pressure on small scales [27]. This leads to a
nonzero Jeans length for the growth of cosmological struc-
tures, and in virialized halos the scalar field can relax to a
static soliton, where the halo self-gravity is balanced by this
effective pressure due to the (derivative) self-interaction.
Therefore, in this paper we focus on the case

λ4 > 0; k2 < 0: ð8Þ
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In the nonrelativistic regime, this is equivalent to the previous model, 
with a standard kinetic term and a quartic repulsive potential.

However, the behavior is very different in the relativistic regime !

Mean flux              
as a function of parameter    , 
at several radii x

high-velocity branch low-velocity branchNo critical flux !

goes to 0 as 1=x2. This gives the two asymptotic solutions
μ1 < μ2 ≪ 1,

x ≫ 1∶ μ1ðxÞ ¼
ffiffiffi
2

p
F

Fs
ffiffiffiffiffiffiffiffiffiffiffiffi
α −Φ

p
x2

þ…; ð81Þ

μ2ðxÞ ≃
8ðα −ΦÞ
3jk2j

−
3jk2j
4

"
F

Fsðα −ΦÞx2

#
2

þ…; ð82Þ

where the dots stand for higher-order terms over 1=x2.
At lowest order in μ,Φ, and α, the velocity vr of Eq. (52)

reads

x ≫ 1∶ vr ≃ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α − 2Φþ 3k2μ=4

p
: ð83Þ

As μ1 ≪ μ2, we can see that the left and right branches
leads to the different behaviors

x ≫ 1∶ vr1 ≃ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðα −ΦÞ

p
; ð84Þ

vr2 ≃ −
3jk2jF

4Fsðα −ΦÞx2
→ 0: ð85Þ

Thus, μ1 is the high-velocity branch, as vr1 is of the order of
the free-fall velocity, while μ2 is the low-velocity branch, as
vr2 is much smaller and becomes negligible at large radii.

B. Soliton boundary conditions

We derive the large-radius boundary condition required
by a matching to the soliton solution recalled in Sec. II D.
At large radii but within the soliton radius, rsg ≪ r ≪ Rsol,
the scalar field is in the weak-gravity regime dominated by
the scalar cloud mass and approaches the core of the soliton
solution (25). As seen in the previous section, this also
corresponds to the small-μ regime. The comparison of the
expression (77) with Eq. (31) gives

rsg ≪ r ≪ Rsol∶ ϕ0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρsolð0Þ

p

m
; β ≃ 0; ð86Þ

and Eq. (34), where α takes the value defined by the soliton
solution (31). Indeed, as the soliton solution (31) corre-
sponds to the hydrostatic equilibrium with v⃗ ¼ 0, the
velocity β0 must become negligible at large radii in order
to match with the soliton. The uniform angular frequency
ω0 is also set by this large-radius boundary condition. As
jαj≲ 10−5 from Eq. (29), ω0 remains very close to m.
We can now check that this is consistent with Eq. (49).

Combining Eqs. (50) and (86) we obtain

μ ¼ ρ
Λ4

¼ 8

3jk2j
ΦI; ð87Þ

where we introduced the repulsive potential defined in (24).
Equation (49) with β0 ¼ 0 gives, at leading order in Φ
and μ,

ω0 ¼ mð1þΦ − 3k2μ=8Þ ¼ mð1þΦþΦIÞ; ð88Þ

where we used the series expansion (65) and in the last
equality we used Eq. (87). Then, using Eq. (28) we recover
Eq. (34). This shows that this large-radius asymptote is self-
consistent.
Using ΦI ¼ α −Φ from Eq. (28), the comparison of

Eq. (87) with Eq. (82) shows that the matching to the
soliton solution selects the branch μ2ðxÞ at large radii,

μ ¼ μ2ðxÞ for r ≫ rsg: ð89Þ

This agrees with the fact that the branch μ2ðxÞ corresponds
to the solution with negligible radial velocity, as shown in
Eq. (85), which allows the matching to the static soliton.

C. Boundary condition at the horizon

Close to the horizon the self-interactions cannot counter-
act the BH gravity and the scalar field is in a free-fall
regime where vr ∼ −

ffiffiffiffiffiffiffiffi
h=f

p
[33], with purely ingoing

solutions and relativistic velocities. Therefore, we must
reach the high-velocity branch μ1ðxÞ,

μ ¼ μ1ðxÞ for r ≃ rs=4: ð90Þ

This corresponds to the solution of Eq. (70), understood as
an equation for μ, that is on the left side of the peak of FðμÞ.
From Eq. (52) we also recover vr ∼ −

ffiffiffiffiffiffiffiffi
h=f

p
near the

horizon for this branch, as f → 0 and the last square root
becomes of order unity.
In the relativistic regime, vr can no longer be identified

with a physical velocity (e.g., the velocity of particles of
mass m) as the Euler equation (23) no longer applies. This
is why it can go to infinity, whereas the velocity of an
infalling particle measured by a distant observer would
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FIG. 1. Normalized flux Fðμ; xÞ=Fs as a function of the
oscillatory parameter μ, for various values of the radial coordinate
x, from Eq. (70) for the case of the quartic Lagrangian (96).
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It is impossible to connect the high-velocity branch near the BH to the low-velocity branch at large radii.

These solutions describe the late stages when the scalar cloud has already mostly been eaten by the BH 
and the remaining scalar energy density is quickly falling into the BH.

Contrary to the quartic potential, the quartic derivative self-interaction       is not able 
to support the scalar cloud against the BH gravity in the relativistic regime.

X2

F (µ, x)



the scalar cloud self-gravity and we would solve in a self-
consistent manner the Poisson equation.
For μ ≪ 1 the scalar field reduces to the cosine (77) at

lowest order, as ckðu; 0Þ ≃ cosðuÞ, and the kinetic factor X
from Eq. (43) reads

X ¼ μsin2ðω0t − πβ=2Þ ¼ m2ϕ2
0

2Λ4
sin2ðω0t − πβ=2Þ; ð97Þ

where we used Eq. (50). In this small-X regime we also
have K ≃ X, K0 ≃ 1, and the scalar-field energy density
reads at lowest order

r ≫ rs∶ ρϕ ¼ m2ϕ2
0

2
¼ μΛ4: ð98Þ

We recover the nonrelativistic regime, as in Eq. (31), that
applied to the nonrelativistic soliton. Using Eqs. (81)
and (72) this also reads as

r ≫ rs∶ ρϕ ¼ jFj
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðα −ΦÞ

p ¼ F
r2vr

; ð99Þ

where in the second equality we used Eq. (84). We recover
the nonrelativistic definition of the flux, F ¼ r2ρϕvr.
The gravitational potential becomes dominated by the

scalar cloud gravity when the mass Mϕ associated with the
scalar field within the radius r is of the order of the black
hole mass. Writing Mϕ ∼ ρϕr3 and α −Φ ∼ −Φ ∼ rs=r, as
Φ ∼ΦBH up to this transition radius, we obtain

rsg ∼ ra

"
F
Fs

#−2=3"ra
rs

#
1=3

: ð100Þ

As F=Fs < 1 from Fig. 1 and ra ≫ rs, where ra is the
characteristic radius defined in Eq. (26), we obtain for the
transition radius rsg ≫ ra. This corresponds to a radius that
is much larger than the soliton radius Rsol ¼ πra, recalled
below Eq. (26). Therefore, we conclude that for these
continuous solutions all radii are dominated by the BH
gravity. This is because the high infall velocity, jvrj ∼

ffiffiffiffiffiffiffi
−Φ

p
,

implies a much smaller density, ρϕ ¼ F=ðr2vrÞ, than for the
second branch μ2ðrÞ that converges to the static soliton,
associated with the much smaller velocity (85). Thus, these
solutions describe the latest stages of the infall of the scalar
cloud onto the central BH, when most of the scalar-field
cloud has already been eaten by the BH.

D. Free-fall flux

Another interpretation of the result (100) can be obtained
from the flux expected in the case of free fall. At large radii,
r ≫ rs, the scalar field is in the nonrelativistic regime
and we expect the scalar-field cloud to fall into the central
BH with the free-fall velocity vr ∼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM=r

p
. Using

F ¼ r2ρϕvr in the nonrelativistic regime and the definition
of Fs in Eq. (72), we obtain

F
Fs

∼
"

M
MBH

#
2
"
r
ra

#−3" ρ
ρ̄c

#−1=2 1

Hra
; ð101Þ

where ρ̄c is the cosmological critical density and H the
Hubble expansion rate. For r ∼ ra, with ra ∼ 20 kpc, ρ ∼
106ρ̄c and M ∼ 103MBH, we obtain F=Fs ∼ 108. Such a
large flux cannot be accommodated by the solutions shown
in Fig. 1. This explains why we found in Eq. (100) that the
continuous solution with the profile (99) can only describe
at best the late stages of the infall, after most of the scalar
mass has disappeared into the BH and only a small scalar
mass remains, which can be transported with a small flux.
Therefore, the infall of the scalar cloud cannot be described
by the oscillatory solutions (32).
In any case, the fact that there are no regular solutions

that satisfy both boundary conditions, at the horizon and at
the soliton core, shows that such scalar-field models cannot
support a stable galactic-mass scalar cloud around a super-
massive BH. Therefore, they cannot provide realistic dark-
matter scenarios. This shows the importance of checking the
self-consistency of the system from the galactic kpc scales
down to the Schwarzschild radius and taking into account the
relativistic regime. Indeed, as recalled above, at large radii in
the nonrelativistic regime thismodel is equivalent to a quartic
potential model and the derivative self-interaction −X2

builds an effective pressure that is able to support the
scalar cloud against gravity. It happens that close to the
Schwarzschild radius one enters the nonlinear regime, where
the X2 term is no longer a small correction to the standard
kinetic term, and there the scalar field is no longer able to
provide a self-consistent support against the BH gravity.
At large X the sign of the kinetic term also becomes

negative, K0 < 0, which typically signals the appearance of
ghosts. Thus, such a theory is also problematic at a more
fundamental theoretical level. Hence, we do not consider
this theory further.

VI. CONDITIONS TO STABILIZE THE SOLITON

We have seen in the previous section that when the
function G−1ðyÞ is not defined over all positive y, as
happened for the quartic Lagrangian with k2 < 0, it may be
impossible to obtain a steady state solution that satisfies
both small and large radii boundary conditions. We inves-
tigate in this section the conditions to obtain global
solutions that can match the static soliton at large radii.
For simplicity, we focus on the large-X behavior, where we
assume that the kinetic function KðXÞ behaves as a power-
law (with K0 > 0),

X ≫ 1∶ KðXÞ ≃ aXν; a > 0; ν > 0: ð102Þ
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1

2
< ⌫ < 1

Conditions for a well-behaved solution:

Power-law behavior at large X

This yields for the functions GðXÞ and G−1ðyÞ

GðXÞ¼ að2ν−1ÞXν; G−1ðyÞ¼
!

y
að2ν−1Þ

"
1=ν

; ð103Þ

with the constraint

ν >
1

2
; ð104Þ

so that GðXÞ is monotonically increasing and G−1 is well
defined. Then, the quarter of period Q of Eq. (60) reads

Q ¼ μðν−1Þ=ð2νÞ½að2ν − 1Þ%1=ð2νÞ
ffiffiffi
π

p
Γ½1 − 1=ð2νÞ%

2Γ½3=2 − 1=ð2νÞ%
: ð105Þ

As explained in Sec. III C, the flux Fðμ; xÞ as a function of
μ generically shows a peak and vanishes at both end points
of the range (76). The large-radius boundary condition
selects the low-velocity branch (82) associated with the
right side of the peak, while the small-radius boundary
condition selects the high-velocity branch (81) associated
with the left side of the peak. To find a global solution that
smoothly switches from the left to the right branch, the
height Fpeak of the peak must increase at both large and
small radii. We have seen that this is always the case at
large radii, in the nonrelativistic regime (80). At small radii,
this depends on the large-X behavior of the kinetic
function, and we have seen in Sec. V that for the quartic
Lagrangian this does not happen, as the peak is cut from the
right by the additional upper bound (94). Then, although
this is neither a sufficient nor a necessary condition, models
that are likely to show the desired behavior for Fðμ; xÞ
should show the full peak, with the vanishing of the flux at
both end points 0 and μþ. At the horizon the metric
function fðrÞ vanishes. From Eq. (76) this means that in
order to reach μþðxÞ, down to the horizon, the quarter of
periodQmust decrease down to 0 for large μ. In the power-
law case (105) this gives the constraint

ν < 1; ð106Þ

so that Q vanishes for μ → ∞. From Eq. (75) we obtain

Cμ ¼
ν

3ν − 1
; ð107Þ

and the flux (70) reads

F
Fs

¼ x2h
ν½að2ν−1Þ%1=νΓ½1−1=ð2νÞ%2

ð3ν−1ÞπΓ½3=2−1=ð2νÞ%2
μð2ν−1Þ=ν

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−
πΓ½3=2−1=ð2νÞ%2fμð1−νÞ=ν

ð1þαÞ2½að2ν−1Þ%1=νΓ½1−1=ð2νÞ%2

s

: ð108Þ

At the horizon x and h are finite while f vanishes. We can
see that μþ grows as f−ν=ð1−νÞ and the peak height grows as
f−ð2ν−1Þ=ð1−νÞ. Therefore, we find indeed the required
behavior for a global transonic solution, as the peak of
FðμÞ is fully obtained at small radii with a height that grows
as we move closer to the horizon.
As we explicitly note in Sec. VII C, the condition 1=2 <

ν < 1 that we have obtained here is only suggestive. It is
neither a necessary nor a sufficient condition. For instance,
kinetic functions KðXÞ that show the asymptotic slope
KðXÞ ∼ Xν with 1=2 < ν < 1 but are badly behaved for
intermediate values of X, e.g., if they violate the condition
(58) at intermediate X, cannot provide a realistic or physical
model. On the other hand, we see in Sec. VII, on the
example (109) of a well-behaved kinetic function KðXÞ,
that X actually remains bounded down to the BH horizon,
0 ≤ X ≤ Xmaxðx ¼ 1=4Þ. Then, the very large X behavior
of KðXÞ, at values that are not reached in practice, is
actually irrelevant. It may however be probed by other
configurations, e.g., in the early Universe.

VII. EXPLICIT EXAMPLE

A. Characteristic functions

To illustrate the results of the previous section we
consider the case

KðXÞ ¼ ð1þ 3X=2Þ2=3 − 1: ð109Þ

This corresponds to the exponent ν ¼ 2=3, which falls in
the range 1=2 < ν < 1 obtained in Eqs. (104) and (106).
This also gives the quadratic coefficient k2 ¼ −1=2, as for
the quartic model (96),

ν ¼ 2=3; k2 ¼ −1=2: ð110Þ

The function GðXÞ reads as

GðXÞ ¼ 1

3
ð1þ 3X=2Þ2=3 − 4

3
ð1þ 3X=2Þ−1=3 þ 1; ð111Þ

and the inverse function G−1ðyÞ as

G−1ðyÞ¼2

3

!
ð−1þyþð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5−3yþ3y2−y3

p
Þ2=3Þ3

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5−3yþ3y2−y3

p −1

"
:

ð112Þ

At large y this gives the power-law asymptote

y → ∞∶ G−1ðyÞ ¼ 2
ffiffiffi
3

p
y3=2 þ…: ð113Þ

The nonlinear differential equation (53) now admits regular
periodic solutions ckðu; μÞ for all positive μ. Then, at any
radius x the oscillatory parameter μ is only bounded by
μþðxÞ from Eq. (76).
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- the solution of the anharmonic diff. eq. is a periodic function

−1 ≤ ck ≤ 1; ð47Þ

and it starts at a maximum at u ¼ 0. The normalization to
unity of the amplitude of ck simply sets the normalization
of the amplitude ϕ0 in Eq. (32), while the choice u ¼ 0 for a
maximum sets an integration constant for the phase β or the
origin of time t. Also, the choice of unity for the first two
coefficients in the differential equation (44) does not lead to
a loss of generality. It sets the normalization of the
argument u, that is, the period 4Q of the oscillator.
Then, comparing the definition (44) with the nonlinear

Klein-Gordon equation (40), we can see that this equation
of motion is satisfied if ckðu; μÞ is the function defined in
Eq. (44), provided we have

fm2 ¼ ω2 −
f
h
ðQβ0Þ2; ð48Þ

and the parameter μ of the oscillator (44) is set to the value
μðrÞ of Eq. (42). Combining with Eqs. (33) and (42), we
obtain

π2f
4h

β02 ¼ ω2
0 −

π2m2f
4Q2

; ð49Þ

ϕ2
0 ¼

2Λ4

m2
μ: ð50Þ

These two equations take the same form as Eqs. (62) and
(63) obtained in [33] for the case of a quartic potential. For
a given radial function μðrÞ, they provide the phase βðrÞ
and the amplitude ϕ0ðrÞ. This fully determines the oscil-
lating solution (32), as the frequency ωðrÞ is given by
Eq. (33) and QðrÞ is determined by μðrÞ as the quarter of
period of the oscillator (44). Equation (50) provides at once
the constraint

μ ≥ 0: ð51Þ

We can see in Eq. (50) that for low scalar-field
amplitudes, ϕ0 → 0, we recover the harmonic oscillator
as μ → 0. This corresponds to the nonrelativistic and small-
field limit, found for instance for the soliton solution (31),
where the higher-order contributions to the scalar-field
Lagrangian are small, KI ≪ X, and the Klein-Gordon
equation reduces to the harmonic oscillator at leading order.
Equation (49) appears as the generalization of the Euler

equation at leading order, πβ0=ð2mÞ playing the role of the
radial velocity vr ¼ m−1ds=dr and πβ=2 the role of the
phase s. Using Eqs. (34) and (49) we can write

vr ≡ πβ0

2m
¼ −

ffiffiffi
h
f

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ αÞ2 − π2f
4Q2

s

: ð52Þ

We refine this analogy below.

B. Nonlinear oscillator

We investigate the behavior of the anharmonic oscillator
(44). This equation of motion can be integrated once, after
multiplying by 2 ∂ck

∂u. With the initial conditions (45), this
gives

"∂ck
∂u

#
2

þ ck2 þ 1

μ
GI

$
μ

"∂ck
∂u

#
2
%
¼ 1; ð53Þ

where we introduced the function GIðXÞ defined by

GIð0Þ≡ 0; G0
I ≡ K̃I ¼ K0

I þ 2XK00
I ; ð54Þ

hence

GIðXÞ ¼ 2XK0
IðXÞ − KIðXÞ: ð55Þ

This corresponds to the conservation of energy of the
nonlinear oscillator, which oscillates over the range −1 ≤
ckðuÞ ≤ 1with a period that we denote by 4QðμÞ. For small
μ the term GI is a small correction and ckðuÞ closely
follows cosðuÞ. For larger μ, the higher-order contribution
GI becomes important and the oscillations are more
strongly deformed. Depending on the function GI the
periodic oscillatory behavior may eventually disappear.
Introducing the function GðXÞ by

GðXÞ≡ X þGIðXÞ ¼ 2XK0ðXÞ − KðXÞ; ð56Þ

the conservation equation (53) can be inverted as
"∂ck
∂u

#
2

¼ 1

μ
G−1½μð1 − ck2Þ&; ð57Þ

where G−1 is the inverse function of G, G½G−1ðyÞ& ¼ y.
For small X we have GðXÞ ≃ X and G−1ðyÞ ≃ y. Thus, near
the maximum ckðu ¼ 0Þ ¼ 1 we have ð∂ck∂u Þ

2 ≃ 1 − ck2.
To the right of the maximum, u≳ 0, the function ck
decreases below unity with a negative slope given by
∂ck
∂u ≃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ck2

p
. We can build the periodic function ckðuÞ

from its first quarter of period, where 0 ≤ u ≤ Q and
1 ≥ ck ≥ 0, if we can solve the equation (57) until the
point ck ¼ 0 in a finite time u ¼ Q. For a given parameter
μ ≥ 0, this requires that G−1ðyÞ is well defined and positive
over 0 ≤ y ≤ μ. Since G−1 is defined from GðXÞ with
X ≥ 0, starting from G ≃ X at low X, we can see that G−1 is
positive from the parametric representation fy;G−1g ¼
fG;Xg. Moreover, it is well defined up to μ if GðXÞ is
monotonically increasing over 0 ≤ X ≤ Xμ, where Xμ is
defined by GðXμÞ≡ μ. From Eq. (56) this implies

0 ≤ X ≤ Xμ∶ G0ðXÞ ¼ K0 þ 2XK00 > 0: ð58Þ

Then, the dynamics can be solved by quadrature,
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- the flux shows a peak that grows at low radius and vanishes at both ends of the range of  µ

the period         must vanish at the horizon4Q

This yields for the functions GðXÞ and G−1ðyÞ

GðXÞ¼ að2ν−1ÞXν; G−1ðyÞ¼
!

y
að2ν−1Þ

"
1=ν

; ð103Þ

with the constraint

ν >
1

2
; ð104Þ

so that GðXÞ is monotonically increasing and G−1 is well
defined. Then, the quarter of period Q of Eq. (60) reads

Q ¼ μðν−1Þ=ð2νÞ½að2ν − 1Þ%1=ð2νÞ
ffiffiffi
π

p
Γ½1 − 1=ð2νÞ%

2Γ½3=2 − 1=ð2νÞ%
: ð105Þ

As explained in Sec. III C, the flux Fðμ; xÞ as a function of
μ generically shows a peak and vanishes at both end points
of the range (76). The large-radius boundary condition
selects the low-velocity branch (82) associated with the
right side of the peak, while the small-radius boundary
condition selects the high-velocity branch (81) associated
with the left side of the peak. To find a global solution that
smoothly switches from the left to the right branch, the
height Fpeak of the peak must increase at both large and
small radii. We have seen that this is always the case at
large radii, in the nonrelativistic regime (80). At small radii,
this depends on the large-X behavior of the kinetic
function, and we have seen in Sec. V that for the quartic
Lagrangian this does not happen, as the peak is cut from the
right by the additional upper bound (94). Then, although
this is neither a sufficient nor a necessary condition, models
that are likely to show the desired behavior for Fðμ; xÞ
should show the full peak, with the vanishing of the flux at
both end points 0 and μþ. At the horizon the metric
function fðrÞ vanishes. From Eq. (76) this means that in
order to reach μþðxÞ, down to the horizon, the quarter of
periodQmust decrease down to 0 for large μ. In the power-
law case (105) this gives the constraint

ν < 1; ð106Þ

so that Q vanishes for μ → ∞. From Eq. (75) we obtain

Cμ ¼
ν

3ν − 1
; ð107Þ

and the flux (70) reads

F
Fs

¼ x2h
ν½að2ν−1Þ%1=νΓ½1−1=ð2νÞ%2

ð3ν−1ÞπΓ½3=2−1=ð2νÞ%2
μð2ν−1Þ=ν

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−
πΓ½3=2−1=ð2νÞ%2fμð1−νÞ=ν

ð1þαÞ2½að2ν−1Þ%1=νΓ½1−1=ð2νÞ%2

s

: ð108Þ

At the horizon x and h are finite while f vanishes. We can
see that μþ grows as f−ν=ð1−νÞ and the peak height grows as
f−ð2ν−1Þ=ð1−νÞ. Therefore, we find indeed the required
behavior for a global transonic solution, as the peak of
FðμÞ is fully obtained at small radii with a height that grows
as we move closer to the horizon.
As we explicitly note in Sec. VII C, the condition 1=2 <

ν < 1 that we have obtained here is only suggestive. It is
neither a necessary nor a sufficient condition. For instance,
kinetic functions KðXÞ that show the asymptotic slope
KðXÞ ∼ Xν with 1=2 < ν < 1 but are badly behaved for
intermediate values of X, e.g., if they violate the condition
(58) at intermediate X, cannot provide a realistic or physical
model. On the other hand, we see in Sec. VII, on the
example (109) of a well-behaved kinetic function KðXÞ,
that X actually remains bounded down to the BH horizon,
0 ≤ X ≤ Xmaxðx ¼ 1=4Þ. Then, the very large X behavior
of KðXÞ, at values that are not reached in practice, is
actually irrelevant. It may however be probed by other
configurations, e.g., in the early Universe.

VII. EXPLICIT EXAMPLE

A. Characteristic functions

To illustrate the results of the previous section we
consider the case

KðXÞ ¼ ð1þ 3X=2Þ2=3 − 1: ð109Þ

This corresponds to the exponent ν ¼ 2=3, which falls in
the range 1=2 < ν < 1 obtained in Eqs. (104) and (106).
This also gives the quadratic coefficient k2 ¼ −1=2, as for
the quartic model (96),

ν ¼ 2=3; k2 ¼ −1=2: ð110Þ

The function GðXÞ reads as

GðXÞ ¼ 1

3
ð1þ 3X=2Þ2=3 − 4

3
ð1þ 3X=2Þ−1=3 þ 1; ð111Þ

and the inverse function G−1ðyÞ as

G−1ðyÞ¼2

3

!
ð−1þyþð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5−3yþ3y2−y3

p
Þ2=3Þ3

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5−3yþ3y2−y3

p −1

"
:

ð112Þ

At large y this gives the power-law asymptote

y → ∞∶ G−1ðyÞ ¼ 2
ffiffiffi
3

p
y3=2 þ…: ð113Þ

The nonlinear differential equation (53) now admits regular
periodic solutions ckðu; μÞ for all positive μ. Then, at any
radius x the oscillatory parameter μ is only bounded by
μþðxÞ from Eq. (76).
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This yields for the functions GðXÞ and G−1ðyÞ

GðXÞ¼ að2ν−1ÞXν; G−1ðyÞ¼
!

y
að2ν−1Þ

"
1=ν

; ð103Þ

with the constraint

ν >
1

2
; ð104Þ

so that GðXÞ is monotonically increasing and G−1 is well
defined. Then, the quarter of period Q of Eq. (60) reads

Q ¼ μðν−1Þ=ð2νÞ½að2ν − 1Þ%1=ð2νÞ
ffiffiffi
π

p
Γ½1 − 1=ð2νÞ%

2Γ½3=2 − 1=ð2νÞ%
: ð105Þ

As explained in Sec. III C, the flux Fðμ; xÞ as a function of
μ generically shows a peak and vanishes at both end points
of the range (76). The large-radius boundary condition
selects the low-velocity branch (82) associated with the
right side of the peak, while the small-radius boundary
condition selects the high-velocity branch (81) associated
with the left side of the peak. To find a global solution that
smoothly switches from the left to the right branch, the
height Fpeak of the peak must increase at both large and
small radii. We have seen that this is always the case at
large radii, in the nonrelativistic regime (80). At small radii,
this depends on the large-X behavior of the kinetic
function, and we have seen in Sec. V that for the quartic
Lagrangian this does not happen, as the peak is cut from the
right by the additional upper bound (94). Then, although
this is neither a sufficient nor a necessary condition, models
that are likely to show the desired behavior for Fðμ; xÞ
should show the full peak, with the vanishing of the flux at
both end points 0 and μþ. At the horizon the metric
function fðrÞ vanishes. From Eq. (76) this means that in
order to reach μþðxÞ, down to the horizon, the quarter of
periodQmust decrease down to 0 for large μ. In the power-
law case (105) this gives the constraint

ν < 1; ð106Þ

so that Q vanishes for μ → ∞. From Eq. (75) we obtain

Cμ ¼
ν

3ν − 1
; ð107Þ

and the flux (70) reads

F
Fs

¼ x2h
ν½að2ν−1Þ%1=νΓ½1−1=ð2νÞ%2

ð3ν−1ÞπΓ½3=2−1=ð2νÞ%2
μð2ν−1Þ=ν

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−
πΓ½3=2−1=ð2νÞ%2fμð1−νÞ=ν

ð1þαÞ2½að2ν−1Þ%1=νΓ½1−1=ð2νÞ%2

s

: ð108Þ

At the horizon x and h are finite while f vanishes. We can
see that μþ grows as f−ν=ð1−νÞ and the peak height grows as
f−ð2ν−1Þ=ð1−νÞ. Therefore, we find indeed the required
behavior for a global transonic solution, as the peak of
FðμÞ is fully obtained at small radii with a height that grows
as we move closer to the horizon.
As we explicitly note in Sec. VII C, the condition 1=2 <

ν < 1 that we have obtained here is only suggestive. It is
neither a necessary nor a sufficient condition. For instance,
kinetic functions KðXÞ that show the asymptotic slope
KðXÞ ∼ Xν with 1=2 < ν < 1 but are badly behaved for
intermediate values of X, e.g., if they violate the condition
(58) at intermediate X, cannot provide a realistic or physical
model. On the other hand, we see in Sec. VII, on the
example (109) of a well-behaved kinetic function KðXÞ,
that X actually remains bounded down to the BH horizon,
0 ≤ X ≤ Xmaxðx ¼ 1=4Þ. Then, the very large X behavior
of KðXÞ, at values that are not reached in practice, is
actually irrelevant. It may however be probed by other
configurations, e.g., in the early Universe.

VII. EXPLICIT EXAMPLE

A. Characteristic functions

To illustrate the results of the previous section we
consider the case

KðXÞ ¼ ð1þ 3X=2Þ2=3 − 1: ð109Þ

This corresponds to the exponent ν ¼ 2=3, which falls in
the range 1=2 < ν < 1 obtained in Eqs. (104) and (106).
This also gives the quadratic coefficient k2 ¼ −1=2, as for
the quartic model (96),

ν ¼ 2=3; k2 ¼ −1=2: ð110Þ

The function GðXÞ reads as

GðXÞ ¼ 1

3
ð1þ 3X=2Þ2=3 − 4

3
ð1þ 3X=2Þ−1=3 þ 1; ð111Þ

and the inverse function G−1ðyÞ as

G−1ðyÞ¼2

3

!
ð−1þyþð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5−3yþ3y2−y3

p
Þ2=3Þ3

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5−3yþ3y2−y3

p −1

"
:

ð112Þ

At large y this gives the power-law asymptote

y → ∞∶ G−1ðyÞ ¼ 2
ffiffiffi
3

p
y3=2 þ…: ð113Þ

The nonlinear differential equation (53) now admits regular
periodic solutions ckðu; μÞ for all positive μ. Then, at any
radius x the oscillatory parameter μ is only bounded by
μþðxÞ from Eq. (76).
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Example:

We show in Fig. 2 the quarter of period Q and the
averageCμ as functions of μ. In agreement with the analysis
of Sec. VI, Q goes to 0 as μ goes to infinity, while Cμ

remains finite and does not vary much over the full range
0 ≤ μ < ∞. More precisely, we have the asymptotic
behaviors

μ → ∞∶ Q ¼
ffiffiffiffiffiffi
2π

p
Γ½5=4#

31=4Γ½3=4#
μ−1=4; Cμ ¼

2

3
: ð114Þ

We find in Sec. VII B that μ grows at smaller radii and
reaches at the horizon the value μs ≃ 3.5 of Eq. (116) below.
This corresponds to Qs ≃ 1 and Cμs ≃ 0.6. Therefore, the
oscillatory parameter μ reaches the mildly nonlinear regime
at the Schwarzschild radius. There, all higher-order terms of
the kinetic functionKðXÞ are relevant, as is obvious from the
fact that the physics associated with the kinetic function
(109) is quite different from the one associated with the
quartic case analyzed in Sec. V (a quasistatic soliton can now
be supported around the supermassive BH).
We display in Fig. 3 the oscillatory function ckðu; μÞ for

μ ¼ 0, where ckðu; 0Þ ¼ cosðuÞ, and for μ ¼ μs ≃ 3.5. We
only show the first period, 0 ≤ u ≤ 4Q, and we renormalize
the abscissa by Q. We can see that although Q has
decreased from Qð0Þ ¼ π=2 to Qs ≃ 1, the shape of the
function ckðuÞ remains close to the cosine once we
renormalize the period.

B. Critical solution

We show in Fig. 4 the flux Fðμ; xÞ as a function of μ
for several values of the radius x. Close to the horizon the
peak moves to large values of μ, as μþ → ∞ for x → 1=4.
To display the curves from x ¼ 50 to x ¼ 0.4 on the same
plot we use the abscissa μ=ð1þ μÞ in Fig. 4. In agreement
with the analysis of the previous section, we now find that

FðμÞ shows a full peak, with a vanishing flux at both end
points, at any radius x. Moreover, the peak height increases
for both large and small radii, with a minimum jFcj ¼
F⋆jFsj at the intermediate radius x⋆,

Fc

Fs
¼ F⋆ with x⋆ ≃ 1.4; F⋆ ≃ 0.9: ð115Þ

We show the curve FpeakðxÞ=Fs of the peak height, as a
function of the radius x, in Fig. 5. This clearly shows the
increase of the peak height at small and large radii and the
minimum at x⋆.
A global solution is obtained provided the constant flux

jFj is smaller than the critical value jFcj, so that at any
radius x above the horizon there is at least one solution μðxÞ
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FIG. 2. Quarter of period Q, from Eq. (60), and average Cμ,
from Eq. (75), as functions of the oscillatory parameter μ. We use
the ratio μ=ð1þ μÞ for the abscissa, to cover the range
0 ≤ μ < ∞.
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FIG. 3. Nonlinear oscillatory function ckðu; μÞ, for μ ¼ 3.5
(solid line) and μ ¼ 0 (dashed line). The abscissa is renormalized
by the quarter of period Q.
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FIG. 4. Normalized flux Fðμ; xÞ=Fs as a function of the
oscillatory parameter μ, for various values of the radial coordinate
x, from Eq. (70) for the kinetic function (109). We use the ratio
μ=ð1þ μÞ for the abscissa, so that large values of μ fit into the
figure. The horizontal dashed line is the value F⋆ of Eq. (115),
defined as the minimum over all radii, 1=4 ≤ x < ∞, of the
height of the peak. It is reached at radius x⋆ ≃ 1.4.
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critical value of the flux

high-velocity branch

low-velocity
branch

We obtain again a unique solution, associated with a critical value of the constant flux.
It connects the low-velocity branch at large radius to the high-velocity branch at low radius.



- at the horizon: nonlinear ingoing radial wave:

Schwarzschild radial coordinate, 
Eddington time

The self-interactions remain relevant and 
determine higher-order harmonics.

characteristic density:

greater self-interactions decrease the scalar-field energy density and flux.

D. Behavior at the Schwarzschild radius

1. Isotropic coordinates

As for the case of the quartic potential [33], the effective
velocityvr ¼ πβ0=ð2mÞ diverges at theSchwarzschild radius
because of the metric factor 1=f. Thus, from Eq. (52) we
obtain close to the Schwarzschild radius, where f → 0,

r → rs=4∶
πβ0

2m
∼ −ð1þ αÞ

ffiffiffi
h
f

s

∼ −
ð1þ αÞ8rs
4r − rs

;

β ∼ −
ð1þ αÞ4mrs

π
ln
"
4r − rs
4rs

#
: ð118Þ

However, this divergence is only an artefact, due to the use of
the isotropic coordinates (9).

2. Eddington coordinates

As in [33], to check that the scalar field remains well
behaved down to the horizon it is convenient to introduce
the Eddington coordinates ðt̃; r̃Þ, where r̃ is the standard
Schwarzschild radial coordinate of Eq. (13) and t̃ is the
Eddington time, defined by [35]

t̃ ¼ tþ rs ln
$$$$
r̃
rs

− 1

$$$$: ð119Þ

This gives the metric

ds2 ¼ −
"
1−

rs
r̃

#
dt̃2 þ 2

rs
r̃
dt̃dr̃þ

"
1þ rs

r̃

#
dr̃2 þ r̃2dΩ⃗2;

ð120Þ

which is regular over all r̃ > 0. These coordinates ðt̃; r̃Þ
are directly related to the Eddington-Finkelstein coordi-
nates [35].
Substituting the result (118) into Eq. (32) gives

r̃ → rs∶ ϕ ¼ ϕsck
%
2Qs

π
ð1þ αÞmðt̃þ r̃Þ; μs

&
; ð121Þ

where the parameter μs at the Schwarzschild radius was
obtained in Eq. (116) and the amplitude ϕs is given by
Eq. (50) in terms of μs. As for the free scalar and for the
case of a quartic potential [33], the scalar field is well
defined at the horizon and we recover a purely ingoing
solution with unit velocity. Nevertheless, the derivative
self-interactions remain relevant down to the horizon as
(121) differs from the cosine (i.e., harmonic) expression of
the free case. We obtain a nonlinear radial wave, with
higher-order harmonics given by the expansion (62).
We can now come back to the definition of the velocity.

In the large-radius limit, we have identified vr ¼ πβ0=ð2mÞ
of Eq. (52) with the velocity obtained in the fluid picture of

the nonrelativistic dark matter through the Euler equa-
tion (23) and Eq. (21). In fact, Eq. (49) allows us to go
beyond this large-radius regime. Indeed, we can identify
this relation with the relativistic dispersion relation of a
particle of mass m and momentum pμ, gμνpμpν ¼ −m2,
with

p0 ¼ 2Qω0

πf
; pr ¼ Qβ0

h
: ð122Þ

Then the speed can be identified as

cr ¼ pr

p0
¼ f

h
πβ0

2ω0

; ð123Þ

which coincides with vr in the large-radius limit and for
α ≪ 1. Close to the BH horizon, we have seen that Eq. (50)
gives

r → rs=4∶ β0 ≃ −
2ω0

π

ffiffiffi
h
f

s

ð124Þ

as f → 0 while Q remains finite; see also Eq. (118). This
yields

r → rs=4∶ cr ≃ −
ffiffiffi
f
h

r
: ð125Þ

If we use the Schwarzschild radial coordinate r̃ instead of
the isotropic radial coordinate r, we have from Eq. (13)
dr̃=dr ¼

ffiffiffiffiffiffi
fh

p
and we obtain

cr̃ ¼
ffiffiffiffiffi
f3

h

r
πβ0

2ω0

; ð126Þ

and

r̃ → rs∶ cr̃ ≃ −f: ð127Þ

We find that both velocities vanish at the horizon. We
recover the well-known result that the velocity of infalling
matter measured by a distant observer (at rest at infinity,
with a proper time given by t) vanishes as the body
approaches the horizon. On the other, the proper time of
a particle that is falling from infinity at rest is dτ ¼ fdt
[38]. Thus, we recover dr̃=dτ ¼ −1 at the horizon follow-
ing the infalling matter. The dynamics become highly
relativistic as we approach the horizon.

E. Density profile

For spherically symmetric configurations, the density
defined by the time-time component of the energy-momen-
tum tensor in the coordinates ðt̃; r̃Þ reads
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where Φ is the gravitational potential (16), where ρϕ ¼ ρ,
and ΦI is a repulsive self-interaction potential. In the
quartic case it is given by [27]

ΦIðρÞ ¼
ρ
ρa

with ρa ≡ 4m4

3λ4
¼ 8Λ4

3jk2j
: ð24Þ

Here we neglected the “quantum pressure” ΦQ, associated
with the wavelike nature of the scalar field, because we
consider large masses m ≫ 10−21 eV, beyond the ranges
associated with fuzzy dark-matter scenarios. The pressure
ΦI associated with the self-interactions allows the scalar
cloud to reach a hydrostatic equilibrium, where this
repulsive self-interaction balances the self-gravity. This
gives the soliton profile [27]

ρðrÞ ¼ ρsolð0Þ
sinðr=raÞ
r=ra

; ΦIðrÞ ¼ ΦI;solð0Þ
sinðr=raÞ
r=ra

;

ð25Þ

with v⃗ ¼ 0 and

ra ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4πGρa
p ¼

ffiffiffiffiffiffiffi
3λ4
2

r
MPl

m2
; ð26Þ

where we introduced the reduced Planck mass
M2

Pl ¼ 1=ð8πGÞ. The soliton has a flat inner core and a
finite radius Rsol ¼ πra, which can reach galactic size
depending on the value of λ4. More precisely, we can also
write (26) as

λ4 ¼
"

ra
20 kpc

#
2
"

m
1 eV

#
4

: ð27Þ

The constraint that the scalar field behaves as pressureless
dark-matter at the background level up to the radiation-matter
equality, at redshift zeq, implies [27] λ4 ≲ ðm=1 eVÞ4; there-
fore, we actually have ra ≲ 20 kpc.
Inside the soliton, the hydrostatic equilibrium condition

in Eq. (23) gives ∇⃗ðΦþΦIÞ ¼ 0, and we have

r ≤ Rsol∶ ΦþΦI ¼ α; ð28Þ

where α is a constant, given by the value of the Newtonian
potential at the boundary of the soliton,

α ¼ ΦðRsolÞ; ð29Þ

as ΦIðRsolÞ ¼ 0. In terms of the scalar fields ψ and ϕ this
gives [27]

ψ ¼
ffiffiffiffi
ρ
m

r
e−iαmt; hence s ¼ −αmt; ð30Þ

and

ϕ ¼
ffiffiffiffiffi
2ρ

p

m
cos½ð1þ αÞmt&: ð31Þ

III. NONLINEAR GLOBAL SOLUTION

A. Oscillating solution in the large-mass limit

As in [33], where we considered the case of a scalar field
with a standard kinetic term and a self-interaction potential,
we look for a solution in the large-mass limit. Then, the field
oscillates with a very high frequency determined bym, if we
only keep the zeroth-order terms that give the standard
Klein-Gordon equation ∂2

tϕþm2ϕ ¼ 0. However, the
nonlinearity associated with the higher-order kinetic factor
KI transforms this harmonic oscillator into an anharmonic
oscillator, with parameters that slowly changewith radius as
dictated by the radial derivative term. In a fashion similar to
the case of the quartic potential studied in [33], we look for
a solution of the nonlinear Klein-Gordon equation (17) of
the form

ϕðr; tÞ ¼ ϕ0ðrÞck½ωðrÞt −QðrÞβðrÞ; μðrÞ&: ð32Þ

Here ckðu; μÞ is the extension of the harmonic cosine
cosðuÞ, obtained for the free massive scalar field, and of
the Jacobi elliptic function cnðu; kÞ, obtained for the quartic
potential [33], to the case of derivative self-interactions (the
letter “k” refers to the “kinetic” nonlinearity). For μ ¼ 0we
recover the harmonic cosine, ckðu; 0Þ ¼ cosðuÞ, and for
nonzero μ we have an anharmonic oscillator, associated
with the kinetic factor KI that adds nonlinear contributions
to the Klein-Gordon equation. The factorQðrÞ is defined as
QðrÞ≡Q½μðrÞ&, whereQðμÞ is the quarter of the period of
the oscillator ckðuÞ for parameter μ. It is introduced in (32)
for future convenience, to simplify Eq. (38) below. Thus, μ
and Q play the role of the modulus k and the complete
elliptic integral K that appears in the case of the quartic
potential [33]. At this stage, ckðu; μÞ is not defined yet and it
is determined below from the analysis of the nonlinear
Klein-Gordon equation.
The expression (32) is understood as the leading-order

approximation in the limit m → ∞, where spatial gradients
of the functions ϕ0;ω;Q; β, and μ are much below m (i.e.,
∂r ≪ m), whereas both ω and β are of order m. Thus, the
scalar field shows fast oscillations with time at each radius,
at a frequency and a phase of order m, with a slow
modulation in space of the oscillation characteristics.
This behavior relies on the large separation of scales
∂r ≪ m, which in our case corresponds to rs ≫ m, as
radial derivatives typically scale as ∂r ∼ 1=r≲ 1=rs beyond
the horizon.
To ensure that spatial gradients do not increase with time,

the scalar field must oscillate with the same frequency over
all radii, with a common period T ¼ 2π=ω0, where ω0 is
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Soliton lifetime:

From the value of the inward flux, we can estimate the soliton lifetime, 
until it completely falls into the BH:

To have a soliton of galactic scale (kpc) we need:

the central supermassiveBH has amassM ≃ 4.3 × 106 M⊙.
This gives a Schwarzschild radius rs ≃ 4 × 10−7 pc and a
transition radius rsg ≃ 0.1 pc. From Eq. (119), we have
in the large-radius regime rsg < r < Rs the scaling
Mϕð< rÞ ∝ r3. Therefore, we obtain at the transition radius
Mϕð< 0.1 pcÞ ≃ 4 × 10−6 M⊙. From Eq. (115), we have in
the small-radius regime rs < r < rsg the scaling
Mϕð< rÞ ∝ r2. This gives, in particular,Mϕð< 0.005 pcÞ≃
10−8 M⊙. The observational constraints areMϕ < 105 M⊙
within 0.005 pc andMϕ < 106 M⊙ within 0.3 pc. Thus, the
soliton mass at small radii is far below the observational
upper bounds. On the other hand, thesemeasurements could
constrain scalar-field models such as the one studied in this
paper but with very different parameters, which would then
play no role on galactic scales and only become relevant at
milliparsec scales.

V. LIFETIME OF THE SCALAR-FIELD SOLITON

At the typical soliton radius ra ¼ Rs=π, Eqs. (116) and
(119) give for the radial velocity vr and the evolution
timescale tc, respectively,

vrðraÞ ∼ −
ρa
ρs

r2s
r2a

; tc ≡ ra
jvrj

∼ ra
ρs
ρa

r2a
r2s

: ð120Þ

To compare the time tc with cosmological timescales,
we define the Hubble time tH and Hubble radius RH as,
respectively,

tH ¼ 1=H; RH ¼ 1=H; ð121Þ

and we obtain

tc ∼ tH

!
ρ̄c
ρa

"
5=2 ρs

ρ̄c

!
RH

rs

"
2

; ð122Þ

where ρ̄c ¼ 3H2=ð8πGÞ is the cosmological critical density.
This also reads at z ¼ 0 as

tc ∼ 103tH
ρs
ρ̄c

!
ρa

1 eV4

"−5=2! M
108 M⊙

"−2
: ð123Þ

For the soliton to have a radius of 20 kpc, so that it shows a
significant departure from the CDM profiles on galactic
scales, we must have ρa ∼ 1 eV4 [89]. Larger characteristic
densities lead to smaller soliton radii. We typically have
ρs=ρ̄c ∼ 105 for the DM overdensity in the soliton core.
Therefore, we find that tc ≫ tH. This means that the DM
solitonic cores can easily survive until today, despite the
infall of their inner layers onto the central supermas-
sive BH.
We also find that astrophysical stellar mass BHs cannot

eat a significant fraction of the galactic DM soliton. Indeed,

for N BHs of unit solar mass, the typical timescale for the
soliton depletion reads

tN ∼ 1019
tH
N

ρs
ρ̄c

!
ρa

1 eV4

"−5=2
: ð124Þ

Since we typically have N < 1011, as only a fraction of the
galactic baryonic mass can be within stellar BHs, we obtain
tN ≫ 108tH and the soliton mass loss is negligible.

VI. DISCUSSION AND CONCLUSION

In this work, we have analyzed steady solutions of
coherent scalar fields in galactic centers that harbor a
supermassive central BH. Neglecting the central BH, such
ultralight scalar DM typically builds a stationary coherent
profile, called a soliton, with a finite radius Rs and a flat
core. This soliton is also embedded in an extended halo of
fluctuating density granules, with a spherically averaged
density profile that is similar to the NFW profile [87] found
in numerical simulations of standard collisionless dark
matter. If Rs is of the order of a few kiloparsecs, this
flattened dark matter profile can have interesting observa-
tional consequences for cosmological and galactic studies.
In contrast with the fuzzy dark matter scenarios, with a
scalar mass m ∼ 10−22 eV, where the soliton is due to the
balance between gravity and the quantum pressure (asso-
ciated with the wave features of the scalar field), we focus
on the case of large scalar mass, typically m ≫ 10−18 eV,
where gravity is instead counterbalanced by the repulsive
self-interaction associated with a quartic potential and the
quantum pressure is negligible.
In this paper, we have considered the impact of the

central supermassive BH on the profile of this soliton and
its lifetime, as it gradually falls onto the BH. As we focus
on the limit of large scalar mass, we are able to perform a
fully nonrelativistic study, from the radius Rs of the soliton
down to the Schwarzschild radius rs. For simplicity, we
discard baryonic effects, but the main features of both the
relativistic infall at small radii and the soliton core at large
radii should remain valid. Baryonic matter will increase
only somewhat the soliton density at intermediate radii,
where it dominates over both the central BH and scalar
gravitational fields. Then, our analysis extends from the
large-radius regime r≲ Rs dominated by the scalar dark
matter self-gravity down to the small-radius regime r ∼ rs
dominated by the BH gravity. The boundary conditions at
both ends determine the profile and the steady infall onto
the supermassive central BH.
First, we have studied the free massive case, associated

with a quadratic scalar potential. As the scalar-field
equation of motion is linear, this behaves in a fashion
similar to a collection of independent particles, with a flux
onto the central BH that is arbitrary and unbounded,
proportional to the density at large radii. As expected, at
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the central supermassiveBH has amassM ≃ 4.3 × 106 M⊙.
This gives a Schwarzschild radius rs ≃ 4 × 10−7 pc and a
transition radius rsg ≃ 0.1 pc. From Eq. (119), we have
in the large-radius regime rsg < r < Rs the scaling
Mϕð< rÞ ∝ r3. Therefore, we obtain at the transition radius
Mϕð< 0.1 pcÞ ≃ 4 × 10−6 M⊙. From Eq. (115), we have in
the small-radius regime rs < r < rsg the scaling
Mϕð< rÞ ∝ r2. This gives, in particular,Mϕð< 0.005 pcÞ≃
10−8 M⊙. The observational constraints areMϕ < 105 M⊙
within 0.005 pc andMϕ < 106 M⊙ within 0.3 pc. Thus, the
soliton mass at small radii is far below the observational
upper bounds. On the other hand, thesemeasurements could
constrain scalar-field models such as the one studied in this
paper but with very different parameters, which would then
play no role on galactic scales and only become relevant at
milliparsec scales.

V. LIFETIME OF THE SCALAR-FIELD SOLITON

At the typical soliton radius ra ¼ Rs=π, Eqs. (116) and
(119) give for the radial velocity vr and the evolution
timescale tc, respectively,

vrðraÞ ∼ −
ρa
ρs

r2s
r2a

; tc ≡ ra
jvrj

∼ ra
ρs
ρa

r2a
r2s

: ð120Þ

To compare the time tc with cosmological timescales,
we define the Hubble time tH and Hubble radius RH as,
respectively,

tH ¼ 1=H; RH ¼ 1=H; ð121Þ

and we obtain

tc ∼ tH

!
ρ̄c
ρa

"
5=2 ρs

ρ̄c

!
RH

rs

"
2

; ð122Þ

where ρ̄c ¼ 3H2=ð8πGÞ is the cosmological critical density.
This also reads at z ¼ 0 as

tc ∼ 103tH
ρs
ρ̄c

!
ρa

1 eV4

"−5=2! M
108 M⊙

"−2
: ð123Þ

For the soliton to have a radius of 20 kpc, so that it shows a
significant departure from the CDM profiles on galactic
scales, we must have ρa ∼ 1 eV4 [89]. Larger characteristic
densities lead to smaller soliton radii. We typically have
ρs=ρ̄c ∼ 105 for the DM overdensity in the soliton core.
Therefore, we find that tc ≫ tH. This means that the DM
solitonic cores can easily survive until today, despite the
infall of their inner layers onto the central supermas-
sive BH.
We also find that astrophysical stellar mass BHs cannot

eat a significant fraction of the galactic DM soliton. Indeed,

for N BHs of unit solar mass, the typical timescale for the
soliton depletion reads

tN ∼ 1019
tH
N

ρs
ρ̄c

!
ρa

1 eV4

"−5=2
: ð124Þ

Since we typically have N < 1011, as only a fraction of the
galactic baryonic mass can be within stellar BHs, we obtain
tN ≫ 108tH and the soliton mass loss is negligible.

VI. DISCUSSION AND CONCLUSION

In this work, we have analyzed steady solutions of
coherent scalar fields in galactic centers that harbor a
supermassive central BH. Neglecting the central BH, such
ultralight scalar DM typically builds a stationary coherent
profile, called a soliton, with a finite radius Rs and a flat
core. This soliton is also embedded in an extended halo of
fluctuating density granules, with a spherically averaged
density profile that is similar to the NFW profile [87] found
in numerical simulations of standard collisionless dark
matter. If Rs is of the order of a few kiloparsecs, this
flattened dark matter profile can have interesting observa-
tional consequences for cosmological and galactic studies.
In contrast with the fuzzy dark matter scenarios, with a
scalar mass m ∼ 10−22 eV, where the soliton is due to the
balance between gravity and the quantum pressure (asso-
ciated with the wave features of the scalar field), we focus
on the case of large scalar mass, typically m ≫ 10−18 eV,
where gravity is instead counterbalanced by the repulsive
self-interaction associated with a quartic potential and the
quantum pressure is negligible.
In this paper, we have considered the impact of the

central supermassive BH on the profile of this soliton and
its lifetime, as it gradually falls onto the BH. As we focus
on the limit of large scalar mass, we are able to perform a
fully nonrelativistic study, from the radius Rs of the soliton
down to the Schwarzschild radius rs. For simplicity, we
discard baryonic effects, but the main features of both the
relativistic infall at small radii and the soliton core at large
radii should remain valid. Baryonic matter will increase
only somewhat the soliton density at intermediate radii,
where it dominates over both the central BH and scalar
gravitational fields. Then, our analysis extends from the
large-radius regime r≲ Rs dominated by the scalar dark
matter self-gravity down to the small-radius regime r ∼ rs
dominated by the BH gravity. The boundary conditions at
both ends determine the profile and the steady infall onto
the supermassive central BH.
First, we have studied the free massive case, associated

with a quadratic scalar potential. As the scalar-field
equation of motion is linear, this behaves in a fashion
similar to a collection of independent particles, with a flux
onto the central BH that is arbitrary and unbounded,
proportional to the density at large radii. As expected, at
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the central supermassiveBH has amassM ≃ 4.3 × 106 M⊙.
This gives a Schwarzschild radius rs ≃ 4 × 10−7 pc and a
transition radius rsg ≃ 0.1 pc. From Eq. (119), we have
in the large-radius regime rsg < r < Rs the scaling
Mϕð< rÞ ∝ r3. Therefore, we obtain at the transition radius
Mϕð< 0.1 pcÞ ≃ 4 × 10−6 M⊙. From Eq. (115), we have in
the small-radius regime rs < r < rsg the scaling
Mϕð< rÞ ∝ r2. This gives, in particular,Mϕð< 0.005 pcÞ≃
10−8 M⊙. The observational constraints areMϕ < 105 M⊙
within 0.005 pc andMϕ < 106 M⊙ within 0.3 pc. Thus, the
soliton mass at small radii is far below the observational
upper bounds. On the other hand, thesemeasurements could
constrain scalar-field models such as the one studied in this
paper but with very different parameters, which would then
play no role on galactic scales and only become relevant at
milliparsec scales.

V. LIFETIME OF THE SCALAR-FIELD SOLITON

At the typical soliton radius ra ¼ Rs=π, Eqs. (116) and
(119) give for the radial velocity vr and the evolution
timescale tc, respectively,

vrðraÞ ∼ −
ρa
ρs

r2s
r2a

; tc ≡ ra
jvrj

∼ ra
ρs
ρa

r2a
r2s

: ð120Þ

To compare the time tc with cosmological timescales,
we define the Hubble time tH and Hubble radius RH as,
respectively,

tH ¼ 1=H; RH ¼ 1=H; ð121Þ

and we obtain

tc ∼ tH

!
ρ̄c
ρa

"
5=2 ρs

ρ̄c

!
RH

rs

"
2
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where ρ̄c ¼ 3H2=ð8πGÞ is the cosmological critical density.
This also reads at z ¼ 0 as

tc ∼ 103tH
ρs
ρ̄c

!
ρa

1 eV4

"−5=2! M
108 M⊙

"−2
: ð123Þ

For the soliton to have a radius of 20 kpc, so that it shows a
significant departure from the CDM profiles on galactic
scales, we must have ρa ∼ 1 eV4 [89]. Larger characteristic
densities lead to smaller soliton radii. We typically have
ρs=ρ̄c ∼ 105 for the DM overdensity in the soliton core.
Therefore, we find that tc ≫ tH. This means that the DM
solitonic cores can easily survive until today, despite the
infall of their inner layers onto the central supermas-
sive BH.
We also find that astrophysical stellar mass BHs cannot

eat a significant fraction of the galactic DM soliton. Indeed,

for N BHs of unit solar mass, the typical timescale for the
soliton depletion reads

tN ∼ 1019
tH
N

ρs
ρ̄c

!
ρa

1 eV4

"−5=2
: ð124Þ

Since we typically have N < 1011, as only a fraction of the
galactic baryonic mass can be within stellar BHs, we obtain
tN ≫ 108tH and the soliton mass loss is negligible.

VI. DISCUSSION AND CONCLUSION

In this work, we have analyzed steady solutions of
coherent scalar fields in galactic centers that harbor a
supermassive central BH. Neglecting the central BH, such
ultralight scalar DM typically builds a stationary coherent
profile, called a soliton, with a finite radius Rs and a flat
core. This soliton is also embedded in an extended halo of
fluctuating density granules, with a spherically averaged
density profile that is similar to the NFW profile [87] found
in numerical simulations of standard collisionless dark
matter. If Rs is of the order of a few kiloparsecs, this
flattened dark matter profile can have interesting observa-
tional consequences for cosmological and galactic studies.
In contrast with the fuzzy dark matter scenarios, with a
scalar mass m ∼ 10−22 eV, where the soliton is due to the
balance between gravity and the quantum pressure (asso-
ciated with the wave features of the scalar field), we focus
on the case of large scalar mass, typically m ≫ 10−18 eV,
where gravity is instead counterbalanced by the repulsive
self-interaction associated with a quartic potential and the
quantum pressure is negligible.
In this paper, we have considered the impact of the

central supermassive BH on the profile of this soliton and
its lifetime, as it gradually falls onto the BH. As we focus
on the limit of large scalar mass, we are able to perform a
fully nonrelativistic study, from the radius Rs of the soliton
down to the Schwarzschild radius rs. For simplicity, we
discard baryonic effects, but the main features of both the
relativistic infall at small radii and the soliton core at large
radii should remain valid. Baryonic matter will increase
only somewhat the soliton density at intermediate radii,
where it dominates over both the central BH and scalar
gravitational fields. Then, our analysis extends from the
large-radius regime r≲ Rs dominated by the scalar dark
matter self-gravity down to the small-radius regime r ∼ rs
dominated by the BH gravity. The boundary conditions at
both ends determine the profile and the steady infall onto
the supermassive central BH.
First, we have studied the free massive case, associated

with a quadratic scalar potential. As the scalar-field
equation of motion is linear, this behaves in a fashion
similar to a collection of independent particles, with a flux
onto the central BH that is arbitrary and unbounded,
proportional to the density at large radii. As expected, at
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galactic solitons easily survive until today

ρ̃ϕ ≡ −T̃0
0 ¼ ð2 − fÞK0

!∂ϕ
∂ t̃

"
2

þ ðf − 1ÞK0 ∂ϕ
∂ t̃

∂ϕ
∂r̃

− Λ4K þm2

2
ϕ2; ð128Þ

and the partial derivatives are related by

∂ϕ
∂ t̃ ¼ ∂ϕ

∂t ;
∂ϕ
∂r̃ ¼ ∂ϕ

∂r
1ffiffiffiffiffiffi
fh

p þ ∂ϕ
∂t

!
1 −

1

f

"
: ð129Þ

For the solution (32), with Eqs. (36) and (38), this gives

ρ̃ϕ
Λ4

¼ μck2 − K þ K0
!∂ck
∂u

"
2

2μ

$
2Q
π

ð1þ αÞ
%
2

×

8
<

:
1

f
þ f − 1

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
π2f

ð1þ αÞ24Q2

s 9
=

;: ð130Þ

This energy density remains finite at the Schwarzschild
radius. Neglecting α ≪ 1, we obtain

r̃ ¼ rs; r ¼ rs
4
∶ hρ̃ϕi ≃ 3.2Λ4 ≃ 0.6ρa; ð131Þ

where h…i denotes the average over the fast oscillations
over time, as in Eqs. (73)–(75). Contrary to the case of the
free scalar, where the flux F and the density ρ̃ϕ can take any
value, for the self-interacting scalar field F and ρ̃ϕ are
uniquely determined (because the system becomes non-
linear). As could be expected, the density (131) is set
by the characteristic density ρa defined in Eq. (24),
which measures the strength of the self-interactions. The
unboundedness of the free case is recovered by the fact that
hρ̃ϕi→∞ when ρa →∞, which corresponds to vanishing
self-interactions, k2 → 0.
In the weak-gravity regime, dominated by the BH, μðxÞ

follows the low-velocity branch μ2ðxÞ of Eq. (82). This
gives

rs ≪ r ≪ rsg∶ μ ≃ −
16Φ
3

≃
8rs
3r

; ð132Þ

where we used Eq. (15). In this regime μ ≪ 1 and at leading
order the density (130) gives

rs ≪ r ≪ rsg∶
hρ̃ϕi
Λ4

≃ μ ≃ 8rs
3r

∝ r−1 ð133Þ

while the velocity (85) reads

rs ≪ r ≪ rsg∶ vr ≃ −
3F⋆
4

rs
r
∝ r−1: ð134Þ

As for the case of a quartic potential, the density decreases
with radius as 1=r, more slowly than the r−3=2 falloff

obtained for the free scalar [33]. This is because the
velocity decreases faster, as 1=r instead of 1=

ffiffiffi
r

p
, as the

self-interactions give rise to an effective pressure that
stabilizes the scalar cloud and enables the convergence
to the static soliton solution at large radii. We show in Fig. 8
the scalar-field profile obtained from Eq. (130), averaged
over the fast oscillations. It clearly displays the 1=r profile
(133) at large radii and the finite value (131) at the horizon.

F. Lifetime of the scalar-field soliton

At large radii, in the weak-gravity regime dominated by
the scalar cloud self-gravity, the velocity (85) reads

rsg ≪ r≲ Rsol∶ vr ≃ − 3F⋆
8

ρa
ρsol

r2s
r2

; ð135Þ

where we used Eqs. (28) and (24). This coincides with the
result obtained in [33] for the case of a quartic potential.
Indeed, as recalled in (7), in the nonrelativistic small-field
regime the derivative self-interaction is equivalent to a
potential self-interaction. Again, at radii of the order of the
soliton radius Rsol ¼ πra, this gives the typical radial
velocity vr and evolution timescale tc,

vrðraÞ ∼ −
ρa
ρsol

r2s
r2a

; tc ≡ ra
jvrj

∼ ra
ρsol
ρa

r2a
r2s

: ð136Þ

This also reads

tc ∼ tH

!
ρ̄c
ρa

"
5=2 ρsol

ρ̄c

!
RH

rs

"
2

; ð137Þ

where tH ¼ 1=H and RH ¼ 1=H are the Hubble time and
Hubble radius, and ρ̄c ¼ 3H2=ð8πGÞ is the cosmological
critical density. At redshift z ¼ 0 this gives
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FIG. 8. Scalar-field energy density computed in the Eddington
metric, from the Schwarzschild radius up to 104rs, where the
metric potentials are still dominated by the central BH. We plot
the average hρ̃ϕi in the fast oscillations with time.
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tc ∼ 103tH
ρsol
ρ̄c

!
ρa

1 eV4

"−5=2! M
108 M⊙

"−2
: ð138Þ

For the soliton to give rise to a significant departure from
the CDM profiles on galactic scales, we must have a radius
of about 20 kpc, which gives ρa ∼ 1 eV4 [27]. Larger
characteristic densities lead to smaller soliton radii. We
typically have ρsol=ρ̄c ∼ 105 for the DM overdensity in the
soliton core. Therefore, we find that tc ≫ tH and the DM
solitonic cores can easily survive until today, despite the
infall of the inner layers into the central supermassive BH.
Again, astrophysical stellar mass BHs cannot eat a

significant fraction of the galactic DM soliton. Indeed,
for N BHs of unit solar mass, the typical timescale for the
soliton depletion reads

tN ∼ 1019
tH
N

ρsol
ρ̄c

!
ρa

1 eV4

"−5=2
: ð139Þ

Since we typically have N < 1011, as only a fraction of the
galactic baryonic mass can be made of stellar BHs, we
obtain tN ≫ 108tH and the soliton mass loss is negligible.

VIII. RENORMALIZATION OF THE ACTION

We have seen in the previous sections that for nonlinear
kinetic functions that satisfy conditions such as (104) and
(106) the scalar field with the Lagrangian (1) displays well-
behaved solutions from the Newtonian to the relativistic
regimes, i.e., from the small-field and weak-gravity regimes
to the large-field and strong-gravity regimes. In this section,
we check that quantum corrections remain small and do not
invalidate the previous analysis, based on the classical
equations of motion.

A. Weak-gravity regime

In the spirit of background quantization, we decompose
the scalar field in the classical background ϕ̄, which is a
solution of the classical equations of motion, and the
quantum fluctuations ϕ̂,

ϕ ¼ ϕ̄þ ϕ̂: ð140Þ

The kinetic argument also reads X ¼ X̄ þ X̂, with

X̂ ¼ −
1

Λ4
gμν∂μϕ̄∂νϕ̂ −

1

2Λ4
gμν∂μϕ̂∂νϕ̂; ð141Þ

while the Lagrangian can be expanded as L ¼ L̄þ L̂, with

L̂ ¼ Λ4

!
K̄0X̂ þ K̄00

2
X̂2 þ…

"
−
m2

2
ð2ϕ̄ ϕ̂þϕ̂2Þ: ð142Þ

We first consider the weak-gravity regime, far from the
BH, where the background geometry is well described by

the Minkowski spacetime and the background scalar field is
scale independent,

ϕ̄ ¼ ϕ̄ðtÞ; dϕ̄
dt

∼mϕ̄: ð143Þ

This corresponds for instance to the core of the static
soliton solution (31), where v⃗ ¼ 0 and the phase s only
depends on time. Expanding the Lagrangian to second
order in the perturbation, we get from Eq. (142) the second-
order variation

L̂ð2Þ ¼ K̄0 þ 2X̄K̄00

2

!∂ϕ̂
∂t

"2

−
K̄0

2
ð∇ϕ̂Þ2 −m2

2
ϕ̂2: ð144Þ

This can be the basis of a well-defined perturbation theory,
without ghosts or small-scale instabilities in the linear
regime, when we have

K̄0 > 0; K̄0 þ 2X̄K̄00 > 0: ð145Þ

We implicitly assumed K0 ≥ 0 throughout this article. The
second condition, K0 þ 2XK00 ≥ 0, coincides with the
condition (58) that was required to build the solution
(32) from a well-defined nonlinear oscillatory function
ckðuÞ, as described in Sec. III B.
It is convenient to normalize the field ϕ̂ as

ϕ̂ ¼ φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄0 þ 2X̄K̄00

p : ð146Þ

After one integration by parts, this gives

L̂ð2Þ ¼ 1

2

!∂φ
∂t

"
2

−
c2s
2
ð∇φÞ2 − m̄2

2
φ2; ð147Þ

where the speed of sound cs is defined by

c2s ¼
K̄0

K̄0 þ 2X̄K̄00 > 0; ð148Þ

and the effective mass m̄

m̄2 ¼ m2

K̄0 þ 2X̄K̄00 −
d2
dt2 ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄0 þ 2X̄K̄00

p
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄0 þ 2X̄K̄00

p : ð149Þ

At low X̄, that is, for small amplitude of the scalar field and
ρ̄ϕ ≪ Λ4, we have K̄ ≃ X̄ ≪ 1 and

X̄ ≪ 1∶ c2s ≃ 1; m̄ ≃m: ð150Þ

At large X̄, for a power-law behavior KðXÞ ∼ Xν as in
Eq. (102), we have
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Quantum corrections:

Weak gravity regime: Minkowski spacetime, scale-independent background

Using background quantization, we can see that quantum corrections from higher-order 
Feynman diagrams are negligible. 
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For the soliton to give rise to a significant departure from
the CDM profiles on galactic scales, we must have a radius
of about 20 kpc, which gives ρa ∼ 1 eV4 [27]. Larger
characteristic densities lead to smaller soliton radii. We
typically have ρsol=ρ̄c ∼ 105 for the DM overdensity in the
soliton core. Therefore, we find that tc ≫ tH and the DM
solitonic cores can easily survive until today, despite the
infall of the inner layers into the central supermassive BH.
Again, astrophysical stellar mass BHs cannot eat a

significant fraction of the galactic DM soliton. Indeed,
for N BHs of unit solar mass, the typical timescale for the
soliton depletion reads

tN ∼ 1019
tH
N

ρsol
ρ̄c

!
ρa

1 eV4

"−5=2
: ð139Þ

Since we typically have N < 1011, as only a fraction of the
galactic baryonic mass can be made of stellar BHs, we
obtain tN ≫ 108tH and the soliton mass loss is negligible.

VIII. RENORMALIZATION OF THE ACTION

We have seen in the previous sections that for nonlinear
kinetic functions that satisfy conditions such as (104) and
(106) the scalar field with the Lagrangian (1) displays well-
behaved solutions from the Newtonian to the relativistic
regimes, i.e., from the small-field and weak-gravity regimes
to the large-field and strong-gravity regimes. In this section,
we check that quantum corrections remain small and do not
invalidate the previous analysis, based on the classical
equations of motion.

A. Weak-gravity regime

In the spirit of background quantization, we decompose
the scalar field in the classical background ϕ̄, which is a
solution of the classical equations of motion, and the
quantum fluctuations ϕ̂,

ϕ ¼ ϕ̄þ ϕ̂: ð140Þ

The kinetic argument also reads X ¼ X̄ þ X̂, with

X̂ ¼ −
1

Λ4
gμν∂μϕ̄∂νϕ̂ −

1

2Λ4
gμν∂μϕ̂∂νϕ̂; ð141Þ

while the Lagrangian can be expanded as L ¼ L̄þ L̂, with

L̂ ¼ Λ4

!
K̄0X̂ þ K̄00

2
X̂2 þ…

"
−
m2

2
ð2ϕ̄ ϕ̂þϕ̂2Þ: ð142Þ

We first consider the weak-gravity regime, far from the
BH, where the background geometry is well described by

the Minkowski spacetime and the background scalar field is
scale independent,

ϕ̄ ¼ ϕ̄ðtÞ; dϕ̄
dt

∼mϕ̄: ð143Þ

This corresponds for instance to the core of the static
soliton solution (31), where v⃗ ¼ 0 and the phase s only
depends on time. Expanding the Lagrangian to second
order in the perturbation, we get from Eq. (142) the second-
order variation

L̂ð2Þ ¼ K̄0 þ 2X̄K̄00

2

!∂ϕ̂
∂t

"2

−
K̄0

2
ð∇ϕ̂Þ2 −m2

2
ϕ̂2: ð144Þ

This can be the basis of a well-defined perturbation theory,
without ghosts or small-scale instabilities in the linear
regime, when we have

K̄0 > 0; K̄0 þ 2X̄K̄00 > 0: ð145Þ

We implicitly assumed K0 ≥ 0 throughout this article. The
second condition, K0 þ 2XK00 ≥ 0, coincides with the
condition (58) that was required to build the solution
(32) from a well-defined nonlinear oscillatory function
ckðuÞ, as described in Sec. III B.
It is convenient to normalize the field ϕ̂ as

ϕ̂ ¼ φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄0 þ 2X̄K̄00

p : ð146Þ

After one integration by parts, this gives

L̂ð2Þ ¼ 1

2

!∂φ
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2

−
c2s
2
ð∇φÞ2 − m̄2

2
φ2; ð147Þ

where the speed of sound cs is defined by

c2s ¼
K̄0

K̄0 þ 2X̄K̄00 > 0; ð148Þ

and the effective mass m̄

m̄2 ¼ m2

K̄0 þ 2X̄K̄00 −
d2
dt2 ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄0 þ 2X̄K̄00

p
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄0 þ 2X̄K̄00

p : ð149Þ

At low X̄, that is, for small amplitude of the scalar field and
ρ̄ϕ ≪ Λ4, we have K̄ ≃ X̄ ≪ 1 and

X̄ ≪ 1∶ c2s ≃ 1; m̄ ≃m: ð150Þ

At large X̄, for a power-law behavior KðXÞ ∼ Xν as in
Eq. (102), we have
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For the soliton to give rise to a significant departure from
the CDM profiles on galactic scales, we must have a radius
of about 20 kpc, which gives ρa ∼ 1 eV4 [27]. Larger
characteristic densities lead to smaller soliton radii. We
typically have ρsol=ρ̄c ∼ 105 for the DM overdensity in the
soliton core. Therefore, we find that tc ≫ tH and the DM
solitonic cores can easily survive until today, despite the
infall of the inner layers into the central supermassive BH.
Again, astrophysical stellar mass BHs cannot eat a

significant fraction of the galactic DM soliton. Indeed,
for N BHs of unit solar mass, the typical timescale for the
soliton depletion reads

tN ∼ 1019
tH
N

ρsol
ρ̄c

!
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1 eV4

"−5=2
: ð139Þ

Since we typically have N < 1011, as only a fraction of the
galactic baryonic mass can be made of stellar BHs, we
obtain tN ≫ 108tH and the soliton mass loss is negligible.

VIII. RENORMALIZATION OF THE ACTION

We have seen in the previous sections that for nonlinear
kinetic functions that satisfy conditions such as (104) and
(106) the scalar field with the Lagrangian (1) displays well-
behaved solutions from the Newtonian to the relativistic
regimes, i.e., from the small-field and weak-gravity regimes
to the large-field and strong-gravity regimes. In this section,
we check that quantum corrections remain small and do not
invalidate the previous analysis, based on the classical
equations of motion.

A. Weak-gravity regime

In the spirit of background quantization, we decompose
the scalar field in the classical background ϕ̄, which is a
solution of the classical equations of motion, and the
quantum fluctuations ϕ̂,

ϕ ¼ ϕ̄þ ϕ̂: ð140Þ

The kinetic argument also reads X ¼ X̄ þ X̂, with

X̂ ¼ −
1

Λ4
gμν∂μϕ̄∂νϕ̂ −

1

2Λ4
gμν∂μϕ̂∂νϕ̂; ð141Þ

while the Lagrangian can be expanded as L ¼ L̄þ L̂, with

L̂ ¼ Λ4

!
K̄0X̂ þ K̄00

2
X̂2 þ…

"
−
m2

2
ð2ϕ̄ ϕ̂þϕ̂2Þ: ð142Þ

We first consider the weak-gravity regime, far from the
BH, where the background geometry is well described by

the Minkowski spacetime and the background scalar field is
scale independent,

ϕ̄ ¼ ϕ̄ðtÞ; dϕ̄
dt

∼mϕ̄: ð143Þ

This corresponds for instance to the core of the static
soliton solution (31), where v⃗ ¼ 0 and the phase s only
depends on time. Expanding the Lagrangian to second
order in the perturbation, we get from Eq. (142) the second-
order variation

L̂ð2Þ ¼ K̄0 þ 2X̄K̄00

2

!∂ϕ̂
∂t

"2

−
K̄0

2
ð∇ϕ̂Þ2 −m2

2
ϕ̂2: ð144Þ

This can be the basis of a well-defined perturbation theory,
without ghosts or small-scale instabilities in the linear
regime, when we have

K̄0 > 0; K̄0 þ 2X̄K̄00 > 0: ð145Þ

We implicitly assumed K0 ≥ 0 throughout this article. The
second condition, K0 þ 2XK00 ≥ 0, coincides with the
condition (58) that was required to build the solution
(32) from a well-defined nonlinear oscillatory function
ckðuÞ, as described in Sec. III B.
It is convenient to normalize the field ϕ̂ as

ϕ̂ ¼ φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄0 þ 2X̄K̄00

p : ð146Þ

After one integration by parts, this gives

L̂ð2Þ ¼ 1

2

!∂φ
∂t

"
2

−
c2s
2
ð∇φÞ2 − m̄2

2
φ2; ð147Þ

where the speed of sound cs is defined by

c2s ¼
K̄0

K̄0 þ 2X̄K̄00 > 0; ð148Þ

and the effective mass m̄

m̄2 ¼ m2

K̄0 þ 2X̄K̄00 −
d2
dt2 ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄0 þ 2X̄K̄00

p
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄0 þ 2X̄K̄00

p : ð149Þ

At low X̄, that is, for small amplitude of the scalar field and
ρ̄ϕ ≪ Λ4, we have K̄ ≃ X̄ ≪ 1 and

X̄ ≪ 1∶ c2s ≃ 1; m̄ ≃m: ð150Þ

At large X̄, for a power-law behavior KðXÞ ∼ Xν as in
Eq. (102), we have
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no ghosts, no small-scale instabilities:

tc ∼ 103tH
ρsol
ρ̄c

!
ρa

1 eV4

"−5=2! M
108 M⊙

"−2
: ð138Þ

For the soliton to give rise to a significant departure from
the CDM profiles on galactic scales, we must have a radius
of about 20 kpc, which gives ρa ∼ 1 eV4 [27]. Larger
characteristic densities lead to smaller soliton radii. We
typically have ρsol=ρ̄c ∼ 105 for the DM overdensity in the
soliton core. Therefore, we find that tc ≫ tH and the DM
solitonic cores can easily survive until today, despite the
infall of the inner layers into the central supermassive BH.
Again, astrophysical stellar mass BHs cannot eat a

significant fraction of the galactic DM soliton. Indeed,
for N BHs of unit solar mass, the typical timescale for the
soliton depletion reads

tN ∼ 1019
tH
N

ρsol
ρ̄c

!
ρa

1 eV4

"−5=2
: ð139Þ

Since we typically have N < 1011, as only a fraction of the
galactic baryonic mass can be made of stellar BHs, we
obtain tN ≫ 108tH and the soliton mass loss is negligible.

VIII. RENORMALIZATION OF THE ACTION

We have seen in the previous sections that for nonlinear
kinetic functions that satisfy conditions such as (104) and
(106) the scalar field with the Lagrangian (1) displays well-
behaved solutions from the Newtonian to the relativistic
regimes, i.e., from the small-field and weak-gravity regimes
to the large-field and strong-gravity regimes. In this section,
we check that quantum corrections remain small and do not
invalidate the previous analysis, based on the classical
equations of motion.

A. Weak-gravity regime

In the spirit of background quantization, we decompose
the scalar field in the classical background ϕ̄, which is a
solution of the classical equations of motion, and the
quantum fluctuations ϕ̂,

ϕ ¼ ϕ̄þ ϕ̂: ð140Þ

The kinetic argument also reads X ¼ X̄ þ X̂, with

X̂ ¼ −
1

Λ4
gμν∂μϕ̄∂νϕ̂ −

1

2Λ4
gμν∂μϕ̂∂νϕ̂; ð141Þ

while the Lagrangian can be expanded as L ¼ L̄þ L̂, with

L̂ ¼ Λ4

!
K̄0X̂ þ K̄00

2
X̂2 þ…

"
−
m2

2
ð2ϕ̄ ϕ̂þϕ̂2Þ: ð142Þ

We first consider the weak-gravity regime, far from the
BH, where the background geometry is well described by

the Minkowski spacetime and the background scalar field is
scale independent,

ϕ̄ ¼ ϕ̄ðtÞ; dϕ̄
dt

∼mϕ̄: ð143Þ

This corresponds for instance to the core of the static
soliton solution (31), where v⃗ ¼ 0 and the phase s only
depends on time. Expanding the Lagrangian to second
order in the perturbation, we get from Eq. (142) the second-
order variation

L̂ð2Þ ¼ K̄0 þ 2X̄K̄00

2

!∂ϕ̂
∂t

"2

−
K̄0

2
ð∇ϕ̂Þ2 −m2

2
ϕ̂2: ð144Þ

This can be the basis of a well-defined perturbation theory,
without ghosts or small-scale instabilities in the linear
regime, when we have

K̄0 > 0; K̄0 þ 2X̄K̄00 > 0: ð145Þ

We implicitly assumed K0 ≥ 0 throughout this article. The
second condition, K0 þ 2XK00 ≥ 0, coincides with the
condition (58) that was required to build the solution
(32) from a well-defined nonlinear oscillatory function
ckðuÞ, as described in Sec. III B.
It is convenient to normalize the field ϕ̂ as

ϕ̂ ¼ φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄0 þ 2X̄K̄00

p : ð146Þ

After one integration by parts, this gives

L̂ð2Þ ¼ 1

2

!∂φ
∂t

"
2

−
c2s
2
ð∇φÞ2 − m̄2

2
φ2; ð147Þ

where the speed of sound cs is defined by

c2s ¼
K̄0

K̄0 þ 2X̄K̄00 > 0; ð148Þ

and the effective mass m̄

m̄2 ¼ m2

K̄0 þ 2X̄K̄00 −
d2
dt2 ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄0 þ 2X̄K̄00

p
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̄0 þ 2X̄K̄00

p : ð149Þ

At low X̄, that is, for small amplitude of the scalar field and
ρ̄ϕ ≪ Λ4, we have K̄ ≃ X̄ ≪ 1 and

X̄ ≪ 1∶ c2s ≃ 1; m̄ ≃m: ð150Þ

At large X̄, for a power-law behavior KðXÞ ∼ Xν as in
Eq. (102), we have
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also required to have a periodic solution 
to the anharmonic diff. eq.

L-loop vacuum Feynman diagram contributing to the corrections to the classical action: 

X̄ ≫ 1∶ c2s ≃
1

2ν − 1
> 0; m̄ ∼

mffiffiffiffiffi
K̄0

p ≫ m > 0; ð151Þ

provided the exponent ν verifies

1=2 < ν < 1: ð152Þ

For ν > 1we still have c2s > 0 but K̄0 becomes large and the
squared mass becomes negative, as it is dominated by the
second term in Eq. (149) which scales as −ðν − 1Þ2m2 for
dX̄=dt ∼#mX̄. The bounds (152) coincide with the bounds
(104) and (106) that were required at the classical level to
obtain well-behaved global solutions, from the strong-
gravity to the weak-gravity regimes. Therefore, they are
satisfied by realistic models, such as Eq. (109).
We are interested in quantum phenomena in the ultra-

violet. In the infrared there are no divergences thanks to the
scalar mass m, which is much larger than cosmological
scales. Hence we neglect the time variation of cs and m̄.
From Eqs. (150) and (151) cs is always of order unity;
therefore, we take cs ∼ 1 and omit factors cs in the order-of-
magnitude estimates below. Then, the propagator for the
quantum field φ behaves like

Gφðω; p⃗Þ ¼
1

−ω2 þ p⃗2 þ m̄2
¼ 1

p2 þ m̄2
: ð153Þ

Let us now consider the interaction terms. They spring from
expressions like Λ4K̄ðnÞ X̂n

n! . In the following, we omit
numerical factors and focus on the scalings with X̄.
Then, we write (141) as

X̂ ∼ X̄1=2

"∂ϕ̂
Λ2

#
þ
"∂ϕ̂
Λ2

#2

; ð154Þ

and we obtain for the cubic and higher-order terms of the
Lagrangian,

L̂ðn≥3Þ ¼ Λ4
X∞

n¼3

ĉn

"∂ϕ̂
Λ2

#n

; ð155Þ

with

ĉn ¼
Xn

m¼½n=2'þ

K̄ðmÞX̄m−n=2; ð156Þ

where ½n=2'þ is the smallest integer that is greater than or
equal to n=2. In terms of the rescaled field φ, this gives

L̂ðn≥3Þ ¼ Λ4
X∞

n¼3

cn

"∂φ
Λ2

#
n
; ð157Þ

with

cn ¼ ðK̄0 þ 2X̄K̄00Þ−n=2
Xn

m¼½n=2'þ

K̄ðmÞX̄m−n=2: ð158Þ

In the weak-field regime, X̄ ≪ 1, the sum (158) is domi-
nated by the first termm ¼ ½n=2'þ and even-order terms are
of the order of unity while odd-order terms are of the order
of X̄1=2,

X̄ ≪ 1∶ c2n ∼ 1: ð159Þ

On the other hand, in the strong-field regime, X̄ ≫ 1, using
K̄ðnÞ ∼ K̄=X̄n for the power law K ∝ Xν, all terms in the
sum (158) contribute and we obtain

X̄ ≫ 1∶ cn ∼ K̄1−n=2 ≪ 1: ð160Þ

From the propagator (153) and the vertices (157), a
typical L-loop vacuum Feynman diagram contributing to
the corrections to the classical action reads

IL ¼
Z YL

l¼1

d4pl

YN

n¼1

1

p2 þ m̄2

YV

v¼1

Λ4cmv

Ymv

s¼1

ps

Λ2
; ð161Þ

where there are N propagators corresponding to N lines in
the diagram and V vertices, each with a degree mv.
Rescaling momenta by m̄, using the Euler identity V − N ¼
1 − L and

PV
v¼1mv ¼ 2N, we obtain

IL ¼ Λ4

"
m̄
Λ

#
4L
"YV

v¼1

cmv

#
ĨL; ð162Þ

where the integral ĨL is dimensionless and does not depend
on m̄, Λ, or K̄. It is divergent and needs to be regularized,
for instance using dimensional regularization. The infinite
part appears as poles in 1=ðd − 4Þ, where d is the
dimension of spacetime. Removing these infinities requires
introducing counterterms in the bare action. This leaves
finite corrections to the classical action that scale as

L ≥ 1∶ δLðLÞ ∼ Λ4

"
m̄
Λ

#
4L
"YV

v¼1

cmv

#
: ð163Þ

Notice that this expression depends on the background field
via m̄, the coefficients cmv

, and the sound speed cs (which
we omit in the expressions). There are two types of
corrections. The first ones involve the second term in
the expression (149) of the effective mass m̄ and depends
on higher derivatives ∂X̄ and ∂2X̄, i.e., second and third
derivatives of ϕ̄. If they were the only types of corrections,
we would retrieve the usual nonrenormalization theorem of
KðXÞ theories. The second ones involve the first term only
in the expression (149) of m̄, m2=ðK̄0 þ 2X̄K̄00Þ, as well as
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X̄ ≫ 1∶ c2s ≃
1

2ν − 1
> 0; m̄ ∼

mffiffiffiffiffi
K̄0

p ≫ m > 0; ð151Þ

provided the exponent ν verifies

1=2 < ν < 1: ð152Þ

For ν > 1we still have c2s > 0 but K̄0 becomes large and the
squared mass becomes negative, as it is dominated by the
second term in Eq. (149) which scales as −ðν − 1Þ2m2 for
dX̄=dt ∼#mX̄. The bounds (152) coincide with the bounds
(104) and (106) that were required at the classical level to
obtain well-behaved global solutions, from the strong-
gravity to the weak-gravity regimes. Therefore, they are
satisfied by realistic models, such as Eq. (109).
We are interested in quantum phenomena in the ultra-

violet. In the infrared there are no divergences thanks to the
scalar mass m, which is much larger than cosmological
scales. Hence we neglect the time variation of cs and m̄.
From Eqs. (150) and (151) cs is always of order unity;
therefore, we take cs ∼ 1 and omit factors cs in the order-of-
magnitude estimates below. Then, the propagator for the
quantum field φ behaves like

Gφðω; p⃗Þ ¼
1

−ω2 þ p⃗2 þ m̄2
¼ 1

p2 þ m̄2
: ð153Þ

Let us now consider the interaction terms. They spring from
expressions like Λ4K̄ðnÞ X̂n

n! . In the following, we omit
numerical factors and focus on the scalings with X̄.
Then, we write (141) as

X̂ ∼ X̄1=2

"∂ϕ̂
Λ2

#
þ
"∂ϕ̂
Λ2

#2

; ð154Þ

and we obtain for the cubic and higher-order terms of the
Lagrangian,

L̂ðn≥3Þ ¼ Λ4
X∞

n¼3

ĉn

"∂ϕ̂
Λ2

#n

; ð155Þ

with

ĉn ¼
Xn

m¼½n=2'þ

K̄ðmÞX̄m−n=2; ð156Þ

where ½n=2'þ is the smallest integer that is greater than or
equal to n=2. In terms of the rescaled field φ, this gives

L̂ðn≥3Þ ¼ Λ4
X∞

n¼3

cn

"∂φ
Λ2

#
n
; ð157Þ

with

cn ¼ ðK̄0 þ 2X̄K̄00Þ−n=2
Xn

m¼½n=2'þ

K̄ðmÞX̄m−n=2: ð158Þ

In the weak-field regime, X̄ ≪ 1, the sum (158) is domi-
nated by the first termm ¼ ½n=2'þ and even-order terms are
of the order of unity while odd-order terms are of the order
of X̄1=2,

X̄ ≪ 1∶ c2n ∼ 1: ð159Þ

On the other hand, in the strong-field regime, X̄ ≫ 1, using
K̄ðnÞ ∼ K̄=X̄n for the power law K ∝ Xν, all terms in the
sum (158) contribute and we obtain

X̄ ≫ 1∶ cn ∼ K̄1−n=2 ≪ 1: ð160Þ

From the propagator (153) and the vertices (157), a
typical L-loop vacuum Feynman diagram contributing to
the corrections to the classical action reads

IL ¼
Z YL

l¼1

d4pl

YN

n¼1

1

p2 þ m̄2

YV

v¼1

Λ4cmv

Ymv

s¼1

ps

Λ2
; ð161Þ

where there are N propagators corresponding to N lines in
the diagram and V vertices, each with a degree mv.
Rescaling momenta by m̄, using the Euler identity V − N ¼
1 − L and

PV
v¼1mv ¼ 2N, we obtain

IL ¼ Λ4

"
m̄
Λ

#
4L
"YV

v¼1

cmv

#
ĨL; ð162Þ

where the integral ĨL is dimensionless and does not depend
on m̄, Λ, or K̄. It is divergent and needs to be regularized,
for instance using dimensional regularization. The infinite
part appears as poles in 1=ðd − 4Þ, where d is the
dimension of spacetime. Removing these infinities requires
introducing counterterms in the bare action. This leaves
finite corrections to the classical action that scale as

L ≥ 1∶ δLðLÞ ∼ Λ4

"
m̄
Λ

#
4L
"YV

v¼1

cmv

#
: ð163Þ

Notice that this expression depends on the background field
via m̄, the coefficients cmv

, and the sound speed cs (which
we omit in the expressions). There are two types of
corrections. The first ones involve the second term in
the expression (149) of the effective mass m̄ and depends
on higher derivatives ∂X̄ and ∂2X̄, i.e., second and third
derivatives of ϕ̄. If they were the only types of corrections,
we would retrieve the usual nonrenormalization theorem of
KðXÞ theories. The second ones involve the first term only
in the expression (149) of m̄, m2=ðK̄0 þ 2X̄K̄00Þ, as well as
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�L(L) ⌧ L(0) :

factors of cs and cmv
. These corrections depend on X̄ and

provide corrections to the classical Lagrangian KðX̄Þ.
Hence in the models considered here the classical
Lagrangian is renormalized, because the bare mass is
nonzero. Nevertheless, these quantum corrections can
remain negligible, as we now investigate.
First, in the weak-field regime, X̄ ≪ 1, we obtain from

(150) and (159)

L ≥ 1∶ δLðLÞ ∼ Λ4

!
m
Λ

"
4L
: ð164Þ

Therefore, higher loop corrections are under control and
become increasingly small at higher orders provided

m ≪ Λ∶ δLðLÞ ≪ δLð1Þ for L ≥ 2: ð165Þ

We must now compare the leading one-loop term to the
classical action, Lð0Þ,

Lð0Þ ∼ Λ4X̄ −
m2

2
ϕ̄2 ∼ ρ̄ϕ ≳ ρ̄0; ð166Þ

where ρ̄0 is the mean density of the Universe at redshift
z ¼ 0. This gives

m4 ≪ ρ̄0∶ δLð1Þ ≪ Lð0Þ; ð167Þ

which reads

m ≪ 10−3 eV: ð168Þ

Second, in the strong-field regime, X̄ ≫ 1, we obtain
from (151) and (160)

L ≥ 1∶ δLðLÞ ∼ Λ4K̄
!
m
Λ

"
4L
ðK̄X̄−2=3Þ−3L: ð169Þ

Therefore, higher loop corrections do not blow up provided
K̄X̄−2=3 does not go to 0 at large X̄. For the power-law
behavior (102) this gives the two conditions

m≪ Λ and ν ≥ 2

3
∶ δLðLÞ ≪ δLð1Þ for L ≥ 2: ð170Þ

The classical action is now of the order of Lð0Þ ∼ Λ4K̄.
As ν ≥ 2=3 ensures K̄X̄−2=3 ≳ 1 and we have m ≪ Λ, the
conditions (170) also give δLð1Þ ≪ Lð0Þ.
Therefore, the quantum corrections remain small for any

scalar-field background, in the weak-gravity regime, pro-
vided we have the three conditions

m≪ Λ; m≪ 10−3 eV; and ν ≥
2

3
at large X: ð171Þ

The condition ν ≥ 2=3 is satisfied by the model (109).
However, even at the BH horizon we have μ≲ 3.5 from
Eq. (116), i.e., X̄ ∼ 1. Therefore, even in this high-density
region we do not probe the regime X̄ ≫ 1 and we do not
really need to satisfy the asymptotic condition ν ≥ 2=3 to
keep the quantum corrections negligible. From Eq. (7), we
note that for k2 ∼ 1 the quantum stability implies λ4 ≪ 1.

B. Schwarzschild background metric

We go beyond the Minkowski spacetime and consider
the Schwarzschild metric (9) for the background. This is
valid from the large-radius weak-gravity regime (15),
which is already covered by the analysis of the previous
section, down to the BH horizon in the strong-gravity
regime. The background scalar field ϕ̄ðr; tÞ now depends
on both radius and time, following the solution (32)
described by the nonlinear oscillator ckðu; μÞ. At each
radius, the background kinetic argument X̄ oscillates with
time in the range given in (117).
As in Sec. VII D 2, we work with the background

Eddington metric (120), to be able to study the scalar field
down to the BH horizon. We again obtain the Lagrangian of
the fluctuations ϕ̂ from Eq. (142), paying attention to the
fact that ϕ̄ now depends on both time and radius. In
particular, using Eqs. (129), (36), and (38), the derivatives
of the background solution (32) with respect to the
Eddington coordinates read

∂ϕ̄
∂ t̃ ¼ ϕ0ω

∂ck
∂u ; ð172Þ

and

∂ϕ̄
∂r̃ ¼ ϕ0

#
ω

!
1 −

1

f

"
−

Qβ0ffiffiffiffiffiffi
fh

p
% ∂ck
∂u : ð173Þ

Notice that ∂ϕ̄
∂r̃ ≠

∂ϕ̄
∂ t̃ because there are additional r̃-depen-

dent terms to the one explicitly written in Eq. (121), such as
the radial dependence of the oscillatory parameter μðrÞ.
Then, the Lagrangian of the fluctuations ϕ̂ reads at second
order

L̂ð2Þ ¼ 1

2

#
K00

!∂ϕ̂
∂ t̃

"2

þ 2K01

∂ϕ̂
∂ t̃

∂ϕ̂
∂r̃ þK11

!∂ϕ̂
∂r̃

"2%

−
K̄0

2r̃2
ð∂Ωϕ̂Þ2 −

m2

2
ϕ̂2; ð174Þ

where ∂Ωϕ̂ is the angular derivative, with respect to the
longitudinal and azimuthal angles, and the coefficients Kij

are given by
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The quantum corrections remain small, for any scalar-field background X, provided:



Relativistic background: Schwarzschild metric, scalar field depends on time and radius

quadratic Lagrangian:

factors of cs and cmv
. These corrections depend on X̄ and

provide corrections to the classical Lagrangian KðX̄Þ.
Hence in the models considered here the classical
Lagrangian is renormalized, because the bare mass is
nonzero. Nevertheless, these quantum corrections can
remain negligible, as we now investigate.
First, in the weak-field regime, X̄ ≪ 1, we obtain from

(150) and (159)

L ≥ 1∶ δLðLÞ ∼ Λ4

!
m
Λ

"
4L
: ð164Þ

Therefore, higher loop corrections are under control and
become increasingly small at higher orders provided

m ≪ Λ∶ δLðLÞ ≪ δLð1Þ for L ≥ 2: ð165Þ

We must now compare the leading one-loop term to the
classical action, Lð0Þ,

Lð0Þ ∼ Λ4X̄ −
m2

2
ϕ̄2 ∼ ρ̄ϕ ≳ ρ̄0; ð166Þ

where ρ̄0 is the mean density of the Universe at redshift
z ¼ 0. This gives

m4 ≪ ρ̄0∶ δLð1Þ ≪ Lð0Þ; ð167Þ

which reads

m ≪ 10−3 eV: ð168Þ

Second, in the strong-field regime, X̄ ≫ 1, we obtain
from (151) and (160)

L ≥ 1∶ δLðLÞ ∼ Λ4K̄
!
m
Λ

"
4L
ðK̄X̄−2=3Þ−3L: ð169Þ

Therefore, higher loop corrections do not blow up provided
K̄X̄−2=3 does not go to 0 at large X̄. For the power-law
behavior (102) this gives the two conditions

m≪ Λ and ν ≥ 2

3
∶ δLðLÞ ≪ δLð1Þ for L ≥ 2: ð170Þ

The classical action is now of the order of Lð0Þ ∼ Λ4K̄.
As ν ≥ 2=3 ensures K̄X̄−2=3 ≳ 1 and we have m ≪ Λ, the
conditions (170) also give δLð1Þ ≪ Lð0Þ.
Therefore, the quantum corrections remain small for any

scalar-field background, in the weak-gravity regime, pro-
vided we have the three conditions

m≪ Λ; m≪ 10−3 eV; and ν ≥
2

3
at large X: ð171Þ

The condition ν ≥ 2=3 is satisfied by the model (109).
However, even at the BH horizon we have μ≲ 3.5 from
Eq. (116), i.e., X̄ ∼ 1. Therefore, even in this high-density
region we do not probe the regime X̄ ≫ 1 and we do not
really need to satisfy the asymptotic condition ν ≥ 2=3 to
keep the quantum corrections negligible. From Eq. (7), we
note that for k2 ∼ 1 the quantum stability implies λ4 ≪ 1.

B. Schwarzschild background metric

We go beyond the Minkowski spacetime and consider
the Schwarzschild metric (9) for the background. This is
valid from the large-radius weak-gravity regime (15),
which is already covered by the analysis of the previous
section, down to the BH horizon in the strong-gravity
regime. The background scalar field ϕ̄ðr; tÞ now depends
on both radius and time, following the solution (32)
described by the nonlinear oscillator ckðu; μÞ. At each
radius, the background kinetic argument X̄ oscillates with
time in the range given in (117).
As in Sec. VII D 2, we work with the background

Eddington metric (120), to be able to study the scalar field
down to the BH horizon. We again obtain the Lagrangian of
the fluctuations ϕ̂ from Eq. (142), paying attention to the
fact that ϕ̄ now depends on both time and radius. In
particular, using Eqs. (129), (36), and (38), the derivatives
of the background solution (32) with respect to the
Eddington coordinates read

∂ϕ̄
∂ t̃ ¼ ϕ0ω

∂ck
∂u ; ð172Þ

and
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Notice that ∂ϕ̄
∂r̃ ≠

∂ϕ̄
∂ t̃ because there are additional r̃-depen-

dent terms to the one explicitly written in Eq. (121), such as
the radial dependence of the oscillatory parameter μðrÞ.
Then, the Lagrangian of the fluctuations ϕ̂ reads at second
order
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where ∂Ωϕ̂ is the angular derivative, with respect to the
longitudinal and azimuthal angles, and the coefficients Kij

are given by
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factors of cs and cmv
. These corrections depend on X̄ and

provide corrections to the classical Lagrangian KðX̄Þ.
Hence in the models considered here the classical
Lagrangian is renormalized, because the bare mass is
nonzero. Nevertheless, these quantum corrections can
remain negligible, as we now investigate.
First, in the weak-field regime, X̄ ≪ 1, we obtain from

(150) and (159)
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m
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The condition ν ≥ 2=3 is satisfied by the model (109).
However, even at the BH horizon we have μ≲ 3.5 from
Eq. (116), i.e., X̄ ∼ 1. Therefore, even in this high-density
region we do not probe the regime X̄ ≫ 1 and we do not
really need to satisfy the asymptotic condition ν ≥ 2=3 to
keep the quantum corrections negligible. From Eq. (7), we
note that for k2 ∼ 1 the quantum stability implies λ4 ≪ 1.

B. Schwarzschild background metric

We go beyond the Minkowski spacetime and consider
the Schwarzschild metric (9) for the background. This is
valid from the large-radius weak-gravity regime (15),
which is already covered by the analysis of the previous
section, down to the BH horizon in the strong-gravity
regime. The background scalar field ϕ̄ðr; tÞ now depends
on both radius and time, following the solution (32)
described by the nonlinear oscillator ckðu; μÞ. At each
radius, the background kinetic argument X̄ oscillates with
time in the range given in (117).
As in Sec. VII D 2, we work with the background

Eddington metric (120), to be able to study the scalar field
down to the BH horizon. We again obtain the Lagrangian of
the fluctuations ϕ̂ from Eq. (142), paying attention to the
fact that ϕ̄ now depends on both time and radius. In
particular, using Eqs. (129), (36), and (38), the derivatives
of the background solution (32) with respect to the
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Notice that ∂ϕ̄
∂r̃ ≠
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∂ t̃ because there are additional r̃-depen-

dent terms to the one explicitly written in Eq. (121), such as
the radial dependence of the oscillatory parameter μðrÞ.
Then, the Lagrangian of the fluctuations ϕ̂ reads at second
order

L̂ð2Þ ¼ 1
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where ∂Ωϕ̂ is the angular derivative, with respect to the
longitudinal and azimuthal angles, and the coefficients Kij
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K00 ¼ ð2 − fÞK̄0 þ 2X̄K̄00

f2hm2
½ðf − 1Þ2fðQβ0Þ2

þ 2
ffiffiffiffiffiffi
fh

p
ð1 − fÞωQβ0 þ hω2&; ð175Þ

K01 ¼ ðf − 1ÞK̄0 þ 2X̄K̄00

fhm2
½ð1 − fÞfðQβ0Þ2 þ

ffiffiffiffiffiffi
fh

p
ωQβ0&;

ð176Þ

K11 ¼ −fK̄0 þ 2X̄K̄00fðQβ0Þ2

hm2
: ð177Þ

We recover the scale-independent Minkowski case (144)
for f ¼ h ¼ 1, ω ¼ m, and β0 ¼ 0. For f ≠ 1 or β0 ≠ 0 we
have a mixing of the time and radial derivatives in the
kinetic term. Using Eq. (48), we find that the determinant of
the kinetic matrix Kij, with K10 ¼ K01, takes the simple
form

detðKijÞ ¼ −K̄0ðK̄0 þ 2X̄K̄00Þ < 0: ð178Þ

Here we assumed that the constraints (145) are already
satisfied by the kinetic function KðXÞ. Remarkably, it
coincides with the determinant obtained in the
Minkowski case (144) as it does not depend on the metric
potentials f and h, or on β0, but only on the properties of the
kinetic function KðXÞ. Its negative sign implies that the
quadratic form governing the kinetic terms in the ðt̃; r̃Þ
plane has two opposite-sign eigenvalues λþ > 0 > λ−. This
always preserves the signature ðþ;−Þ and guarantees the
absence of ghost and gradient instability. Moreover, as
detðKijÞ does not vanish the two branches λþðxÞ and λ−ðxÞ
are well separated and do not make contact. Therefore, the
positive eigenvalue is connected to the eigenvector ∂ϕ̄

∂ t̃ at
large radii, while the negative eigenvalue is connected to
the eigenvector ∂ϕ̄

∂r̃. Close to the horizon, the eigenvectors

are a linear combination of ∂ϕ̄
∂ t̃ and

∂ϕ̄
∂r̃. However, one could

define new time and radial coordinates t̂ and r̂, from linear
combinations of t̃ and r̃, so that t̂ and r̂ converge to t̃ and r̃
at large radii and the kinetic term takes the diagonal form
1
2 ½λþð

∂ϕ̄
∂ t̂Þ

2 þ λ−ð∂ϕ̄∂r̂Þ
2&. We can check this behavior in Fig. 9,

where we consider the two boundaries 0 and Xmax of
Eq. (117) of the range spanned by the oscillating back-
ground X̄ðr; tÞ. Therefore, the second-order Lagrangian
L̂ð2Þ can be the basis of a well-defined quantum perturba-
tion theory.
Because of the nondiagonal kinetic matrix Kij, the

propagator is different from the Minkowski rescaled
propagator (153). However, by going for instance to the
diagonal coordinates ft̂; r̂g and using the fact that λ'
remain of order unity, the scalings that we obtained in
the previous section VIII A in the regime X̄ ∼ 1 and K̄0 ∼ 1
remain valid. In particular, as in Eq. (153) each propagator

brings a factor 1=m2 and as in Eq. (155) vertices take the
form Λ4ð∂ϕ̂=Λ2Þn, with coefficients cn of the order of
unity. Therefore, the power counting of loop diagrams is
not altered and we recover Eq. (164), while the classical
Lagrangian is now of order Lð0Þ ∼ Λ4K̄ ∼ Λ4 as K̄ ∼ 1.
Then, quantum loop corrections are small provided
m ≪ Λ,

m ≪ Λ∶ δLðLÞ ≪ Lð0Þ: ð179Þ

This condition was already required in (165) for the
Minkowski background; therefore, the classical analysis
developed in previous sections remains valid down to the
horizon.
Finally notice that the strong-coupling scale Λ is not the

cutoff of the quantum theory. Indeed, nothing prevents one
from using classical backgrounds where ρϕ ∼ Λ4 as long as
the quantum corrections are under control, i.e., as long as
the conditions (171) are satisfied.

IX. CONCLUSION

We have shown in a previous article that a scalar field
with a nonstandard kinetic term can play the role of dark
matter in the late Universe and build static solitonic profiles
in galaxies, with a flat core. In this weak-gravity and weak-
field regime, the first quartic correction −ð∂ϕÞ4 to the
kinetic term is the dominant subleading correction. It
provides an effective pressure that balances the self-gravity
of the scalar cloud and gives rise to a static equilibrium.
In this paper, we have investigated the impact of a

supermassive BH at the center of galaxies on this scenario.
To this order, following the spirit of our previous work for
the case of a quartic subleading potential ϕ4, which also
gives rise to an effective pressure in the weak-gravity and
weak-field regime, we have obtained the explicit solution
of the scalar-field equation of motion in the large scalar
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FIG. 9. Radial profile of the eigenvalues λþ > 0 > λ− of the
kinetic matrix Kij that appears in Eq. (174). We show the results
obtained for X̄ ¼ Xmax (solid lines) and for X̄ ¼ 0 (dashed lines).
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where       are nonlinear oscillating factors.Kij

The signature (+,-) is preserved: no ghosts, no gradient instabilities.
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We recover the scale-independent Minkowski case (144)
for f ¼ h ¼ 1, ω ¼ m, and β0 ¼ 0. For f ≠ 1 or β0 ≠ 0 we
have a mixing of the time and radial derivatives in the
kinetic term. Using Eq. (48), we find that the determinant of
the kinetic matrix Kij, with K10 ¼ K01, takes the simple
form

detðKijÞ ¼ −K̄0ðK̄0 þ 2X̄K̄00Þ < 0: ð178Þ

Here we assumed that the constraints (145) are already
satisfied by the kinetic function KðXÞ. Remarkably, it
coincides with the determinant obtained in the
Minkowski case (144) as it does not depend on the metric
potentials f and h, or on β0, but only on the properties of the
kinetic function KðXÞ. Its negative sign implies that the
quadratic form governing the kinetic terms in the ðt̃; r̃Þ
plane has two opposite-sign eigenvalues λþ > 0 > λ−. This
always preserves the signature ðþ;−Þ and guarantees the
absence of ghost and gradient instability. Moreover, as
detðKijÞ does not vanish the two branches λþðxÞ and λ−ðxÞ
are well separated and do not make contact. Therefore, the
positive eigenvalue is connected to the eigenvector ∂ϕ̄

∂ t̃ at
large radii, while the negative eigenvalue is connected to
the eigenvector ∂ϕ̄

∂r̃. Close to the horizon, the eigenvectors

are a linear combination of ∂ϕ̄
∂ t̃ and

∂ϕ̄
∂r̃. However, one could

define new time and radial coordinates t̂ and r̂, from linear
combinations of t̃ and r̃, so that t̂ and r̂ converge to t̃ and r̃
at large radii and the kinetic term takes the diagonal form
1
2 ½λþð

∂ϕ̄
∂ t̂Þ

2 þ λ−ð∂ϕ̄∂r̂Þ
2&. We can check this behavior in Fig. 9,

where we consider the two boundaries 0 and Xmax of
Eq. (117) of the range spanned by the oscillating back-
ground X̄ðr; tÞ. Therefore, the second-order Lagrangian
L̂ð2Þ can be the basis of a well-defined quantum perturba-
tion theory.
Because of the nondiagonal kinetic matrix Kij, the

propagator is different from the Minkowski rescaled
propagator (153). However, by going for instance to the
diagonal coordinates ft̂; r̂g and using the fact that λ'
remain of order unity, the scalings that we obtained in
the previous section VIII A in the regime X̄ ∼ 1 and K̄0 ∼ 1
remain valid. In particular, as in Eq. (153) each propagator

brings a factor 1=m2 and as in Eq. (155) vertices take the
form Λ4ð∂ϕ̂=Λ2Þn, with coefficients cn of the order of
unity. Therefore, the power counting of loop diagrams is
not altered and we recover Eq. (164), while the classical
Lagrangian is now of order Lð0Þ ∼ Λ4K̄ ∼ Λ4 as K̄ ∼ 1.
Then, quantum loop corrections are small provided
m ≪ Λ,

m ≪ Λ∶ δLðLÞ ≪ Lð0Þ: ð179Þ

This condition was already required in (165) for the
Minkowski background; therefore, the classical analysis
developed in previous sections remains valid down to the
horizon.
Finally notice that the strong-coupling scale Λ is not the

cutoff of the quantum theory. Indeed, nothing prevents one
from using classical backgrounds where ρϕ ∼ Λ4 as long as
the quantum corrections are under control, i.e., as long as
the conditions (171) are satisfied.

IX. CONCLUSION

We have shown in a previous article that a scalar field
with a nonstandard kinetic term can play the role of dark
matter in the late Universe and build static solitonic profiles
in galaxies, with a flat core. In this weak-gravity and weak-
field regime, the first quartic correction −ð∂ϕÞ4 to the
kinetic term is the dominant subleading correction. It
provides an effective pressure that balances the self-gravity
of the scalar cloud and gives rise to a static equilibrium.
In this paper, we have investigated the impact of a

supermassive BH at the center of galaxies on this scenario.
To this order, following the spirit of our previous work for
the case of a quartic subleading potential ϕ4, which also
gives rise to an effective pressure in the weak-gravity and
weak-field regime, we have obtained the explicit solution
of the scalar-field equation of motion in the large scalar
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kinetic matrix Kij that appears in Eq. (174). We show the results
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The quantum corrections remain small

We can work with classical backgrounds at density 
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We recover the scale-independent Minkowski case (144)
for f ¼ h ¼ 1, ω ¼ m, and β0 ¼ 0. For f ≠ 1 or β0 ≠ 0 we
have a mixing of the time and radial derivatives in the
kinetic term. Using Eq. (48), we find that the determinant of
the kinetic matrix Kij, with K10 ¼ K01, takes the simple
form

detðKijÞ ¼ −K̄0ðK̄0 þ 2X̄K̄00Þ < 0: ð178Þ

Here we assumed that the constraints (145) are already
satisfied by the kinetic function KðXÞ. Remarkably, it
coincides with the determinant obtained in the
Minkowski case (144) as it does not depend on the metric
potentials f and h, or on β0, but only on the properties of the
kinetic function KðXÞ. Its negative sign implies that the
quadratic form governing the kinetic terms in the ðt̃; r̃Þ
plane has two opposite-sign eigenvalues λþ > 0 > λ−. This
always preserves the signature ðþ;−Þ and guarantees the
absence of ghost and gradient instability. Moreover, as
detðKijÞ does not vanish the two branches λþðxÞ and λ−ðxÞ
are well separated and do not make contact. Therefore, the
positive eigenvalue is connected to the eigenvector ∂ϕ̄
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large radii, while the negative eigenvalue is connected to
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∂r̃. Close to the horizon, the eigenvectors

are a linear combination of ∂ϕ̄
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at large radii and the kinetic term takes the diagonal form
1
2 ½λþð

∂ϕ̄
∂ t̂Þ

2 þ λ−ð∂ϕ̄∂r̂Þ
2&. We can check this behavior in Fig. 9,

where we consider the two boundaries 0 and Xmax of
Eq. (117) of the range spanned by the oscillating back-
ground X̄ðr; tÞ. Therefore, the second-order Lagrangian
L̂ð2Þ can be the basis of a well-defined quantum perturba-
tion theory.
Because of the nondiagonal kinetic matrix Kij, the

propagator is different from the Minkowski rescaled
propagator (153). However, by going for instance to the
diagonal coordinates ft̂; r̂g and using the fact that λ'
remain of order unity, the scalings that we obtained in
the previous section VIII A in the regime X̄ ∼ 1 and K̄0 ∼ 1
remain valid. In particular, as in Eq. (153) each propagator

brings a factor 1=m2 and as in Eq. (155) vertices take the
form Λ4ð∂ϕ̂=Λ2Þn, with coefficients cn of the order of
unity. Therefore, the power counting of loop diagrams is
not altered and we recover Eq. (164), while the classical
Lagrangian is now of order Lð0Þ ∼ Λ4K̄ ∼ Λ4 as K̄ ∼ 1.
Then, quantum loop corrections are small provided
m ≪ Λ,

m ≪ Λ∶ δLðLÞ ≪ Lð0Þ: ð179Þ

This condition was already required in (165) for the
Minkowski background; therefore, the classical analysis
developed in previous sections remains valid down to the
horizon.
Finally notice that the strong-coupling scale Λ is not the

cutoff of the quantum theory. Indeed, nothing prevents one
from using classical backgrounds where ρϕ ∼ Λ4 as long as
the quantum corrections are under control, i.e., as long as
the conditions (171) are satisfied.

IX. CONCLUSION

We have shown in a previous article that a scalar field
with a nonstandard kinetic term can play the role of dark
matter in the late Universe and build static solitonic profiles
in galaxies, with a flat core. In this weak-gravity and weak-
field regime, the first quartic correction −ð∂ϕÞ4 to the
kinetic term is the dominant subleading correction. It
provides an effective pressure that balances the self-gravity
of the scalar cloud and gives rise to a static equilibrium.
In this paper, we have investigated the impact of a

supermassive BH at the center of galaxies on this scenario.
To this order, following the spirit of our previous work for
the case of a quartic subleading potential ϕ4, which also
gives rise to an effective pressure in the weak-gravity and
weak-field regime, we have obtained the explicit solution
of the scalar-field equation of motion in the large scalar
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provided the conditions above for small quantum corrections are satisfied.



Conclusion:

- well defined steady state from the galactic radius to the BH horizon

Quartic repulsive potential:

- as for the hydrodynamical case of polytropic fluids, a unique solution that goes from 
a low-velocity branch at large radii to a high-velocity branch at low radii

- nonlinear ingoing wave with unit velocity at the BH horizon

⇢ v-    and    decay as         at intermediate radii1/r

-     is constant and    decays as          at larger radii, in the soliton self-gravity domain⇢ v 1/r2

- the soliton lifetime is much greater than the age of the Universe



k-essence models:

- equivalent to the models with standard kinetic term and nonlinear potential 
in the nonrelativistic regime

- the relativistic regime can be very different

- the quartic derivative self-interaction              (equivalent to repulsive      in the NR regime)
cannot support the scalar cloud against the BH gravity close to the horizon

�(@�)4 �4

 need to go beyond the weak-gravity large-radius analysis to check the self-consistency 
of the system down to the horizon

- conditions for a well-behaved solution: K 0 > 0, K 0 + 2XK 00 > 0

X � 1 : K ⇠ X⌫ , 1/2 < ⌫ < 1

- quantum corrections remain negligible:

factors of cs and cmv
. These corrections depend on X̄ and

provide corrections to the classical Lagrangian KðX̄Þ.
Hence in the models considered here the classical
Lagrangian is renormalized, because the bare mass is
nonzero. Nevertheless, these quantum corrections can
remain negligible, as we now investigate.
First, in the weak-field regime, X̄ ≪ 1, we obtain from

(150) and (159)

L ≥ 1∶ δLðLÞ ∼ Λ4

!
m
Λ

"
4L
: ð164Þ

Therefore, higher loop corrections are under control and
become increasingly small at higher orders provided

m ≪ Λ∶ δLðLÞ ≪ δLð1Þ for L ≥ 2: ð165Þ

We must now compare the leading one-loop term to the
classical action, Lð0Þ,

Lð0Þ ∼ Λ4X̄ −
m2

2
ϕ̄2 ∼ ρ̄ϕ ≳ ρ̄0; ð166Þ

where ρ̄0 is the mean density of the Universe at redshift
z ¼ 0. This gives

m4 ≪ ρ̄0∶ δLð1Þ ≪ Lð0Þ; ð167Þ

which reads

m ≪ 10−3 eV: ð168Þ

Second, in the strong-field regime, X̄ ≫ 1, we obtain
from (151) and (160)

L ≥ 1∶ δLðLÞ ∼ Λ4K̄
!
m
Λ

"
4L
ðK̄X̄−2=3Þ−3L: ð169Þ

Therefore, higher loop corrections do not blow up provided
K̄X̄−2=3 does not go to 0 at large X̄. For the power-law
behavior (102) this gives the two conditions

m≪ Λ and ν ≥ 2

3
∶ δLðLÞ ≪ δLð1Þ for L ≥ 2: ð170Þ

The classical action is now of the order of Lð0Þ ∼ Λ4K̄.
As ν ≥ 2=3 ensures K̄X̄−2=3 ≳ 1 and we have m ≪ Λ, the
conditions (170) also give δLð1Þ ≪ Lð0Þ.
Therefore, the quantum corrections remain small for any

scalar-field background, in the weak-gravity regime, pro-
vided we have the three conditions

m≪ Λ; m≪ 10−3 eV; and ν ≥
2

3
at large X: ð171Þ

The condition ν ≥ 2=3 is satisfied by the model (109).
However, even at the BH horizon we have μ≲ 3.5 from
Eq. (116), i.e., X̄ ∼ 1. Therefore, even in this high-density
region we do not probe the regime X̄ ≫ 1 and we do not
really need to satisfy the asymptotic condition ν ≥ 2=3 to
keep the quantum corrections negligible. From Eq. (7), we
note that for k2 ∼ 1 the quantum stability implies λ4 ≪ 1.

B. Schwarzschild background metric

We go beyond the Minkowski spacetime and consider
the Schwarzschild metric (9) for the background. This is
valid from the large-radius weak-gravity regime (15),
which is already covered by the analysis of the previous
section, down to the BH horizon in the strong-gravity
regime. The background scalar field ϕ̄ðr; tÞ now depends
on both radius and time, following the solution (32)
described by the nonlinear oscillator ckðu; μÞ. At each
radius, the background kinetic argument X̄ oscillates with
time in the range given in (117).
As in Sec. VII D 2, we work with the background

Eddington metric (120), to be able to study the scalar field
down to the BH horizon. We again obtain the Lagrangian of
the fluctuations ϕ̂ from Eq. (142), paying attention to the
fact that ϕ̄ now depends on both time and radius. In
particular, using Eqs. (129), (36), and (38), the derivatives
of the background solution (32) with respect to the
Eddington coordinates read

∂ϕ̄
∂ t̃ ¼ ϕ0ω

∂ck
∂u ; ð172Þ

and

∂ϕ̄
∂r̃ ¼ ϕ0

#
ω

!
1 −

1

f

"
−

Qβ0ffiffiffiffiffiffi
fh

p
% ∂ck
∂u : ð173Þ

Notice that ∂ϕ̄
∂r̃ ≠

∂ϕ̄
∂ t̃ because there are additional r̃-depen-

dent terms to the one explicitly written in Eq. (121), such as
the radial dependence of the oscillatory parameter μðrÞ.
Then, the Lagrangian of the fluctuations ϕ̂ reads at second
order

L̂ð2Þ ¼ 1

2

#
K00

!∂ϕ̂
∂ t̃

"2

þ 2K01

∂ϕ̂
∂ t̃

∂ϕ̂
∂r̃ þK11

!∂ϕ̂
∂r̃

"2%

−
K̄0

2r̃2
ð∂Ωϕ̂Þ2 −

m2

2
ϕ̂2; ð174Þ

where ∂Ωϕ̂ is the angular derivative, with respect to the
longitudinal and azimuthal angles, and the coefficients Kij

are given by
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063510-19further works: - rotation (Kerr metric)

- dynamical friction of BH inside scalar clouds


