Spherical cosmological models

An alternative cosmology
H. Dejonghe

Astronomical Observatory
Ghent University
December 9, 2020
Spherical cosmological models
(1) Motivation
(2) General properties (metric, dust content, time evolution, dark energy)
(3) Connection with the mother universe (Novikov coordinates and metric, definition of a universe inside a BH)
(9) Geometrical properties (embedding surfaces, boundary, the 2 sheets)
(0) Light (Hubble relation, magnitude redshift relation)
(0) Mass ejection from a black hole

- Mach's principle and Newton's second law

Spherical cosmological models

1. $\mathrm{A} B H$ is nothing special if large enough: smooth crossing of R_{S}, no ripping apart
2. BH may be very empty, not at all dense object, if only large enough
3. Implies spherical symmetry!

- Density of a Black Hole

$$
\rho \sim \frac{\mathcal{M}}{R_{S}^{3}}=\frac{c^{6}}{G^{3}} \frac{1}{\mathcal{M}^{2}}
$$

- Tidal acceleration T in $G \mathcal{M} / R$ gravitational field

$$
T=\frac{2 G \mathcal{M}}{R^{3}} \Delta R=\frac{2 c^{6} \Delta R}{G^{2}} \frac{1}{\mathcal{M}^{2}} @ R_{S}
$$

Spherical cosmological models

Motivation
(2) General properties (metric, dust content, time evolution, dark energy)

- Connection with the mother universe (Novikov coordinates and metric, definition of a universe inside a BH)
(9) Geometrical properties (embedding surfaces, boundary, the 2 sheets)
(0) Light (Hubble relation, magnitude redshift relation)
(0) Mass ejection from a black hole
- Mach's principle and Newton's second law

Spherical cosmological models

- Metric

1. Diagonal

Spherically symmetric dependence on the angles
Radius $R(r, t)$, to be determined
Independent function $e(r)$, dimensionless, obvious constraints

Metric

Lemaître(1933) - Tolman(1934) models (L-T models)
Bondi(1947)

$$
\begin{gathered}
d s^{2}=d t^{2}-X^{2}(r, t) d r^{2}-R^{2}(r, t) d \Omega^{2} \\
d \Omega^{2}=d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2} \\
X(r, t)=\frac{\partial_{r} R(r, t)}{\sqrt{1-2 e(r)}}, \quad e(r) \leq \frac{1}{2}
\end{gathered}
$$

- $c=1, t^{(10 \mathrm{Ga})}$ or $t^{(3.07 \mathrm{Gpc})}$
- Theorem t is a cosmic time all 'comoving' observers with $r=r_{0}$, $\vartheta=\vartheta_{0}$ and $\varphi=\varphi_{0}$ can agree on
- r is shell label of shell with surface $4 \pi R^{2}(r, t)$
- radial distance between 2 shells is $X \Delta r=\frac{\partial_{r} R(r, t)}{\sqrt{1-2 e(r)}} \Delta r$

Spherical cosmological models

1. Diagonal

Spherically symmetric dependence on the angles
Radius $R(r, t)$, to be determined
Independent function $e(r)$, dimensionless, obvious constraints
2. 2 of the 3 units to be chosen are relevant for metric: length and time
3. r has undetermined units (colour, whatever), label to a shell, by definition
'radius' reserved to R because of the surface-relation

- Only slide with explicit picture of the geometry
- Universe has a center C

Boundary: yellow spherical surface, general shell r : green spherical surface

Observer O on a \mathcal{Z}-axis
Orbital planes (green) through \mathcal{Z}-axis
General point P in a orbital plane, with angle $0 \leq O C P<2 \pi$
Reference orbital plane, with $0 \leq$ inclination angle (yellow) $\leq \pi$

- Lines of sight: to center, and to anticenter

Universe looks the same in directions given by small circles perpendicular to the \mathcal{Z}-axis that form cones with circular symmetry

- Sequel: suppression of inclination angle, everything in one particular orbital plane

$$
d s^{2}=d t^{2}-X^{2}(r, t) d r^{2}-R^{2}(r, t) d \vartheta^{2}
$$

- Meridional cut: universe is the disk, with boundary the circle

$$
d s^{2}=d t^{2}-X^{2}(r, t) d r^{2}-R^{2}(r, t) d \vartheta^{2}
$$

- Meridional cut: universe is the disk, with boundary the circle
- Isometric representation of Robertson Walker (R-W) metric in 2D: universe is the surface of a sphere (positive curvature)
- Isometric representations of spherical universes follow later!
- R-W universes are locally a special case of L-T universes
- Einstein equations determine the local geometry, not the global topology

$$
\kappa \rho(r, t)=\frac{4 \pi G}{c^{2}} \rho(r, t)=\frac{d_{r} m(r)}{R^{2}(r, t) \partial_{r} R(r, t)} \geq 0
$$

- $m(r)$ has the dimension of length: geometrical mass
- $\partial_{r} R(r, t) \geq 0$ and $d_{r} m(r) \geq 0$
$r_{1}<r_{2}$ if and only if $R\left(r_{1}, t\right)<R\left(r_{2}, t\right)$: 'inside' and 'outside'

$$
\rho(r, t)=1.2 \frac{d_{r} m(r)}{R^{2}(r, t) \partial_{r} R(r, t)} \times 10^{-26} \mathrm{~kg} \mathrm{~m}^{-3}
$$

critical density: $3 H_{o} /(8 \pi G)$ equals $10^{-26} \mathrm{~kg} \mathrm{~m}^{-3}$

- $\rho(r, t) R^{2}(r, t) \partial_{r} R(r, t)$ independent of t

Choice of the unit for mass density completes the choice of the units.

Note the $\partial_{r} R(r, t)$ in the denominator.

Spherical cosmological models
volume element $d V$

$$
\begin{aligned}
& d V(r, \varphi, \vartheta, t)=\frac{R^{2}(r, t) \partial_{r} R(r, t)}{\sqrt{1-2 e(r)}}|\sin \vartheta| d r d \varphi d \vartheta \\
& \mathcal{M}(r)=4 \pi \int_{0}^{r} \frac{\rho\left(r^{\prime}, t\right) R^{2}\left(r^{\prime}, t\right) \partial_{r} R\left(r^{\prime}, t\right)}{\sqrt{1-2 e\left(r^{\prime}\right)}} d r^{\prime} \\
& \quad=\frac{4 \pi}{\kappa} \int_{0}^{r} \frac{d_{r^{\prime}} m\left(r^{\prime}\right)}{\sqrt{1-2 e\left(r^{\prime}\right)}} d r^{\prime}
\end{aligned}
$$

- the matter that constitutes the L-T model is comoving matter on shells
- $\mathcal{M}(r) \nsim m(r)$
- Volume element is the square root of the determinant of the metric
- Mass inside shell with label r is constant
- κ has dimension of length over mass

Spherical cosmological models

- Notations:
- $M=m\left(r_{b}\right)$ is the total effective geometrical mass
- $\mathcal{M}_{\text {tot }}=\mathcal{M}\left(r_{b}\right)$ is the total mass
- Theorem

$$
\begin{gathered}
\frac{4 \pi}{\kappa} M<\mathcal{M}_{\mathrm{tot}} \quad \text { if } \quad e(r) \geq 0 \\
\mathcal{M}_{\mathrm{tot}}=\frac{4 \pi}{\kappa} \int_{0}^{r_{b}} \frac{d_{r^{\prime}} m\left(r^{\prime}\right)}{\sqrt{1-2 e\left(r^{\prime}\right)}} d r^{\prime}
\end{gathered}
$$

$$
\begin{aligned}
{\left[\partial_{t} R(r, t)\right]^{2}=-2 e(r)+\frac{2 m(r)}{R(r, t)}+\frac{1}{3} \wedge } & {[R(r, t)]^{2} } \\
\frac{1}{2} V^{2}-\frac{G M(r)}{r} & =-e
\end{aligned}
$$

$m(r)$ is the effective gravitating (geometrical) mass function $e(r)$ is the energy function rectilinear 2-body motion (degenerate ellipses)

Spherical cosmological models

$$
\begin{aligned}
{\left[\partial_{t} R(r, t)\right]^{2}=-2 e(r)+\frac{2 m(r)}{R(r, t)}+\frac{1}{3} \Lambda } & {[R(r, t)]^{2} } \\
& \frac{1}{2} V^{2}-\frac{G \mathcal{M}(r)}{r}=-e
\end{aligned}
$$

$m(r)$ is the effective gravitating (geometrical) mass function $e(r)$ is the energy function
rectilinear 2-body motion (degenerate ellipses)

$$
\rho(r, t)=1.2 \frac{d_{r} m(r)}{R^{2}(r, t) \partial_{r} R(r, t)}
$$

$\partial_{r} R\left(r_{0}, t_{c}\right)=0:$ collision of shells and $\rho\left(r_{0}, t_{c}\right)=+\infty$ $\partial_{r} R(r, t)>0$ is the no-collision condition

$$
\begin{aligned}
{\left[\partial_{t} R(r, t)\right]^{2}=-2 e(r)+\frac{2 m(r)}{R(r, t)}+} & \frac{1}{3} \Lambda
\end{aligned} \begin{aligned}
& {[R(r, t)]^{2} } \\
& \frac{1}{2} V^{2}-\frac{G \mathcal{M}(r)}{r}=-e
\end{aligned}
$$

$m(r)$ is the effective gravitating (geometrical) mass function $e(r)$ is the energy function
rectilinear 2-body motion (degenerate ellipses)

$$
\rho(r, t)=1.2 \frac{d_{r} m(r)}{R^{2}(r, t) \partial_{r} R(r, t)}
$$

$\partial_{r} R\left(r_{0}, t_{c}\right)=0:$ collision of shells and $\rho\left(r_{0}, t_{c}\right)=+\infty$ $\partial_{r} R(r, t)>0$ is the no-collision condition

$$
\left[0 \leq r \leq r_{b}\right] \times\left[-\infty \leq\left[t_{c}\right]_{1} \leq t \leq\left[t_{c}\right]_{2} \leq+\infty\right]
$$

 $[0 \leq 1 \leq n] \times\left[-\infty \leq\left[\left||c|_{1} \leq \leq \leq||c| c \leq+x]\right.\right.\right.$

1. The validity of the L-T metric is the spherical volume inside the outermost massive shell (with label r_{b}) and a time interval starting just after the last collision at time $\left[t_{c}\right]_{1}$ until the next collision at time $\left[t_{c}\right]_{2}$

$$
\begin{aligned}
{\left[\partial_{t} R(r, t)\right]^{2}=-2 e(r)+\frac{2 m(r)}{R(r, t)}+} & \frac{1}{3} \Lambda
\end{aligned} \begin{aligned}
& {[R(r, t)]^{2} } \\
& \frac{1}{2} V^{2}-\frac{G \mathcal{M}(r)}{r}=-e
\end{aligned}
$$

$m(r)$ is the effective gravitating (geometrical) mass function $e(r)$ is the energy function
rectilinear 2-body motion (degenerate ellipses)

$$
\rho(r, t)=1.2 \frac{d_{r} m(r)}{R^{2}(r, t) \partial_{r} R(r, t)}
$$

$\partial_{r} R\left(r_{0}, t_{c}\right)=0$: collision of shells and $\rho\left(r_{0}, t_{c}\right)=+\infty$ $\partial_{r} R(r, t)>0$ is the no-collision condition

$$
\left[0 \leq r \leq r_{b}\right] \times\left[-\infty \leq\left[t_{c}\right]_{1} \leq t \leq\left[t_{c}\right]_{2} \leq+\infty\right]
$$

Spherical cosmological models

LTime evolution

1. The validity of the L-T metric is the spherical volume inside the outermost massive shell (with label r_{b}) and a time interval starting just after the last collision at time $\left[t_{c}\right]_{1}$ until the next collision at time $\left[t_{c}\right]_{2}$
2. $\mathcal{R}(t)=R\left(r_{b}, t\right)$ yields Friedmann equation
3. Fuzzy boundary for when the 2 definitions of $p(r)$ apply

$$
\begin{gathered}
R(r, t)=p(r) \operatorname{cyc}[a(r), \epsilon(r), \psi(r, t)] \\
\text { shell parameter } p(r)= \begin{cases}\frac{m(r)}{e(r)} \epsilon(r)=\frac{m(r)}{|e(r)|} & \text { with } \epsilon(r)=\operatorname{sign}(e(r)) \\
2 m(r) & \text { with } \epsilon(r)=2 e(r)\end{cases} \\
\omega(r)=\sqrt{\frac{2 m(r)}{p^{3}(r)}} \quad a(r)=\frac{1}{3} \frac{\Lambda}{\omega^{2}(r)}
\end{gathered}
$$

$$
R(r, t)=p(r) \operatorname{cyc}[a(r), \epsilon(r), \psi(r, t)]
$$

$$
\text { shell parameter } p(r)=\left\{\begin{array}{lll}
\frac{m(r)}{e(r)} \epsilon(r)=\frac{m(r)}{|e(r)|} & \text { with } \quad \epsilon(r)=\operatorname{sign}(e(r)) \\
2 m(r) & \text { with } \quad \epsilon(r)=2 e(r)
\end{array}\right.
$$

$$
\omega(r)=\sqrt{\frac{2 m(r)}{p^{3}(r)}} \quad a(r)=\frac{1}{3} \frac{\Lambda}{\omega^{2}(r)}
$$

$\phi(r)$ phase function
$\psi(r, t)$ state of the shell with label r at cosmic time t

1. Fuzzy boundary for when the 2 definitions of $p(r)$ apply
2. $\phi(r)$ is actually an integration constant as a function of t We store the mathematical details of the (implicit) solution into "cyc", instead of carrying along the equation

$$
R(r, t)=p(r) \operatorname{cyc}[a(r), \epsilon(r), \psi(r, t)]
$$

$\psi(r, t)=\omega(r)[t+\phi(r)]$ is the state of the shell r $\phi(r)$ is an integration constant (for every r)
if $d_{r} \phi(r)>0$, outer shells have a more evolved state than in the absence of $\phi(r)$, mimicking an acceleration without the need for dark energy
Robertson-Walker: $R(r, t)=p_{c} r \operatorname{cyc}(a, \epsilon, \psi(t))$
Iguchi, H., Nakamura, T. and Nakao, K. (2002). Is Dark Energy the Only Solution to the Apparent Acceleration of the Present Universe? Progr.
Theor. Phys. 108, 809.
\llcorner The phase function $\phi(r)$

(1) Motivation

(2) General properties (metric, dust content, time evolution, dark energy)
(3) Connection with the mother universe (Novikov coordinates and metric, definition of a universe inside a BH)
(9) Geometrical properties (embedding surfaces, boundary, the 2 sheets)
(0) Light (Hubble relation, magnitude redshift relation)
(0) Mass ejection from a black hole
© Mach's principle and Newton's second law

Notations

$$
R(r, t)=p(r) \operatorname{cyc}[a(r), \epsilon(r), \psi(r, t)]
$$

$$
R_{\max }(t)=P \operatorname{cyc}\left[a\left(r_{b}\right), \epsilon\left(r_{b}\right), \psi\left(r_{b}, t\right)\right]
$$

Beyond the mass distribution

Notations

$$
\begin{gathered}
0<P=p\left(r_{b}\right)<+\infty \\
R_{\max }(t)=P \operatorname{cyc}\left[a\left(r_{b}\right), \epsilon\left(r_{b}\right), \psi\left(r_{b}, t\right)\right]
\end{gathered}
$$

$$
R(r, t)=p(r) \operatorname{cyc}[a(r), \epsilon(r), \psi(r, t)]
$$

Outside $R_{\text {max }}$: Schwarzschild- Λ metric of the mother universe

$$
d s^{2}=\left(1-\frac{2 M}{R}-\frac{\Lambda R^{2}}{3}\right) d \bar{t}^{2}-\frac{d R^{2}}{1-\frac{2 M}{R}-\frac{\Lambda R^{2}}{3}}-R^{2} d \Omega^{2},
$$

with coordinates $(\bar{t}, R, \vartheta, \varphi)$

Spherical cosmological models

$$
\begin{aligned}
R_{P}(t) & =P \operatorname{cyc}\left(a_{P}, \operatorname{sign}(\Lambda), \sqrt{\frac{2 M}{P^{3}}} t+\bar{\psi}_{\text {init }}\right) \\
a_{P} & =\frac{\Lambda}{3} \frac{P^{3}}{2 M} \quad \tilde{E}_{\infty}^{2}=1-\operatorname{sign}(\Lambda) \frac{2 M}{P}
\end{aligned}
$$

1. It is very significant that the same symbol t is used that we used in the L-T metric: first link to spherical cosmology!
2. P and cyc are the second link to spherical cosmology!
3. The shell parameter P plays the role of a shell label: $P\left(\tilde{E}_{\infty}\right)$
4. The phase function re-appears: third link to spherical cosmology!
5. $\operatorname{sign}(0)=1$ and thus $P \geq 2 M$
6. $R_{P}(t)$ well defined during radial infall

Novikov swarm

Spherical cosmological models
1.

$$
R_{P}(t)=P \operatorname{cyc}\left(0,+1, \sqrt{\frac{2 M}{P^{3}}} t+\frac{\pi}{2}\right)
$$

Black curves: $R_{P}(t)$ for infalling shells, start @ Schwarzschild- Λ radial velocity 0 for arbitrary $R \geq R_{S}$ (black vertical line), at the same \bar{t} which is otherwise undefined but equated to $t=0$
2. t is common to all shells (proper time)
3. None of the black curves intersect
4. After $t=\pi$ (green line) every radius R is covered by a black $R_{P}(t)$ at any time t
5. Blue line: the relation between start radius $R_{P}(0)$ and shell label P. In this case $P=R_{P}(0)$
6. (t, P) can be regarded as new coordinates that are nowhere singular

$$
d s^{2}=d t^{2}-\frac{\left[\partial_{P} R_{P}(t)\right]^{2}}{1-\operatorname{sign}(\Lambda) \frac{2 M}{P}} d P^{2}-R_{P}^{2}(t) d \Omega^{2}
$$

Schwarzschild- Λ	Novikov
$\bar{t}, R, \Omega, d_{\bar{t}} R, d_{\bar{t}} \Omega$	$t, P, \Omega, d_{t} P, d_{t} \Omega$
$V_{\mathcal{X}}=\frac{d_{\bar{t}} R}{V_{0}(R)}, V_{\mathcal{Y}}=\frac{R d_{\bar{t}} \Omega}{\sqrt{V_{0}(R)}}$	$V_{\mathcal{X}}=\frac{\partial_{P} R(P, t)}{\sqrt{1-\operatorname{sign}(\Lambda)(2 M / P)}} d_{t} P, V_{\mathcal{Y}}=R d_{t} \Omega$
$v(\bar{t}, R)=\frac{d_{\bar{t}} R_{P}}{V_{0}(R)}<0$	$v(t, P)=\frac{\left\|d_{t} R_{P}\right\|}{\sqrt{1-\operatorname{sign}(\Lambda)(2 M / P)}}>0$

$$
\begin{gathered}
|v|=\sqrt{1-\frac{V_{0}}{\tilde{E}_{\infty}^{2}}} \leq 1 \\
V_{\mathcal{X}, N}=\frac{V_{\mathcal{X}, S}+|v|}{1+|v| V_{\mathcal{X}, S}} \quad V_{\mathcal{Y}, N}=V_{\mathcal{Y}, S} \frac{\sqrt{1-v^{2}}}{1+|v| V_{\mathcal{X}, S}}
\end{gathered}
$$

-Transition between Schwarzschild- Λ and Novikov
 $m=\sqrt{-v_{\text {童 }}}$

$$
d_{t} R_{p}= \pm \sqrt{\tilde{E}_{\infty}^{2}-V_{0}(R)} \quad \tilde{E}_{\infty}^{2} \geq V_{0}(R) \text { where } V_{0}(R) \geq 0
$$

Spherical cosmological models

$$
\begin{aligned}
& \qquad d s^{2}=d t^{2}-\frac{\left(\partial_{r} R(r, t)\right)^{2}}{1-2 e(r)} d r^{2}-R^{2}(r, t) d \Omega^{2} \\
& 2 m\left(r_{b}\right)=2 M, \quad R(r, t)=p(r) \operatorname{cyc}(r, t), \quad p(r) \leq p\left(r_{b}\right)=P=2 M, \\
& e\left(r_{b}\right)=\frac{1}{2}, \quad \lim _{r \rightarrow r_{b}} \frac{\left(\partial_{r} R(r, t)\right)^{2}}{1-2 e(r)}=\lim _{r \rightarrow r_{b}} X^{2}(r, t)=+\infty
\end{aligned}
$$

- Outer metric

$$
\begin{aligned}
d s^{2} & =\left(1-\frac{2 M}{R}-\frac{\Lambda R^{2}}{3}\right) d \bar{t}^{2}-\frac{d R^{2}}{1-2 M / R-\Lambda R^{2} / 3}-R^{2} d \Omega^{2} \\
d s^{2} & =d t^{2}-\frac{\left[\partial_{P} R(P, t)\right]^{2}}{1-\operatorname{sign}(\Lambda) 2 M / P} d P^{2}-R^{2}(P, t) d \Omega^{2}, \quad P>2 M
\end{aligned}
$$

—Universes inside a BH : summary of the metrics

- The geometrical total mass of the universe M is equal to what is normally called the mass of the black hole. The relation of that mass to the total mass of the universe depends on its internal state.
- $0 \leq p(r) \leq 2 M<P<+\infty$. The function $p(r)$ plays the same function as P. In case $p(r)$ is monotonous, we could change shell label $r^{\prime}=p$.
- Λ is not explicitly present in the inner metric, nor in the Novikov metric, but is present in $R(r, t)$ and $R(P, t)$

Theorem

- @ maximum expansion: $R_{\max }(t)$ equals Schwarzschild radius R_{S}
- @ other cosmic times: spacetime between $R_{\max }(t)$ and R_{S}
- no space created in the expansion

(1) Motivation

(2) General properties (metric, dust content, time evolution, dark energy)
(3) Connection with the mother universe (Novikov coordinates and metric, definition of a universe inside a BH)
(9) Geometrical properties (embedding surfaces, boundary, the 2 sheets)
(3) Light (Hubble relation, magnitude redshift relation)
(0) Mass ejection from a black hole
© Mach's principle and Newton's second law

$$
d s^{2}=d t^{2}-X^{2}(r, t) d r^{2}-R^{2}(r, t) d \vartheta^{2}
$$

Embedding surfaces (2)

$$
d s^{2}=d t^{2}-X^{2}(r, t) d r^{2}-R^{2}(r, t) d \vartheta^{2}
$$

Embedding surfaces (2)

$$
X \rightarrow+\infty \quad \text { for } \quad r \rightarrow r_{b}
$$

Rises perpendicular out of the flat

 plane

Embedding surfaces (3)

Spherical cosmological models

$$
d s^{2}=d t^{2}-X^{2}(r, t) d r^{2}-R^{2}(r, t) d \vartheta^{2}
$$

$X \rightarrow+\infty \quad$ for $\quad r \rightarrow r_{b}$
x finite for all r

Rises perpendicular out of the flat plane (case of positive constant

curvature is shown)

- Theorem
- Locally the 4-metric can be made Lorentz, everywhere
- Be χ a shell label, and nowhere $X(\chi, t)=+\infty$, then the metric is the metric of a universe if at the boundary $\left.\partial_{\chi} R(\chi)\right|_{\chi=\chi_{b}}=0$
-

$$
\chi(r)=\int_{0}^{r} \frac{d r^{\prime}}{\left[1-\left(r^{\prime}\right)^{2}\right]^{1-\delta}}=r{ }_{2} F_{1}\left(1-\delta, \frac{1}{2} ; \frac{3}{2} ; r^{2}\right)
$$

- Example: Robertson-Walker metric

$$
\begin{gathered}
d s^{2}=d t^{2}-[\mathcal{R}(t)]^{2}\left[\frac{d r^{2}}{1-r^{2}}+r^{2}\left(d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right)\right] \\
r=|\sin \chi|, \quad R(r, t)=\mathcal{R}(t)|\sin \chi|, \quad X(r, t)=\frac{\mathcal{R}(t)}{|\cos \chi|} \\
d s^{2}=d t^{2}-[\mathcal{R}(t)]^{2}\left[d \chi^{2}+\sin ^{2} \chi\left(d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right)\right], \\
\left.\partial_{\chi} R(\chi)\right|_{\chi=\frac{\pi}{2}}=\mathcal{R}(t) \partial_{\chi}|\sin \chi|_{\chi=\frac{\pi}{2}}=0
\end{gathered}
$$

Decemb

Universes with 2 sheets (1)

Context: orbit integration. How do we elegantly deal with the singular radial coefficient in the metric at the boundary?

$$
\begin{gathered}
r=1-|\xi|^{1 / \delta} \quad-1 \leq \xi \leq 1, \quad \delta^{-1} \geq 2 \quad \epsilon_{\xi}=\operatorname{sign}(\xi) \\
1-r=|\xi|^{1 / \delta}, \quad|\xi|=(1-r)^{\delta} .
\end{gathered}
$$

The disk $0 \leq r \leq 1$ is covered by 2 sheets:

- one for $\xi \geq 0$, or $\epsilon_{\xi}=+1$
- one for $\xi \leq 0$, or $\epsilon_{\xi}=-1$
(follows from $d_{\xi} r=0 @ \xi=0$).

Theorem

- $w=\epsilon_{\xi} X \dot{r}$, (with $+\infty \times 0$), is the Lorentzian radial velocity
- equations of motion are regular in ξ at $r=1: \xi(p) \sim p-p_{b}$, or $r(p)=1-\left|p-p_{b}\right|^{1 / \delta}$
- in 2D universe, one passes, via the 1 D circle $r=1$, from one sheet to the other

Spherical cosmological models

In de Robertson-Walker metric, the analogy of the boundary is the equator of the sphere. Crossing the equator is passing to the lower hemisphere. The surface of the 2D Robertson-Walker universe (right) is twice the surface of our universes (left).

The surface of our 2D universe has 2 sides: the outer side of the sphere and the inner side of the sphere. The Robertson-Walker sphere has only an outer side.

Passing the boundary means passing from the outer side to the inner side, or from 'above the surface' to 'underneath the surface'. This is analogous to a Möbius strip: no orientation.

Universes with 2 sheets (3
$x=r \cos \vartheta$
$y=r \sin \vartheta$

Spherical cosmological models

2D universe in (x, y) representation, with $r^{2}=x^{2}+y^{2}$

16 orbits are shown, starting from the red place close to the boundary, going off in 16 directions, outward and inward.

Universes with 2 sheets (4)

Spherical cosmological models

The 7 orbits that start off in the outward direction, hit the boundary somewhere (shown by changing the hue of the color, suggestive of being on the plane or under the plane).

Universes with 2 sheets (4)

Spherical cosmological models

The 7 orbits that start off in the outward direction, hit the boundary somewhere (shown by changing the hue of the color, suggestive of being on the plane or under the plane).

They keep their outward velocity:
$w=\epsilon_{\xi} X \dot{r}$, (with $+\infty \times 0$), is the Lorentzian radial velocity \dot{r} changes sign, but not w, because also ϵ_{ξ} changes sign.

Universes with 2 sheets (4)

Spherical cosmological models
2020-12-09

The 7 orbits that start off in the outward direction, hit the boundary somewhere (shown by changing the hue of the color, suggestive of being on the plane or under the plane).

They keep their outward velocity:
$w=\epsilon_{\xi} X \dot{r}$, (with $+\infty \times 0$), is the Lorentzian radial velocity
\dot{r} changes sign, but not w, because also ϵ_{ξ} changes sign.
After touching the boundary, the traveler continues his/her journey, but travels back into the interior of the universe and revisits the shells he/she has come to leave. The traveler has never turned back, as he/she would have done in an ordinary orbit at a turning point.

1. Blue light travels 'from left to right', gradually being redshifted and arriving at the red dot. Colors are qualitative.
-Gravitational mirror (1)

2. Blue light travels 'from left to right', gradually being redshifted and arriving at the red dot. Colors are qualitative
3. The 7 rays that start their journey in a light hue, 'under the surface', have a brush with the boundary and appear 'above the surface'. They hit the red dot as an indirect image, since there is always the direct image, via the 7 rays that start 'above the surface at the intersection with one of the light-hued rays.

4. Blue light travels 'from left to right', gradually being redshifted and arriving at the red dot. Colors are qualitative.
5. The 7 rays that start their journey in a light hue, 'under the surface', have a brush with the boundary and appear 'above the surface'. They hit the red dot as an indirect image, since there is always the direct image, via the 7 rays that start 'above the surface' at the intersection with one of the light-hued rays.
6. The observer (the red dot) sees a direct image in the hemisphere of the center, and a mirror image in the hemisphere of the anticenter, but with different aspects and ages!

7. Blue light travels 'from left to right', gradually being redshifted and arriving at the red dot. Colors are qualitative.
8. The 7 rays that start their journey in a light hue, 'under the surface', have a brush with the boundary and appear 'above the surface'. They hit the red dot as an indirect image, since there is always the direct image, via the 7 rays that start 'above the surface' at the intersection with one of the light-hued rays.
9. The observer (the red dot) sees a direct image in the hemisphere of the center, and a mirror image in the hemisphere of the anticenter, but with different aspects and ages!
10. When approaching the boundary, most of the sky of the observer will contain images of the hemisphere of the center, because there is less and less 'stuff' between the observer and the boundary. At the boundary, the sky of the hemisphere of the anticenter will be the mirror of sky of the hemisphere of the center.

Spherical cosmological models

$\left\llcorner_{\text {Gravitational mirror(2) : 3D schematic rendition }}\right.$

1. The green frame represents the 2D boundary, acting as a mirror The green arrow is the direction towards the center.

2. The green frame represents the 2D boundary, acting as a mirror The green arrow is the direction towards the center.
3. The black lines left from the mirror are real light paths. The 2 spinning balls on the left of the mirror are real balls. The left one represents an observer, the right ball is the object. They have the same spin.

Spherical cosmological models
4. The green frame represents the 2D boundary, acting as a mirror. The green arrow is the direction towards the center.
5. The black lines left from the mirror are real light paths. The 2 spinning balls on the left of the mirror are real balls. The left one represents an observer, the right ball is the object. They have the same spin.
6. The black lines right from the mirror are virtual light paths. The spinning ball on the right of the mirror is the mirror image of the object.

7. The green frame represents the 2D boundary, acting as a mirror. The green arrow is the direction towards the center.
8. The black lines left from the mirror are real light paths. The 2 spinning balls on the left of the mirror are real balls. The left one represents an observer, the right ball is the object. They have the same spin.
9. The black lines right from the mirror are virtual light paths. The spinning ball on the right of the mirror is the mirror image of the object.
10. Observer and mirror image have opposite spin. If the observer sets out to travel to the mirror image, he will arrive at it (he travels 'through' the mirror, his outward velocity does not change), but will find himself at the real object, since he followed the light path.

11. The green frame represents the 2D boundary, acting as a mirror. The green arrow is the direction towards the center.
12. The black lines left from the mirror are real light paths. The 2 spinning balls on the left of the mirror are real balls. The left one represents an observer, the right ball is the object. They have the same spin.
13. The black lines right from the mirror are virtual light paths. The spinning ball on the right of the mirror is the mirror image of the object.
14. Observer and mirror image have opposite spin. If the observer sets out to travel to the mirror image, he will arrive at it (he travels 'through' the mirror, his outward velocity does not change), but will find himself at the real object, since he followed the light path.
15. The observer does not know that he is traveling towards a mirror image. For him, object and mirror image are both real and different things he can choose to travel to.

Gravitational mirror(3) : moving object

Universe

1. Stationary observer O, same spin as S at $1 . S$ follows light path that will bring it to O.

Spherical cosmological models

Universe

1. Stationary observer O, same spin as S at 1 . S follows light path that will bring it to O.
2. O sees 2 images, S_{1} and S_{1}^{\prime}. He/she does not connect them, because of opposite spin, different aspect ratio and different light travel time. S_{1} will pass by, in his/her perception, while S_{1}^{\prime} is on a crash course.

Universe

1. Stationary observer O, same spin as S at 1 . S follows light path that will bring it to O.
2. O sees 2 images, S_{1} and S_{1}^{\prime}. He/she does not connect them, because of opposite spin, different aspect ratio and different light travel time. S_{1} will pass by, in his/her perception, while S_{1}^{\prime} is on a crash course.
3. Upon arrival at the mirror, S flips spin for O, turns an additional 90° clockwise for O and continues its crash course towards point 2.

Universe

1. Stationary observer O, same spin as S at 1 . S follows light path that will bring it to O.
2. O sees 2 images, S_{1} and S_{1}^{\prime}. He/she does not connect them, because of opposite spin, different aspect ratio and different light travel time. S_{1} will pass by, in his/her perception, while S_{1}^{\prime} is on a crash course.
3. Upon arrival at the mirror, S flips spin for \mathcal{O}, turns an additional 90° clockwise for O and continues its crash course towards point 2.
4. O has the direct image of S now at S_{2}, in the direction of S_{1}^{\prime}. O doesn't know about a mirror, and continues to believe that S_{1}^{\prime} is on its crash course. No spin flip. S_{1} on the other hand passes by towards S_{2}^{\prime}. No spin flip. O sees two ordinary straight orbits.

Universe

Mirror

1. Stationary observer O, same spin as S at 1 . S follows light path that will bring it to O.
2. O sees 2 images, S_{1} and S_{1}^{\prime}. He/she does not connect them, because of opposite spin, different aspect ratio and different light travel time. S_{1} will pass by, in his/her perception, while S_{1}^{\prime} is on a crash course.
3. Upon arrival at the mirror, S flips spin for O, turns an additional 90° clockwise for O and continues its crash course towards point 2.
4. O has the direct image of S now at S_{2}, in the direction of S_{1}^{\prime}. O doesn't know about a mirror, and continues to believe that S_{1}^{\prime} is on its crash course. No spin flip. S_{1} on the other hand passes by towards S_{2}^{\prime}. No spin flip. O sees two ordinary straight orbits.
5. In the case of a mirror, there is no spin flip, and O must conclude that there was a mirror, a reflection, and virtual images S_{1}^{\prime} and S_{2}^{\prime}.

Gravitational mirror(3) : moving object
Spherical cosmological models

Universe

Mirror

1. Stationary observer O, same spin as S at 1 . S follows light path that will bring it to O.
2. O sees 2 images, S_{1} and S_{1}^{\prime}. He/she does not connect them, because of opposite spin, different aspect ratio and different light travel time. S_{1} will pass by, in his/her perception, while S_{1}^{\prime} is on a crash course
3. Upon arrival at the mirror, S flips spin for O, turns an additional 90° clockwise for O and continues its crash course towards point 2.
4. O has the direct image of S now at S_{2}, in the direction of S_{1}^{\prime}. O doesn't know about a mirror, and continues to believe that S_{1}^{\prime} is on its crash course. No spin flip. S_{1} on the other hand passes by towards S_{2}^{\prime}. No spin flip. O sees two ordinary straight orbits.
5. In the case of a mirror, there is no spin flip, and O must conclude that there was a mirror, a reflection, and virtual images S_{1}^{\prime} and S_{2}^{\prime}.
6. The gravitational mirror only manifests itself by the virtual collision at the mirror

7. Shows the orbital plane, observer O, horizon in blue. Directions to the center C and anticenter C^{\prime} indicated. There is rotational symmetry around rotation axis $C C^{\prime}$

8. Shows the orbital plane, observer O, horizon in blue. Directions to the center C and anticenter C^{\prime} indicated. There is rotational symmetry around rotation axis $C C^{\prime}$
9. O spins counterclockwise (pointer rotates), spin vector perpendicular to the plane.

10. Shows the orbital plane, observer O, horizon in blue. Directions to the center C and anticenter C^{\prime} indicated. There is rotational symmetry around rotation axis $C C^{\prime}$
11. O spins counterclockwise (pointer rotates), spin vector perpendicular to the plane.
12. Spin determination convention with respect to the universe: counterclockwise if pointer encounters first A and then B, clockwise if pointer encounters first B and then A

Gravitational mirror(4) : the local sky
Spherical cosmological models

1. Shows the orbital plane, observer O, horizon in blue. Directions to the center C and anticenter C^{\prime} indicated. There is rotational symmetry around rotation axis $C C^{\prime}$.
2. O spins counterclockwise (pointer rotates), spin vector perpendicular to the plane.
3. Spin determination convention with respect to the universe: counterclockwise if pointer encounters first A and then B, clockwise if pointer encounters first B and then A
4. At the boundary (green line, with rotational symmetry a plane), the hemisphere of C^{\prime} is the mirror of the hemisphere of C. Thus also A^{\prime} and B^{\prime} mirror A and B. The observer cannot tell which is the direct or the mirror image. If he/she chooses A^{\prime} and B^{\prime}, he/she is spinning clockwise by convention!

Gravitational mirror(4) : the local sky
Spherical cosmological models

1. Shows the orbital plane, observer O, horizon in blue. Directions to the center C and anticenter C^{\prime} indicated. There is rotational symmetry around rotation axis $C C^{\prime}$.
2. O spins counterclockwise (pointer rotates), spin vector perpendicular to the plane.
3. Spin determination convention with respect to the universe: counterclockwise if pointer encounters first A and then B, clockwise if pointer encounters first B and then A
4. At the boundary (green line, with rotational symmetry a plane), the hemisphere of C^{\prime} is the mirror of the hemisphere of C. Thus also A^{\prime} and B^{\prime} mirror A and B. The observer cannot tell which is the direct or the mirror image. If he/she chooses A^{\prime} and B^{\prime}, he/she is spinning clockwise by convention!
5. O 'flies into the primed universe', and will find him/herself spinning clockwise with respect to the universe. O never flipped spin! At the boundary his/her spin is undefined with respect to the universe.

(1) Motivation

(2) General properties (metric, dust content, time evolution, dark energy)
(3) Connection with the mother universe (Novikov coordinates and metric, definition of a universe inside a BH)
(9) Geometrical properties (embedding surfaces, boundary, the 2 sheets)
(5) Light (Hubble relation, magnitude redshift relation)
(0) Mass ejection from a black hole
© Mach's principle and Newton's second law

Spherical cosmological models

$$
z=\left[H_{0} \sin ^{2} \theta_{0}+I_{0} \cos ^{2} \theta_{0}\right] \ell=\left[H_{0}+\left(I_{0}-H_{0}\right) \cos ^{2} \theta_{0}\right] \ell
$$

$$
\begin{array}{cc}
H^{t}=-\frac{R \partial_{t}^{2} R}{\left(\partial_{t} R\right)^{2}}=-\frac{\partial_{t}^{2} R}{R H^{2}}=q & I^{t}=-\frac{X \partial_{t}^{2} X}{\left(\partial_{t} X\right)^{2}}=-\frac{\partial_{t}^{2} X}{X I^{2}} \\
H^{\prime t}=\frac{\partial_{r} R}{R}-\frac{\partial_{t}^{2} R}{\partial_{t} R} & I^{\prime t}=\frac{\partial_{r} X}{X}-\frac{\partial_{t t}^{2} X}{\partial_{t} X .}
\end{array}
$$

$$
\begin{aligned}
m_{X_{o}}^{(\text {mag })}\left(t_{0}, \mathbf{r}_{\mathrm{o}}, z\right)= & 5 \log _{10}(3.066)+40+M_{X_{\mathrm{e}}}^{(\operatorname{mag})}\left(t_{\mathrm{e}}, \mathbf{r}_{\mathrm{e}}\right)- \\
& -5 \log _{10}\left[\iota_{\circ} \cos ^{2} \theta_{\circ}+H_{0} \sin ^{2} \theta_{\mathrm{o}}\right]+ \\
& +5 \log _{10} z+\frac{5}{\ln 10} \tilde{E}_{1,0}^{-1}\left(\tilde{E}_{2, \mathrm{o}}^{\prime} \tilde{E}_{1, \mathrm{o}}^{-1}-\tilde{E}_{11, \mathrm{o}}\right) z
\end{aligned}
$$

Tangential Hubble parameter, and radial Hubble parameter in the Hubble law

Instead of $q, 3$ more parameters

Redshift and photometry (2)

(1) Motivation

(2) General properties (metric, dust content, time evolution, dark energy)
(3) Connection with the mother universe (Novikov coordinates and metric, definition of a universe inside a BH)
(9) Geometrical properties (embedding surfaces, boundary, the 2 sheets)
(0) Light (Hubble relation, magnitude redshift relation)
(0) Mass ejection from a black hole
© Mach's principle and Newton's second law

Spherical cosmological models

$$
X\left(r_{b}, t\right)=\frac{\partial_{r} R\left(r_{b}, t\right)}{\sqrt{1-2 e\left(r_{b}\right)}}=\frac{0}{0} \text { and finite: dust ball }
$$

Until now, the no-collision condition $\partial_{r} R\left(r_{b}, t\right)>0$ was assumed. The magnitude of $X\left(r_{b}, t\right)$ is undefined (de l'Hôpital)

$$
X\left(r_{b}, t\right)=\frac{\partial_{r} R\left(r_{b}, t\right)}{\sqrt{1-2 e\left(r_{b}\right)}}=\frac{0}{0} \text { and finite: dust ball }
$$

Condition

- shells collide @ r_{b} at maximum expansion (when universe touches R_{S})

Spherical cosmological models

Until now, the no-collision condition $\partial_{r} R\left(r_{b}, t\right)>0$ was assumed. The magnitude of $X\left(r_{b}, t\right)$ is undefined (de l'Hôpital).

At maximum expansion: the region between the boundary of the universe and R_{S} is a one way inward motion space-time region.

Spherical cosmological models

$$
X\left(r_{b}, t\right)=\frac{\partial_{r} R\left(r_{b}, t\right)}{\sqrt{1-2 e\left(r_{b}\right)}}=\frac{0}{0} \text { and finite: dust ball }
$$

Condition

- shells collide @ r_{b} at maximum expansion (when universe touches R_{S})

$$
\begin{aligned}
d s^{2}= & \left(1-\frac{2 m \rho}{\rho^{2}+a^{2} \cos ^{2} \theta}\right) c^{2} d t^{2}-\frac{\rho^{2}+a^{2} \cos ^{2} \theta}{\rho^{2}+a^{2}-2 m \rho} d \rho^{2} \\
& -\left(\rho^{2}+a^{2} \cos ^{2} \theta\right) d \theta^{2}-\left[\left(\rho^{2}+a^{2}\right) \sin ^{2} \theta+\frac{2 m \rho a^{2} \sin ^{4} \theta}{\rho^{2}+a^{2} \cos ^{2} \theta}\right] d \varphi^{2} \\
& -2 \frac{2 m \rho a \sin ^{2} \theta}{\rho^{2}+a^{2} \cos ^{2} \theta} c d t d \varphi
\end{aligned}
$$

(Kerr solution, Boyer and Lindqvist form)


```
\sqrt{}{1-2+2(1)}-5
```



```
d
```



```
    2mmosh\mp@subsup{h}{}{2}0
```


Until now, the no-collision condition $\partial_{r} R\left(r_{b}, t\right)>0$ was assumed. The magnitude of $X\left(r_{b}, t\right)$ is undefined (de l'Hôpital).

At maximum expansion: the region between the boundary of the universe and R_{S} is a one way inward motion space-time region.

$$
X\left(r_{b}, t\right)=\frac{\partial_{r} R\left(r_{b}, t\right)}{\sqrt{1-2 e\left(r_{b}\right)}}=\frac{0}{0} \text { and finite: dust ball }
$$

Condition

- shells collide @ r_{b} at maximum expansion (when universe touches R_{S})

$$
\begin{aligned}
d s^{2}= & \left(1-\frac{2 m \rho}{\rho^{2}+a^{2} \cos ^{2} \theta}\right) c^{2} d t^{2}-\frac{\rho^{2}+a^{2} \cos ^{2} \theta}{\rho^{2}+a^{2}-2 m \rho} d \rho^{2} \\
& -\left(\rho^{2}+a^{2} \cos ^{2} \theta\right) d \theta^{2}-\left[\left(\rho^{2}+a^{2}\right) \sin ^{2} \theta+\frac{2 m \rho a^{2} \sin ^{4} \theta}{\rho^{2}+a^{2} \cos ^{2} \theta}\right] d \varphi^{2} \\
& -2 \frac{2 m \rho a \sin ^{2} \theta}{\rho^{2}+a^{2} \cos ^{2} \theta} c d t d \varphi
\end{aligned}
$$

(Kerr solution, Boyer and Lindqvist form)

Spherical cosmological models

Until now, the no-collision condition $\partial_{r} R\left(r_{b}, t\right)>0$ was assumed. The magnitude of $X\left(r_{b}, t\right)$ is undefined (de l'Hôpital).

At maximum expansion: the region between the boundary of the universe and R_{S} is a one way inward motion space-time region.

Material leaving the BH at the poles will have to overcome a gravitational well commensurate with the magnitude of $X\left(r_{b}, t\right)$. The larger $X\left(r_{b}, t\right)$, the more they will have lost kinetic energy and the more they will be redshifted.

Anomalous redshifts: NGC 3516

Spherical cosmological models

(1) Motivation

(2) General properties (metric, dust content, time evolution, dark energy)
(3) Connection with the mother universe (Novikov coordinates and metric, definition of a universe inside a BH)
(9) Geometrical properties (embedding surfaces, boundary, the 2 sheets)
(0) Light (Hubble relation, magnitude redshift relation)
(0) Mass ejection from a black hole
(0) Mach's principle and Newton's second law

Spherical cosmological models

Gottfried Wilhelm Leibniz (1646-1716) and Isaac Newton (1642-1727) Ernst Mach (1838-1916)
Inertial forces are proportional to mass, but is inertial mass the same mass as gravitational mass?

```
Mach's principle and Newton's second law (1)
```

m is at rest between 2 springs: comoving body

Gottfried Wilhelm Leibniz (1646-1716) and Isaac Newton (1642-1727) Ernst Mach (1838-1916)
Inertial forces are proportional to mass, but is inertial mass the same mass as gravitational mass?

```
Mach's principle and Newton's second law (1)
```

Spherical cosmological models
Mach's principle and Newton's second law (1)
m is at rest between 2 springs: comoving body

$$
F=m_{G} \int(4 \pi G) \frac{\rho}{\left(4 \pi r^{2}\right)} r^{2} d r \int_{-\pi / 2}^{\pi / 2}|\sin \theta| \cos \theta d \theta \int_{x_{1}}^{\pi} d \phi
$$

Gottfried Wilhelm Leibniz (1646-1716) and Isaac Newton (1642-1727) Ernst Mach (1838-1916)
Inertial forces are proportional to mass, but is inertial mass the same mass as gravitational mass?

Mach's principle and Newton's second law (1)
m is at rest between 2 springs: comoving body

$$
\begin{aligned}
& k_{1} \\
& F=m_{G} \int(4 \pi G) \frac{\rho}{\left(4 \pi r^{2}\right)} r^{2} d r \int_{-\pi / 2}^{\pi / 2}|\sin \theta| \cos \theta d \theta \int_{0}^{\pi} d \phi \\
& d s^{2}=d t^{2}-[\mathcal{R}(t)]^{2}\left[d \chi^{2}+\sin ^{2} \chi\left(d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right)\right], \\
& F(t, \chi, \vartheta, \varphi)=\frac{G m_{G}}{2 \mathcal{R}^{2}(t)} \int \sin ^{2} \chi^{\prime} d \chi^{\prime} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d \vartheta^{\prime}\left|\sin \vartheta^{\prime}\right| \cos \vartheta^{\prime} \times \\
& \times \frac{\left.\rho\left[t^{\prime}\left(\chi^{\prime \prime}\right)\right] \mathcal{R}^{3}\left[t^{\prime}\left(\chi^{\prime \prime}\right)\right]\right)}{\sin ^{2}\left[\chi^{\prime \prime}\left(\chi, \vartheta, \chi^{\prime}, \vartheta^{\prime}\right)\right]} .
\end{aligned}
$$

Mach's principle and Newton's second law (1)

Gottfried Wilhelm Leibniz (1646-1716) and Isaac Newton (1642-1727) Ernst Mach (1838-1916)
Inertial forces are proportional to mass, but is inertial mass the same mass as gravitational mass?

Spherical cosmological models

$$
F(t)=\frac{G m_{G} \pi}{2 \mathcal{R}^{2}(t)} \frac{\rho}{\omega^{3}} \int d \chi^{\prime \prime}
$$

$$
F(t)=\frac{G m_{G} \pi^{2}}{2 \mathcal{R}^{2}(t)} \frac{\rho}{\omega^{3}} \frac{t}{t_{b}}, \quad 0 \leq t \leq t_{b} \quad t_{b}=\pi M \quad \chi=\pi
$$

Result for closed universe and $\Lambda=0$. One full expansion or one full contraction yields $\chi=\pi$ in timespan $\pi M(t) / c$. The horizon is twice the universe: every object produces 2 images within timespan t_{b}.
Once an object comes 'in sight', it remains 'in sight'. Images accumulate as time passes.

Force is proportional to 'age t ' of universe and inversely proportional to the square of its size. Age t must be large in order to assure isotropy in $F(t)$ since isotropy requires many images.

Spherical cosmological models

$$
\begin{gathered}
F(t)=\frac{G m_{G} \pi}{2 \mathcal{R}^{2}(t)} \frac{\rho}{\omega^{3}} \int d \chi^{\prime \prime} . \\
F(t)=\frac{G m_{G} \pi^{2}}{2 \mathcal{R}^{2}(t)} \frac{\rho}{\omega^{3}} \frac{t}{t_{b}}, \quad 0 \leq t \leq t_{b} \quad t_{b}=\pi M \quad \chi=\pi \\
\rho \sim \frac{\mathcal{M}}{R_{S}^{3}} \sim \frac{c^{6}}{G^{3}} \frac{1}{\mathcal{M}^{2}} \sim \frac{c^{2}}{G M^{2}} \quad \omega=\frac{1}{2 M} \\
F(t)=m_{G} \times \frac{3}{8} \frac{c^{2}}{\mathcal{R}^{2}(t)} t=m_{G} \times \frac{3}{8} \frac{c^{2}}{[2 M(t) \operatorname{cyc}(t)]^{2}} t
\end{gathered}
$$

Result for closed universe and $\Lambda=0$. One full expansion or one full contraction yields $\chi=\pi$ in timespan $\pi M(t) / c$. The horizon is twice the universe: every object produces 2 images within timespan t_{b}.
Once an object comes 'in sight', it remains 'in sight'. Images accumulate as time passes.

Force is proportional to 'age t ' of universe and inversely proportional to the square of its size. Age t must be large in order to assure isotropy in $F(t)$ since isotropy requires many images.

$$
\begin{gathered}
F(t)=\frac{G m_{G} \pi}{2 \mathcal{R}^{2}(t)} \frac{\rho}{\omega^{3}} \int d \chi^{\prime \prime} . \\
F(t)=\frac{G m_{G} \pi^{2}}{2 \mathcal{R}^{2}(t)} \frac{\rho}{\omega^{3}} \frac{t}{t_{b}}, \quad 0 \leq t \leq t_{b} \quad t_{b}=\pi M \quad \chi=\pi \\
\rho \sim \frac{\mathcal{M}}{R_{S}^{3}} \sim \frac{c^{6}}{G^{3}} \frac{1}{\mathcal{M}^{2}} \sim \frac{c^{2}}{G M^{2}} \quad \omega=\frac{1}{2 M} \\
F(t)=m_{G} \times \frac{3}{8} \frac{c^{2}}{\mathcal{R}^{2}(t)} t=m_{G} \times \frac{3}{8} \frac{c^{2}}{[2 M(t) \operatorname{cyc}(t)]^{2}} t \\
F(t)=m_{G} \times 3.57 \times 10^{-10} \frac{\mathcal{A}^{(10 \mathrm{Ga})}}{\left[\mathcal{R}(t)^{(3 \mathrm{Gpc})]^{2}}\right.} \mathrm{m} / \mathrm{s}^{2}
\end{gathered}
$$

Mach's principle and Newton's second law (2)

Result for closed universe and $\Lambda=0$. One full expansion or one full contraction yields $\chi=\pi$ in timespan $\pi M(t) / c$. The horizon is twice the universe: every object produces 2 images within timespan t_{b}.
Once an object comes 'in sight', it remains 'in sight'. Images accumulate as time passes.

Force is proportional to 'age t ' of universe and inversely proportional to the square of its size. Age t must be large in order to assure isotropy in $F(t)$ since isotropy requires many images.

$$
\begin{gathered}
F(t)=\frac{G m_{G} \pi}{2 \mathcal{R}^{2}(t)} \frac{\rho}{\omega^{3}} \int d \chi^{\prime \prime} . \\
F(t)=\frac{G m_{G} \pi^{2}}{2 \mathcal{R}^{2}(t)} \frac{\rho}{\omega^{3}} \frac{t}{t_{b}}, \quad 0 \leq t \leq t_{b} \quad t_{b}=\pi M \quad \chi=\pi \\
\rho \sim \frac{\mathcal{M}}{R_{S}^{3}} \sim \frac{c^{6}}{G^{3}} \frac{1}{\mathcal{M}^{2}} \sim \frac{c^{2}}{G M^{2}} \quad \omega=\frac{1}{2 M} \\
F(t)=m_{G} \times \frac{3}{8} \frac{c^{2}}{\mathcal{R}^{2}(t)} t=m_{G} \times \frac{3}{8} \frac{c^{2}}{[2 M(t) \mathrm{cyc}(t)]^{2}} t \\
F(t)=m_{G} \times 3.57 \times 10^{-10} \frac{\mathcal{A}^{(10 \mathrm{Ga})}}{\left[\mathcal{R}(t)^{(3 \mathrm{Gpc})}\right]^{2}} \mathrm{~m} / \mathrm{s}^{2} \\
F(t)=m_{G} \times 6.33 \times 10^{-11}\left[2 M(t)^{(3 \mathrm{Gpc})}\right]^{-14 / 3} \mathcal{A}^{(10 \mathrm{Ga})} \mathrm{m} / \mathrm{s}^{2}
\end{gathered}
$$

Spherical cosmological models

Result for closed universe and $\Lambda=0$. One full expansion or one full contraction yields $\chi=\pi$ in timespan $\pi M(t) / c$. The horizon is twice the universe: every object produces 2 images within timespan t_{b}.
Once an object comes 'in sight', it remains 'in sight'. Images accumulate as time passes.

Force is proportional to 'age t ' of universe and inversely proportional to the square of its size. Age t must be large in order to assure isotropy in $F(t)$ since isotropy requires many images.

The Hubble parameter provides a useful constraint, eliminating $\mathcal{R}(t)$ in favor of $M(t)$.

In the past, the inertial force must have been huge.

```
Wrap up
```

Spherical cosmological models

- Our universe is the interior of a BH in another 'mother' universe
- BHs in our universe are embryonic universes
- No need for a big bang of creation
- No need for dark energy
- Gravitational mirror
- Arp et.al. were partly right
- Mach's principle and Newton's second law can be made explicit
- Gravitational mass and inertial mass are proportional / the same

