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Motivation

Tidal acceleration T in GM/R gravitational field

T =
2GM
R3

∆R =
2c6∆R

G 2

1

M2
@ RS

Density of a Black Hole

ρ ∼ M
R3
S

=
c6

G 3

1

M2
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Spherical cosmological models

Motivation

1. A BH is nothing special if large enough: smooth crossing of RS , no
ripping apart

2. BH may be very empty, not at all dense object, if only large enough
3. Implies spherical symmetry!
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Metric

Lemâıtre(1933) - Tolman(1934) models (L-T models)
Bondi(1947)

ds2 = dt2 − X 2(r , t) dr2 − R2(r , t) dΩ2

dΩ2 = dϑ2 + sin2 ϑ dϕ2

X (r , t) =
∂rR(r , t)√
1− 2e(r)

, e(r) ≤ 1

2
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Spherical cosmological models

Metric

1. Diagonal
Spherically symmetric dependence on the angles
Radius R(r , t), to be determined
Independent function e(r), dimensionless, obvious constraints
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Lemâıtre(1933) - Tolman(1934) models (L-T models)
Bondi(1947)

ds2 = dt2 − X 2(r , t) dr2 − R2(r , t) dΩ2

dΩ2 = dϑ2 + sin2 ϑ dϕ2

X (r , t) =
∂rR(r , t)√
1− 2e(r)

, e(r) ≤ 1

2

c = 1, t(10 Ga) or t(3.07 Gpc)

Theorem t is a cosmic time all ‘comoving’ observers with r = r0,
ϑ = ϑ0 and ϕ = ϕ0 can agree on

r is shell label of shell with surface 4πR2(r , t)

radial distance between 2 shells is X∆r = ∂rR(r ,t)√
1−2e(r)

∆r
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Spherical cosmological models

Metric

1. Diagonal
Spherically symmetric dependence on the angles
Radius R(r , t), to be determined
Independent function e(r), dimensionless, obvious constraints

2. 2 of the 3 units to be chosen are relevant for metric: length and time
3. r has undetermined units (colour, whatever), label to a shell, by

definition
‘radius’ reserved to R because of the surface-relation
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Spherical cosmological models

• Only slide with explicit picture of the geometry

• Universe has a center C

Boundary: yellow spherical surface, general shell r : green spherical
surface

Observer O on a Z-axis

Orbital planes (green) through Z-axis

General point P in a orbital plane, with angle 0 ≤ OCP < 2π

Reference orbital plane, with 0 ≤ inclination angle (yellow) ≤ π

• Lines of sight: to center, and to anticenter

Universe looks the same in directions given by small circles
perpendicular to the Z-axis that form cones with circular symmetry

• Sequel: suppression of inclination angle, everything in one particular
orbital plane



2D metric

ds2 = dt2 − X 2(r , t) dr2 − R2(r , t) dϑ2
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Spherical cosmological models

2D metric

• Meridional cut: universe is the disk, with boundary the circle
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Spherical cosmological models

2D metric

• Meridional cut: universe is the disk, with boundary the circle

• Isometric representation of Robertson Walker (R-W) metric in 2D:
universe is the surface of a sphere (positive curvature)

• Isometric representations of spherical universes follow later!

• R-W universes are locally a special case of L-T universes

• Einstein equations determine the local geometry, not the global
topology



Dust density ρ(r , t)

κρ(r , t) =
4πG

c2
ρ(r , t) =

drm(r)

R2(r , t)∂rR(r , t)
≥ 0

m(r) has the dimension of length: geometrical mass

∂rR(r , t) ≥ 0 and drm(r) ≥ 0
r1 < r2 if and only if R(r1, t) < R(r2, t): ‘inside’ and ‘outside’

ρ(r , t) = 1.2
drm(r)

R2(r , t)∂rR(r , t)
× 10−26 kg m−3

critical density: 3Ho/(8πG ) equals 10−26 kg m−3

ρ(r , t)R2(r , t)∂rR(r , t) independent of t
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Spherical cosmological models

Dust density ρ(r , t)

Choice of the unit for mass density completes the choice of the units.

Note the ∂rR(r , t) in the denominator.



Mass function M(r)

volume element dV

dV (r ,ϕ,ϑ, t) =
R2(r , t)∂rR(r , t)√

1− 2e(r)
| sinϑ| dr dϕ dϑ

M(r) = 4π

∫ r

0

ρ(r ′, t)R2(r ′, t)∂rR(r ′, t)√
1− 2e(r ′)

dr ′

=
4π

κ

∫ r

0

dr ′m(r ′)√
1− 2e(r ′)

dr ′

the matter that constitutes the L-T model is comoving matter on
shells

M(r) � m(r)
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Spherical cosmological models

Mass function M(r)

• Volume element is the square root of the determinant of the metric

• Mass inside shell with label r is constant

• κ has dimension of length over mass



Boundary shell rb

Definition:

ρ(r) = 0, drm(r) = 0, drM(r) = 0 for r > rb

0 < rb ≤ +∞
Notations:

M = m(rb) is the total effective geometrical mass
Mtot =M(rb) is the total mass

Theorem
4π

κ
M <Mtot if e(r) ≥ 0

Mtot =
4π

κ

∫ rb

0

dr ′m(r ′)√
1− 2e(r ′)

dr ′
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Spherical cosmological models

Boundary shell rb



Time evolution

[
∂tR(r , t)

]2
= −2e(r) +

2m(r)

R(r , t)
+

1

3
Λ
[
R(r , t)

]2
1
2
V 2−GM(r)

r
=−e

m(r) is the effective gravitating (geometrical) mass function
e(r) is the energy function
rectilinear 2-body motion (degenerate ellipses)
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∂rR(r , t) > 0 is the no-collision condition
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Spherical cosmological models

Time evolution

1. The validity of the L-T metric is the spherical volume inside the
outermost massive shell (with label rb) and a time interval starting
just after the last collision at time [tc ]1 until the next collision at
time [tc ]2
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Spherical cosmological models

Time evolution

1. The validity of the L-T metric is the spherical volume inside the
outermost massive shell (with label rb) and a time interval starting
just after the last collision at time [tc ]1 until the next collision at
time [tc ]2

2. R(t) = R(rb, t) yields Friedmann equation



Solution of the time equation

R(r , t) = p(r) cyc
[
a(r), ε(r),ψ(r , t)

]
shell parameter p(r) =


m(r)

e(r)
ε(r) =

m(r)

|e(r)|
with ε(r) = sign

(
e(r)

)
2m(r) with ε(r) = 2e(r)

ω(r) =

√
2m(r)

p3(r)
a(r) =

1

3

Λ

ω2(r)
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Spherical cosmological models

Solution of the time equation

1. Fuzzy boundary for when the 2 definitions of p(r) apply
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1

3

Λ

ω2(r)

∫ R(r ,t)
p(r)

=cyc(a,ε,ψ)

0

√
cyc′ dcyc′√

1− ε(r)cyc′ + a(r)cyc′3
= ω(r)

[
t + φ(r)

]
= ψ(r , t)

φ(r) phase function
ψ(r , t) state of the shell with label r at cosmic time t
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Spherical cosmological models

Solution of the time equation

1. Fuzzy boundary for when the 2 definitions of p(r) apply
2. φ(r) is actually an integration constant as a function of t

We store the mathematical details of the (implicit) solution into
“cyc”, instead of carrying along the equation



The phase function φ(r)

R(r , t) = p(r) cyc
[
a(r), ε(r),ψ(r , t)

]
ψ(r , t) = ω(r)

[
t + φ(r)

]
is the state of the shell r

φ(r) is an integration constant (for every r)

if drφ(r) > 0, outer shells have a more evolved state than in the absence
of φ(r), mimicking an acceleration without the need for dark energy

Robertson-Walker: R(r , t) = pc r cyc(a, ε,ψ(t))

Iguchi, H., Nakamura, T. and Nakao, K. (2002). Is Dark Energy the Only
Solution to the Apparent Acceleration of the Present Universe? Progr.
Theor. Phys. 108, 809.
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Spherical cosmological models

The phase function φ(r)



1 Motivation

2 General properties (metric, dust content, time evolution, dark energy)

3 Connection with the mother universe (Novikov coordinates and
metric, definition of a universe inside a BH)

4 Geometrical properties (embedding surfaces, boundary, the 2 sheets)

5 Light (Hubble relation, magnitude redshift relation)

6 Mass ejection from a black hole

7 Mach’s principle and Newton’s second law
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Spherical cosmological models



Beyond the mass distribution

Notations
0 < P = p(rb) < +∞,

Rmax(t) = P cyc[a(rb), ε(rb),ψ(rb, t)]
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Beyond the mass distribution

R(r , t) = p(r) cyc[a(r), ε(r),ψ(r , t)]



Beyond the mass distribution

Notations
0 < P = p(rb) < +∞,

Rmax(t) = P cyc[a(rb), ε(rb),ψ(rb, t)]

Outside Rmax: Schwarzschild-Λ metric of the mother universe

ds2 =

(
1− 2M

R
−ΛR2

3

)
dt̄ 2 − dR2

1− 2M

R
−ΛR2

3

− R2dΩ2,

with coordinates (t̄,R,ϑ,ϕ)
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Beyond the mass distribution

R(r , t) = p(r) cyc[a(r), ε(r),ψ(r , t)]



Radial motion in Schwarzschild-Λ metric

RP(t) = P cyc

(
aP , sign(Λ),

√
2M

P3
t + ψ̄init

)

aP =
Λ

3

P3

2M
Ẽ 2
∞ = 1− sign(Λ)

2M

P

H. Dejonghe ( Astronomical Observatory Ghent University)Spherical cosmological models December 9, 2020 17 / 44

Radial motion in Schwarzschild-Λ metric

RP(t) = P cyc

(
aP , sign(Λ),

√
2M

P3
t + ψ̄init

)

aP =
Λ

3

P3

2M
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Spherical cosmological models

Radial motion in Schwarzschild-Λ metric

1. It is very significant that the same symbol t is used that we used in
the L-T metric: first link to spherical cosmology!

2. P and cyc are the second link to spherical cosmology!
3. The shell parameter P plays the role of a shell label: P(Ẽ∞)
4. The phase function re-appears: third link to spherical cosmology!
5. sign(0) = 1 and thus P ≥ 2M
6. RP(t) well defined during radial infall
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Spherical cosmological models

Novikov swarm

1.

RP(t) = P cyc

(
0, +1,

√
2M

P3
t +

π

2

)
Black curves: RP(t) for infalling shells, start @ Schwarzschild-Λ
radial velocity 0 for arbitrary R ≥ RS (black vertical line), at the
same t̄ which is otherwise undefined but equated to t = 0

2. t is common to all shells (proper time)
3. None of the black curves intersect
4. After t = π (green line) every radius R is covered by a black RP(t)

at any time t
5. Blue line: the relation between start radius RP(0) and shell label P.

In this case P = RP(0)
6. (t,P) can be regarded as new coordinates that are nowhere singular



Transition between Schwarzschild-Λ and Novikov

ds2 = dt2 −
[
∂PRP(t)

]2
1− sign(Λ)

2M

P

dP2 − R2
P(t) dΩ2,

Schwarzschild-Λ Novikov

t̄,R, Ω, dt̄R, dt̄Ω t,P, Ω, dtP, dtΩ

VX = dt̄R
V0(R) ,VY = R dt̄Ω√

V0(R)
VX = ∂PR(P,t)√

1−sign(Λ)(2M/P)
dtP,VY = R dtΩ

υ(t̄,R) = dt̄RP

V0(R) < 0 υ(t,P) = |dtRP |√
1−sign(Λ)(2M/P)

> 0

|υ| =

√
1− V0

Ẽ 2
∞
≤ 1

VX ,N =
VX ,S + |υ|

1 + |υ|VX ,S
VY,N = VY,S

√
1− υ2

1 + |υ|VX ,S
.
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Transition between Schwarzschild-Λ and Novikov

dtRp = ±
√
Ẽ 2
∞ − V0(R) Ẽ 2

∞ ≥ V0(R) where V0(R) ≥ 0



Universes inside a BH: summary of the metrics

Inner metric

ds2 = dt2 − (∂rR(r , t))2

1− 2e(r)
dr2 − R2(r , t) dΩ2

2m(rb) = 2M, R(r , t) = p(r)cyc(r , t), p(r) ≤p(rb) = P = 2M,

e(rb) =
1

2
, lim

r→rb

(∂rR(r , t))2

1− 2e(r)
= lim

r→rb
X 2(r , t) = +∞

Outer metric

ds2 =

(
1− 2M

R
−ΛR2

3

)
dt̄ 2 − dR2

1−2M/R−ΛR2/3
− R2dΩ2

ds2 = dt2 −
[
∂PR(P, t)

]2
1− sign(Λ) 2M/P

dP2 − R2(P, t) dΩ2, P >2M

Theorem

@ maximum expansion: Rmax(t) equals Schwarzschild radius RS

@ other cosmic times: spacetime between Rmax(t) and RS

no space created in the expansion
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Spherical cosmological models

Universes inside a BH: summary of the metrics

• The geometrical total mass of the universe M is equal to what is
normally called the mass of the black hole. The relation of that
mass to the total mass of the universe depends on its internal state.

• 0 ≤ p(r) ≤ 2M < P < +∞. The function p(r) plays the same
function as P. In case p(r) is monotonous, we could change shell
label r ′ = p.

• Λ is not explicitly present in the inner metric, nor in the Novikov
metric, but is present in R(r , t) and R(P, t)
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1 Motivation

2 General properties (metric, dust content, time evolution, dark energy)

3 Connection with the mother universe (Novikov coordinates and
metric, definition of a universe inside a BH)

4 Geometrical properties (embedding surfaces, boundary, the 2 sheets)

5 Light (Hubble relation, magnitude redshift relation)

6 Mass ejection from a black hole

7 Mach’s principle and Newton’s second law
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Embedding surfaces (1)

ds2 = dt2 − X 2(r , t) dr2 − R2(r , t) dϑ2

H. Dejonghe ( Astronomical Observatory Ghent University)Spherical cosmological models December 9, 2020 23 / 44

Embedding surfaces (1)

ds2 = dt2 − X 2(r , t) dr2 − R2(r , t) dϑ2
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Embedding surfaces (1)



Embedding surfaces (2)

ds2 = dt2 − X 2(r , t) dr2 − R2(r , t) dϑ2

X → +∞ for r → rb

Rises perpendicular out of the flat
plane
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Embedding surfaces (2)

ds2 = dt2 − X 2(r , t) dr2 − R2(r , t) dϑ2

X → +∞ for r → rb

Rises perpendicular out of the flat
plane
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Embedding surfaces (2)



Embedding surfaces (3)

ds2 = dt2 − X 2(r , t) dr2 − R2(r , t) dϑ2

X → +∞ for r → rb

Rises perpendicular out of the flat
plane (case of positive constant
curvature is shown)

X finite for all r

Blends smoothly into the flat plane
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Embedding surfaces (3)

ds2 = dt2 − X 2(r , t) dr2 − R2(r , t) dϑ2

X → +∞ for r → rb

Rises perpendicular out of the flat
plane (case of positive constant
curvature is shown)

X finite for all r
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Embedding surfaces (3)



Alternative definition of a universe

Theorem
Locally the 4-metric can be made Lorentz, everywhere
Be χ a shell label, and nowhere X (χ, t) = +∞, then the metric is the
metric of a universe if at the boundary ∂χ R(χ)|χ=χb

= 0

χ(r) =

∫ r

0

dr ′[
1− (r ′)2

]1−δ = r 2F1

(
1− δ,

1

2
;

3

2
; r2

)
Example: Robertson-Walker metric

ds2 = dt2 − [R(t)]2
[

dr2

1− r2
+ r2(dϑ2 + sin2 ϑ dϕ2)

]
r = | sinχ|, R(r , t) = R(t)| sinχ|, X (r , t) =

R(t)

| cosχ|

ds2 = dt2 − [R(t)]2
[
dχ2 + sin2 χ(dϑ2 + sin2 ϑ dϕ2)

]
,

∂χR(χ)|χ=π
2

= R(t)∂χ| sinχ||χ=π
2

= 0
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Alternative definition of a universe



Universes with 2 sheets (1)

Context: orbit integration. How do we elegantly deal with the singular
radial coefficient in the metric at the boundary?

r = 1− |ξ|1/δ − 1 ≤ ξ ≤ 1, δ−1 ≥ 2 εξ = sign(ξ)

1− r = |ξ|1/δ , |ξ| = (1− r)δ .

The disk 0 ≤ r ≤ 1 is covered by 2 sheets:

one for ξ ≥ 0, or εξ = +1

one for ξ ≤ 0, or εξ = −1

(follows from dξr = 0 @ ξ = 0).

Theorem

w = εξX ṙ , (with +∞× 0), is the Lorentzian radial velocity

equations of motion are regular in ξ at r = 1: ξ(p) ∼ p − pb, or
r(p) = 1− |p − pb|1/δ

in 2D universe, one passes, via the 1D circle r = 1, from one sheet to
the other
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Universes with 2 sheets (1)



Universes with 2 sheets (2)
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Universes with 2 sheets (2)

In de Robertson-Walker metric, the analogy of the boundary is the equator
of the sphere. Crossing the equator is passing to the lower hemisphere. The
surface of the 2D Robertson-Walker universe (right) is twice the surface
of our universes (left).

The surface of our 2D universe has 2 sides: the outer side of the sphere
and the inner side of the sphere. The Robertson-Walker sphere has only
an outer side.

Passing the boundary means passing from the outer side to the inner side,

or from ‘above the surface’ to ‘underneath the surface’. This is analogous

to a Möbius strip: no orientation.



Universes with 2 sheets (3)

x = r cosϑ
y = r sinϑ
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Universes with 2 sheets (3)

2D universe in (x , y) representation, with r2 = x2 + y2

16 orbits are shown, starting from the red place close to the boundary,

going off in 16 directions, outward and inward.



Universes with 2 sheets (4)
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Universes with 2 sheets (4)

The 7 orbits that start off in the outward direction, hit the boundary

somewhere (shown by changing the hue of the color, suggestive of being

on the plane or under the plane).



Universes with 2 sheets (4)
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Universes with 2 sheets (4)

The 7 orbits that start off in the outward direction, hit the boundary
somewhere (shown by changing the hue of the color, suggestive of being
on the plane or under the plane).

They keep their outward velocity:
w = εξX ṙ , (with +∞× 0), is the Lorentzian radial velocity

ṙ changes sign, but not w , because also εξ changes sign.



Universes with 2 sheets (4)
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Universes with 2 sheets (4)

The 7 orbits that start off in the outward direction, hit the boundary
somewhere (shown by changing the hue of the color, suggestive of being
on the plane or under the plane).

They keep their outward velocity:
w = εξX ṙ , (with +∞× 0), is the Lorentzian radial velocity
ṙ changes sign, but not w , because also εξ changes sign.

After touching the boundary, the traveler continues his/her journey, but

travels back into the interior of the universe and revisits the shells he/she

has come to leave. The traveler has never turned back, as he/she would

have done in an ordinary orbit at a turning point.



Gravitational mirror (1)
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Spherical cosmological models

Gravitational mirror (1)

1. Blue light travels ‘from left to right’, gradually being redshifted and
arriving at the red dot. Colors are qualitative.
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Spherical cosmological models

Gravitational mirror (1)

1. Blue light travels ‘from left to right’, gradually being redshifted and
arriving at the red dot. Colors are qualitative.

2. The 7 rays that start their journey in a light hue, ‘under the
surface’, have a brush with the boundary and appear ‘above the
surface’. They hit the red dot as an indirect image, since there is
always the direct image, via the 7 rays that start ‘above the surface’
at the intersection with one of the light-hued rays.
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Spherical cosmological models

Gravitational mirror (1)

1. Blue light travels ‘from left to right’, gradually being redshifted and
arriving at the red dot. Colors are qualitative.

2. The 7 rays that start their journey in a light hue, ‘under the
surface’, have a brush with the boundary and appear ‘above the
surface’. They hit the red dot as an indirect image, since there is
always the direct image, via the 7 rays that start ‘above the surface’
at the intersection with one of the light-hued rays.

3. The observer (the red dot) sees a direct image in the hemisphere of
the center, and a mirror image in the hemisphere of the anticenter,
but with different aspects and ages!
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Spherical cosmological models

Gravitational mirror (1)

1. Blue light travels ‘from left to right’, gradually being redshifted and
arriving at the red dot. Colors are qualitative.

2. The 7 rays that start their journey in a light hue, ‘under the
surface’, have a brush with the boundary and appear ‘above the
surface’. They hit the red dot as an indirect image, since there is
always the direct image, via the 7 rays that start ‘above the surface’
at the intersection with one of the light-hued rays.

3. The observer (the red dot) sees a direct image in the hemisphere of
the center, and a mirror image in the hemisphere of the anticenter,
but with different aspects and ages!

4. When approaching the boundary, most of the sky of the observer
will contain images of the hemisphere of the center, because there is
less and less ‘stuff’ between the observer and the boundary. At the
boundary, the sky of the hemisphere of the anticenter will be the
mirror of sky of the hemisphere of the center.



Gravitational mirror(2) : 3D schematic rendition
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Gravitational mirror(2) : 3D schematic rendition

1. The green frame represents the 2D boundary, acting as a mirror.
The green arrow is the direction towards the center.
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Gravitational mirror(2) : 3D schematic rendition

1. The green frame represents the 2D boundary, acting as a mirror.
The green arrow is the direction towards the center.

2. The black lines left from the mirror are real light paths. The 2
spinning balls on the left of the mirror are real balls. The left one
represents an observer, the right ball is the object. They have the
same spin.
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Gravitational mirror(2) : 3D schematic rendition

1. The green frame represents the 2D boundary, acting as a mirror.
The green arrow is the direction towards the center.

2. The black lines left from the mirror are real light paths. The 2
spinning balls on the left of the mirror are real balls. The left one
represents an observer, the right ball is the object. They have the
same spin.

3. The black lines right from the mirror are virtual light paths. The
spinning ball on the right of the mirror is the mirror image of the
object.
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Gravitational mirror(2) : 3D schematic rendition

1. The green frame represents the 2D boundary, acting as a mirror.
The green arrow is the direction towards the center.

2. The black lines left from the mirror are real light paths. The 2
spinning balls on the left of the mirror are real balls. The left one
represents an observer, the right ball is the object. They have the
same spin.

3. The black lines right from the mirror are virtual light paths. The
spinning ball on the right of the mirror is the mirror image of the
object.

4. Observer and mirror image have opposite spin. If the observer sets
out to travel to the mirror image, he will arrive at it (he travels
‘through’ the mirror, his outward velocity does not change), but will
find himself at the real object, since he followed the light path.
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Gravitational mirror(2) : 3D schematic rendition

1. The green frame represents the 2D boundary, acting as a mirror.
The green arrow is the direction towards the center.

2. The black lines left from the mirror are real light paths. The 2
spinning balls on the left of the mirror are real balls. The left one
represents an observer, the right ball is the object. They have the
same spin.

3. The black lines right from the mirror are virtual light paths. The
spinning ball on the right of the mirror is the mirror image of the
object.

4. Observer and mirror image have opposite spin. If the observer sets
out to travel to the mirror image, he will arrive at it (he travels
‘through’ the mirror, his outward velocity does not change), but will
find himself at the real object, since he followed the light path.

5. The observer does not know that he is traveling towards a mirror
image. For him, object and mirror image are both real and different
things he can choose to travel to.
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Gravitational mirror(3) : moving object

1. Stationary observer O, same spin as S at 1. S follows light path
that will bring it to O.
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Gravitational mirror(3) : moving object

1. Stationary observer O, same spin as S at 1. S follows light path
that will bring it to O.

2. O sees 2 images, S1 and S ′1. He/she does not connect them,
because of opposite spin, different aspect ratio and different light
travel time. S1 will pass by, in his/her perception, while S ′1 is on a
crash course.
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Gravitational mirror(3) : moving object

1. Stationary observer O, same spin as S at 1. S follows light path
that will bring it to O.

2. O sees 2 images, S1 and S ′1. He/she does not connect them,
because of opposite spin, different aspect ratio and different light
travel time. S1 will pass by, in his/her perception, while S ′1 is on a
crash course.

3. Upon arrival at the mirror, S flips spin for O, turns an additional
90◦ clockwise for O and continues its crash course towards point 2.
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Gravitational mirror(3) : moving object

1. Stationary observer O, same spin as S at 1. S follows light path
that will bring it to O.

2. O sees 2 images, S1 and S ′1. He/she does not connect them,
because of opposite spin, different aspect ratio and different light
travel time. S1 will pass by, in his/her perception, while S ′1 is on a
crash course.

3. Upon arrival at the mirror, S flips spin for O, turns an additional
90◦ clockwise for O and continues its crash course towards point 2.

4. O has the direct image of S now at S2, in the direction of S ′1. O
doesn’t know about a mirror, and continues to believe that S ′1 is on
its crash course. No spin flip. S1 on the other hand passes by
towards S ′2. No spin flip. O sees two ordinary straight orbits.
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Gravitational mirror(3) : moving object

1. Stationary observer O, same spin as S at 1. S follows light path
that will bring it to O.

2. O sees 2 images, S1 and S ′1. He/she does not connect them,
because of opposite spin, different aspect ratio and different light
travel time. S1 will pass by, in his/her perception, while S ′1 is on a
crash course.

3. Upon arrival at the mirror, S flips spin for O, turns an additional
90◦ clockwise for O and continues its crash course towards point 2.

4. O has the direct image of S now at S2, in the direction of S ′1. O
doesn’t know about a mirror, and continues to believe that S ′1 is on
its crash course. No spin flip. S1 on the other hand passes by
towards S ′2. No spin flip. O sees two ordinary straight orbits.

5. In the case of a mirror, there is no spin flip, and O must conclude
that there was a mirror, a reflection, and virtual images S ′1 and S ′2.
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Gravitational mirror(3) : moving object

1. Stationary observer O, same spin as S at 1. S follows light path
that will bring it to O.

2. O sees 2 images, S1 and S ′1. He/she does not connect them,
because of opposite spin, different aspect ratio and different light
travel time. S1 will pass by, in his/her perception, while S ′1 is on a
crash course.

3. Upon arrival at the mirror, S flips spin for O, turns an additional
90◦ clockwise for O and continues its crash course towards point 2.

4. O has the direct image of S now at S2, in the direction of S ′1. O
doesn’t know about a mirror, and continues to believe that S ′1 is on
its crash course. No spin flip. S1 on the other hand passes by
towards S ′2. No spin flip. O sees two ordinary straight orbits.

5. In the case of a mirror, there is no spin flip, and O must conclude
that there was a mirror, a reflection, and virtual images S ′1 and S ′2.

6. The gravitational mirror only manifests itself by the virtual collision
at the mirror.
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Gravitational mirror(4) : the local sky

1. Shows the orbital plane, observer O, horizon in blue. Directions to
the center C and anticenter C ′ indicated. There is rotational
symmetry around rotation axis CC ′.
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Gravitational mirror(4) : the local sky

1. Shows the orbital plane, observer O, horizon in blue. Directions to
the center C and anticenter C ′ indicated. There is rotational
symmetry around rotation axis CC ′.

2. O spins counterclockwise (pointer rotates), spin vector
perpendicular to the plane.
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Gravitational mirror(4) : the local sky

1. Shows the orbital plane, observer O, horizon in blue. Directions to
the center C and anticenter C ′ indicated. There is rotational
symmetry around rotation axis CC ′.

2. O spins counterclockwise (pointer rotates), spin vector
perpendicular to the plane.

3. Spin determination convention with respect to the universe:
counterclockwise if pointer encounters first A and then B, clockwise
if pointer encounters first B and then A
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Gravitational mirror(4) : the local sky

1. Shows the orbital plane, observer O, horizon in blue. Directions to
the center C and anticenter C ′ indicated. There is rotational
symmetry around rotation axis CC ′.

2. O spins counterclockwise (pointer rotates), spin vector
perpendicular to the plane.

3. Spin determination convention with respect to the universe:
counterclockwise if pointer encounters first A and then B, clockwise
if pointer encounters first B and then A

4. At the boundary (green line, with rotational symmetry a plane), the
hemisphere of C ′ is the mirror of the hemisphere of C . Thus also A′

and B ′ mirror A and B. The observer cannot tell which is the direct
or the mirror image. If he/she chooses A′ and B ′, he/she is spinning
clockwise by convention!
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Gravitational mirror(4) : the local sky

1. Shows the orbital plane, observer O, horizon in blue. Directions to
the center C and anticenter C ′ indicated. There is rotational
symmetry around rotation axis CC ′.

2. O spins counterclockwise (pointer rotates), spin vector
perpendicular to the plane.

3. Spin determination convention with respect to the universe:
counterclockwise if pointer encounters first A and then B, clockwise
if pointer encounters first B and then A

4. At the boundary (green line, with rotational symmetry a plane), the
hemisphere of C ′ is the mirror of the hemisphere of C . Thus also A′

and B ′ mirror A and B. The observer cannot tell which is the direct
or the mirror image. If he/she chooses A′ and B ′, he/she is spinning
clockwise by convention!

5. O ‘flies into the primed universe’, and will find him/herself spinning
clockwise with respect to the universe. O never flipped spin! At the
boundary his/her spin is undefined with respect to the universe.



1 Motivation

2 General properties (metric, dust content, time evolution, dark energy)

3 Connection with the mother universe (Novikov coordinates and
metric, definition of a universe inside a BH)

4 Geometrical properties (embedding surfaces, boundary, the 2 sheets)

5 Light (Hubble relation, magnitude redshift relation)

6 Mass ejection from a black hole

7 Mach’s principle and Newton’s second law
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Redshift and photometry (1)

z =
[
Ho sin2 θo + Io cos2 θo

]
` =

[
Ho + (Io − Ho) cos2 θo

]
`

Ht = − R∂2
t R

(∂tR)2
= − ∂

2
t R

RH2
= q I t = − X∂2

t X

(∂tX )2
= −∂

2
t X

XI 2

H rt =
∂rR

R
− ∂2

rtR

∂tR
I rt =

∂rX

X
− ∂2

rtX

∂tX
.

m
(mag)
Xo

(to, ro, z) = 5 log10(3.066) + 40 + M
(mag)
Xe

(te, re)−
−5 log10

[
Io cos2 θo + Ho sin2 θo

]
+

+5 log10 z +
5

ln10
Ẽ−1

1,o

(
Ẽ ′2,oẼ

−1
1, o − Ẽ11,o

)
z

H. Dejonghe ( Astronomical Observatory Ghent University)Spherical cosmological models December 9, 2020 36 / 44

Redshift and photometry (1)

z =
[
Ho sin2 θo + Io cos2 θo

]
` =

[
Ho + (Io − Ho) cos2 θo

]
`

Ht = − R∂2
t R

(∂tR)2
= − ∂

2
t R

RH2
= q I t = − X∂2

t X

(∂tX )2
= −∂

2
t X

XI 2

H rt =
∂rR

R
− ∂2

rtR

∂tR
I rt =

∂rX

X
− ∂2

rtX

∂tX
.

m
(mag)
Xo

(to, ro, z) = 5 log10(3.066) + 40 + M
(mag)
Xe

(te, re)−
−5 log10

[
Io cos2 θo + Ho sin2 θo

]
+

+5 log10 z +
5

ln10
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Redshift and photometry (1)

Tangential Hubble parameter, and radial Hubble parameter in the Hubble
law

Instead of q, 3 more parameters



Redshift and photometry (2)
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Redshift and photometry (2)



1 Motivation

2 General properties (metric, dust content, time evolution, dark energy)

3 Connection with the mother universe (Novikov coordinates and
metric, definition of a universe inside a BH)

4 Geometrical properties (embedding surfaces, boundary, the 2 sheets)

5 Light (Hubble relation, magnitude redshift relation)

6 Mass ejection from a black hole

7 Mach’s principle and Newton’s second law
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Mass ejection from a BH

X (rb, t) =
∂rR(rb, t)√
1− 2e(rb)

=
0

0
and finite: dust ball
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Spherical cosmological models

Mass ejection from a BH

Until now, the no-collision condition ∂rR(rb, t) > 0 was assumed.
The magnitude of X (rb, t) is undefined (de l’Hôpital).



Mass ejection from a BH
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and finite: dust ball

Condition

shells collide @ rb at maximum expansion (when universe touches RS)
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Spherical cosmological models

Mass ejection from a BH

Until now, the no-collision condition ∂rR(rb, t) > 0 was assumed.
The magnitude of X (rb, t) is undefined (de l’Hôpital).

At maximum expansion: the region between the boundary of the universe

and RS is a one way inward motion space-time region.



Mass ejection from a BH

X (rb, t) =
∂rR(rb, t)√
1− 2e(rb)

=
0

0
and finite: dust ball

Condition

shells collide @ rb at maximum expansion (when universe touches RS)

ds2 =

(
1− 2mρ

ρ2 + a2 cos2 θ

)
c2 dt2 − ρ2 + a2 cos2 θ

ρ2 + a2 − 2mρ
dρ2

− (ρ2 + a2 cos2 θ)dθ2 −
[

(ρ2 + a2) sin2 θ +
2mρa2 sin4 θ

ρ2 + a2 cos2 θ

]
dϕ2

− 2
2mρa sin2 θ

ρ2 + a2 cos2 θ
c dt dϕ

(Kerr solution, Boyer and Lindqvist form)
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(
1− 2mρ

ρ2 + a2 cos2 θ

)
c2 dt2 − ρ2 + a2 cos2 θ

ρ2 + a2 − 2mρ
dρ2

− (ρ2 + a2 cos2 θ)dθ2 −
[

(ρ2 + a2) sin2 θ +
2mρa2 sin4 θ

ρ2 + a2 cos2 θ

]
dϕ2

− 2
2mρa sin2 θ

ρ2 + a2 cos2 θ
c dt dϕ

(Kerr solution, Boyer and Lindqvist form)
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Mass ejection from a BH

Until now, the no-collision condition ∂rR(rb, t) > 0 was assumed.
The magnitude of X (rb, t) is undefined (de l’Hôpital).

At maximum expansion: the region between the boundary of the universe
and RS is a one way inward motion space-time region.

Material leaving the BH at the poles will have to overcome a gravitational

well commensurate with the magnitude of X (rb, t). The larger X (rb, t),

the more they will have lost kinetic energy and the more they will be

redshifted.



Anomalous redshifts: NGC 3516

Seyfert Galaxy NGC 3516 @ z=0.009
H. Arp in “Current issues in cosmology”, ed. J.-C. Pecker & J. Narlikar, 2006, Cambridge Univ. Press
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Anomalous redshifts: NGC 3516



1 Motivation

2 General properties (metric, dust content, time evolution, dark energy)

3 Connection with the mother universe (Novikov coordinates and
metric, definition of a universe inside a BH)

4 Geometrical properties (embedding surfaces, boundary, the 2 sheets)

5 Light (Hubble relation, magnitude redshift relation)

6 Mass ejection from a black hole

7 Mach’s principle and Newton’s second law
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Mach’s principle and Newton’s second law (1)
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Mach’s principle and Newton’s second law (1)

Gottfried Wilhelm Leibniz (1646-1716) and Isaac Newton (1642-1727)
Ernst Mach (1838-1916)

Inertial forces are proportional to mass, but is inertial mass the same mass

as gravitational mass?



Mach’s principle and Newton’s second law (1)

m is at rest between 2 springs: comoving body
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Mach’s principle and Newton’s second law (1)

Gottfried Wilhelm Leibniz (1646-1716) and Isaac Newton (1642-1727)
Ernst Mach (1838-1916)

Inertial forces are proportional to mass, but is inertial mass the same mass

as gravitational mass?



Mach’s principle and Newton’s second law (1)

m is at rest between 2 springs: comoving body

F = mG

∫
(4πG )

ρ

(4πr2)
r2 dr

∫ π/2

−π/2
| sin θ| cos θ dθ

∫ π

0
dφ
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Mach’s principle and Newton’s second law (1)

Gottfried Wilhelm Leibniz (1646-1716) and Isaac Newton (1642-1727)
Ernst Mach (1838-1916)

Inertial forces are proportional to mass, but is inertial mass the same mass

as gravitational mass?



Mach’s principle and Newton’s second law (1)

m is at rest between 2 springs: comoving body

F = mG

∫
(4πG )

ρ

(4πr2)
r2 dr

∫ π/2

−π/2
| sin θ| cos θ dθ

∫ π

0
dφ

ds2 = dt2 − [R(t)]2
[
dχ2 + sin2 χ(dϑ2 + sin2 ϑ dϕ2)

]
,

F (t,χ,ϑ,ϕ) =
GmG

2R2(t)

∫
sin2 χ′ dχ′

∫ π
2

−π
2

dϑ′| sinϑ′| cosϑ′ ×

× ρ[t ′(χ′′)]R3[t ′(χ′′)])

sin2[χ′′(χ,ϑ,χ′,ϑ′)]
.
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Mach’s principle and Newton’s second law (1)

Gottfried Wilhelm Leibniz (1646-1716) and Isaac Newton (1642-1727)
Ernst Mach (1838-1916)

Inertial forces are proportional to mass, but is inertial mass the same mass

as gravitational mass?



Mach’s principle and Newton’s second law (2)

F (t) =
GmGπ

2R2(t)

ρ

ω3

∫
dχ′′.

F (t) =
GmGπ

2

2R2(t)

ρ

ω3

t

tb
, 0 ≤ t ≤ tb tb = πM χ = π
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Mach’s principle and Newton’s second law (2)

Result for closed universe and Λ = 0. One full expansion or one full
contraction yields χ = π in timespan πM(t)/c . The horizon is twice the
universe: every object produces 2 images within timespan tb.
Once an object comes ‘in sight’, it remains ‘in sight’. Images accumulate
as time passes.

Force is proportional to ‘age t’ of universe and inversely proportional to

the square of its size. Age t must be large in order to assure isotropy in

F (t) since isotropy requires many images.



Mach’s principle and Newton’s second law (2)

F (t) =
GmGπ

2R2(t)

ρ

ω3

∫
dχ′′.

F (t) =
GmGπ

2

2R2(t)

ρ

ω3

t

tb
, 0 ≤ t ≤ tb tb = πM χ = π

ρ ∼ M
R3
S

∼ c6

G 3

1

M2
∼ c2

GM2
ω =

1

2M

F (t) = mG ×
3

8

c2

R2(t)
t = mG ×

3

8

c2

[2M(t)cyc(t)]2
t
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Mach’s principle and Newton’s second law (2)

Result for closed universe and Λ = 0. One full expansion or one full
contraction yields χ = π in timespan πM(t)/c . The horizon is twice the
universe: every object produces 2 images within timespan tb.
Once an object comes ‘in sight’, it remains ‘in sight’. Images accumulate
as time passes.

Force is proportional to ‘age t’ of universe and inversely proportional to

the square of its size. Age t must be large in order to assure isotropy in

F (t) since isotropy requires many images.
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F (t) = mG × 3.57× 10−10 A(10 Ga)[
R(t)(3 Gpc)

]2 m/s2
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Mach’s principle and Newton’s second law (2)

Result for closed universe and Λ = 0. One full expansion or one full
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universe: every object produces 2 images within timespan tb.
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A(10 Ga) m/s2
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Mach’s principle and Newton’s second law (2)

Result for closed universe and Λ = 0. One full expansion or one full
contraction yields χ = π in timespan πM(t)/c . The horizon is twice the
universe: every object produces 2 images within timespan tb.
Once an object comes ‘in sight’, it remains ‘in sight’. Images accumulate
as time passes.

Force is proportional to ‘age t’ of universe and inversely proportional to
the square of its size. Age t must be large in order to assure isotropy in
F (t) since isotropy requires many images.

The Hubble parameter provides a useful constraint, eliminating R(t) in
favor of M(t).

In the past, the inertial force must have been huge.



Wrap up

Our universe is the interior of a BH in another ‘mother’ universe

BHs in our universe are embryonic universes

No need for a big bang of creation

No need for dark energy

Gravitational mirror

Arp et.al. were partly right

Mach’s principle and Newton’s second law can be made explicit

Gravitational mass and inertial mass are proportional / the same
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Wrap up


