A formulation to study formation of Bose-Einstein condensation in cosmology at the level of particle physics processes

Kemal Gültekin

Department of Physics Izmir Institute of Technology

Progress on Old and New Themes in cosmology (PONT) 2020 December 09, 2020

∧CDM and alternatives

Observations based on Λ CDM:

The present fluid content of the universe

$$\Omega_{rad} \sim 8 \times 10^{-5}$$
, $\Omega_{mat}^{\text{Baryonic}} \sim 0.04$, $\Omega_{mat}^{\text{Dark}} \sim 0.23$, $\Omega_{\Lambda} \sim 0.72$

• Λ - problem :

The big difference $\sim 10^{123}$ between the particle theory and the observations.

CDM - problem :

The simulations based on Λ CDM differ from the observations at small scales.

Alternative scalar field models : $X \longrightarrow \phi$ and $\mathcal{C}PM \longrightarrow \mathsf{SFDM}$

• Quintessence, k-essence models, etc., where it is assumed that $\phi = \phi(t)$.

∧CDM and alternatives

BEC scalar field :

Based on the relativistic GP equation:

$$\mathcal{L}_{\phi} = -g^{\mu\nu}\partial_{\mu}\phi^{\star}\partial_{\nu}\phi - m^{2}|\phi|^{2} - \frac{\lambda}{2}|\phi|^{4}, \quad (1)$$

where it is naturally provided that $\phi = \phi(t)$.

Aim : Formation of BEC scalar field in cosmology with particular emphasis on its microscopic description in particle physics

Aim : Formation of BEC scalar field in cosmology with particular emphasis on its microscopic description in particle physics

The metric:

$$ds^{2} = -dt^{2} + a^{2}(t)[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})]$$
 (2)

The action:

$$S = \int \sqrt{-g} d^4x \frac{1}{2} \left\{ -g_{\mu\nu} [\partial_{\mu}\phi \partial_{\nu}\phi + \partial_{\mu}\chi \partial_{\nu}\chi] - m_{\phi}^2 \phi^2 - m_{\chi}^2 \chi^2 - \mu \phi^2 \chi \right\}$$
 (3)

$$= \int d^3x d\eta \frac{1}{2} \{ \tilde{\phi}'^2 - (\vec{\nabla}\tilde{\phi})^2 + \tilde{\chi}'^2 - (\vec{\nabla}\tilde{\chi})^2 - \tilde{m}_{\phi}^2 \tilde{\phi}^2 - \tilde{m}_{\chi}^2 \tilde{\chi}^2 - \tilde{\mu}\tilde{\phi}^2 \tilde{\chi} \}$$
 (4)

with the following expressions

$$d\eta = \frac{dt}{a(t)}, \quad \tilde{\phi} = a\phi, \quad \tilde{\chi} = a\chi, \quad a' = \frac{da}{d\eta}, \quad \dot{a} = \frac{da}{dt}, \quad a'' = \frac{d^2a}{d\eta^2}, \quad \ddot{a} = \frac{d^2a}{dt^2},$$

$$\tilde{\mu} = a\mu, \quad \tilde{m}_i^2 = m_i^2 a^2 - \frac{a''}{a} = a^2 \left(m_i^2 - \frac{\ddot{a}}{a} - \frac{\dot{a}^2}{a^2} \right), \tag{5}$$

where the subscript *i* takes the values, $i = \phi, \chi$.

Introducing an effective Minkowski formulation would be useful to make use of the techniques and the relative simplicity of the usual (flat) Minkowski space quantum field theory

- We get rid of the contributions of gravitational particle production to transition amplitudes so that we may more easily identify the transition amplitudes that are directly due to particle physics processes.
- Calculation of transition amplitudes and cross sections are easier.
- Interpretation of the results are easier.

$$\phi^2 \chi: \quad \chi \chi \to \phi \phi \quad \text{in} \quad \triangle t = \frac{1}{n_\chi \beta \sigma \nu} \quad \text{with} \quad \tilde{m}_\chi \ll \tilde{m}_\phi.$$

The leading order contributions to the production of ϕ particles :

Figure 1. The leading order Feynman diagrams that may contribute to the production of ϕ particles. Here $\tilde{q}_t = \tilde{p}_1 - \tilde{p}_3 = \tilde{p}_4 - \tilde{p}_2$, $\tilde{q}_u = \tilde{p}_1 - \tilde{p}_4 = \tilde{p}_3 - \tilde{p}_2$ are the 4-momenta carried in the internal lines. Note that the s-channel is forbidden in this case by kinematics.

<u>Two conditions</u> during each process $\chi\chi\to\phi\phi$:

$$\left|\frac{\triangle \tilde{m}^2}{\tilde{m}^2}\right| = \left|\frac{\triangle t \left(\frac{da^2(m^2 - \dot{H} - 2H^2)}{dt}\right)}{a^2(m^2 - \dot{H} - 2H^2)}\right| \ll 1 \quad \text{and} \quad \left|\frac{\triangle \tilde{\mu}}{\tilde{\mu}}\right| = |H\triangle t| \ll 1 \quad (6)$$

They are satisfied for a considerable range of parameters by letting $H = \xi a^{-s}$.

<u>Two conditions</u> during each process $\chi\chi\to\phi\phi$:

$$\left|\frac{\triangle \tilde{m}^2}{\tilde{m}^2}\right| = \left|\frac{\triangle t \left(\frac{da^2(m^2 - \dot{H} - 2H^2)}{dt}\right)}{a^2(m^2 - \dot{H} - 2H^2)}\right| \ll 1 \quad \text{and} \quad \left|\frac{\triangle \tilde{\mu}}{\tilde{\mu}}\right| = |H\triangle t| \ll 1 \quad (6)$$

They are satisfied for a considerable range of parameters by letting $H = \xi a^{-s}$.

The quantization of any field χ during each $\chi\chi\to\phi\phi$:

$$ilde{\chi}^{(i)}(ec{r},\eta) \simeq \int rac{d^3 ilde{p}}{(2\pi)^{rac{3}{2}}\sqrt{2w_p^{(i)}}} igg[a_p^{(i)-} e^{i\left(ec{p}.ec{r}-w_p^{(i)}(\eta-\eta_i)
ight)} + a_p^{(i)+} e^{i\left(-ec{p}.ec{r}+w_p^{(i)}(\eta-\eta_i)
ight)} igg],$$

where $\eta_i < \eta < \eta_{i+1}$, (i): ith time interval between the ith and (i+1)th processes.

<u>Two conditions</u> during each process $\chi\chi\to\phi\phi$:

$$\left|\frac{\triangle \tilde{m}^2}{\tilde{m}^2}\right| = \left|\frac{\triangle t \left(\frac{da^2(m^2 - \dot{H} - 2H^2)}{dt}\right)}{a^2(m^2 - \dot{H} - 2H^2)}\right| \ll 1 \quad \text{and} \quad \left|\frac{\triangle \tilde{\mu}}{\tilde{\mu}}\right| = |H\triangle t| \ll 1 \quad (6)$$

They are satisfied for a considerable range of parameters by letting $H = \xi a^{-s}$.

The quantization of any field χ during each $\chi\chi\to\phi\phi$:

$$ilde{\chi}^{(i)}(ec{r},\eta) \simeq \int rac{d^3 ilde{p}}{(2\pi)^{rac{3}{2}}\sqrt{2w_p^{(i)}}} igg[a_p^{(i)-} e^{i\left(ec{p}.ec{r}-w_p^{(i)}(\eta-\eta_i)
ight)} + a_p^{(i)+} e^{i\left(-ec{p}.ec{r}+w_p^{(i)}(\eta-\eta_i)
ight)} igg],$$

where $\eta_i < \eta < \eta_{i+1}$, (i): ith time interval between the ith and (i+1)th processes.

By these requirements, we get the effective Minkowski space

$$d\tilde{s}^2 = -d\eta^2 + d\tilde{x}_1^2 + d\tilde{x}_2^2 + d\tilde{x}_3^2 \tag{7}$$

during each process $\chi\chi \to \phi\phi$.

In the center of mass frame : $\ \vec{\tilde{p}}^2 + \tilde{m}_\chi^2 = \vec{\tilde{k}}^2 + \tilde{m}_\phi^2 \ \ \text{for each } \chi\chi \to \phi\phi$

$$\implies \quad \vec{\tilde{p}}^2 - \vec{\tilde{k}}^2 = a^2 (m_{\phi}^2 - m_{\chi}^2) \ . \tag{8}$$

In the center of mass frame : $\ \vec{\tilde{p}}^2 + \tilde{m}_\chi^2 = \vec{\tilde{k}}^2 + \tilde{m}_\phi^2$ for each $\chi\chi \to \phi\phi$

$$\implies \quad \vec{\tilde{p}}^2 - \vec{\tilde{k}}^2 = a^2 (m_\phi^2 - m_\chi^2) \ . \tag{8}$$

Note that $|\vec{\tilde{p}}| = a|\vec{p}| \propto a \frac{1}{a} = \text{constant}$:

- (i) For a process $\chi\chi\to\phi\phi$ in $\triangle t_1$, a_1 : constant
- (ii) For another process $\chi\chi\to\phi\phi$ in $\triangle t_2>\triangle t_1$, $a_2:$ constant $>a_1$
- (iii) So on...

$$\Longrightarrow$$
 For a given $|\vec{\hat{p}}|, |\vec{\hat{k}}| \to 0$ by increasement of $a(t)$

⇒ The curved space effect on condensation is provided by increasement of a(t)

The evolution of the distribution function for ϕ particles :

$$\frac{d\tilde{f}(\vec{p_4},\eta)}{d\eta} = \frac{1}{32(2\pi)^5 \tilde{E}_4} \int \int \int \delta^{(4)}(\tilde{p_1} + \tilde{p_2} - \tilde{p_3} - \tilde{p_4}) |\tilde{M}|^2
\times \{\tilde{f}_1 \tilde{f}_2 (1 + \tilde{f}_3) (1 + \tilde{f}_4) - \tilde{f}_3 \tilde{f}_4 (1 + \tilde{f}_1) (1 + \tilde{f}_2)\} \frac{d^3 \vec{p_1}}{\tilde{E}_1} \frac{d^3 \vec{p_2}}{\tilde{E}_2} \frac{d^3 \vec{p_3}}{\tilde{E}_3}.$$
(9)

The evolution of the distribution function for ϕ particles :

$$\frac{d\tilde{f}(\vec{p_4}, \eta)}{d\eta} = \frac{1}{32(2\pi)^5 \tilde{E}_4} \int \int \int \delta^{(4)}(\tilde{p_1} + \tilde{p_2} - \tilde{p_3} - \tilde{p_4}) |\tilde{M}|^2
\times \{\tilde{f}_1 \tilde{f}_2 (1 + \tilde{f}_3) (1 + \tilde{f}_4) - \tilde{f}_3 \tilde{f}_4 (1 + \tilde{f}_1) (1 + \tilde{f}_2)\} \frac{d^3 \vec{p_1}}{\tilde{E}_1} \frac{d^3 \vec{p_2}}{\tilde{E}_2} \frac{d^3 \vec{p_3}}{\tilde{E}_3}.$$
(9)

Our assumptions:

- We consider initial times of $\chi\chi \to \phi\phi \implies \tilde{f}^{(f)}(\vec{p_i},\eta) \simeq 0$ with j=3,4.
- $\bullet \ 0 \leq |\vec{\vec{p}}|_{\mathrm{min}} = \sqrt{\tilde{m}_{\phi}^2 \tilde{m}_{\chi}^2} < |\vec{\vec{p}}| < |\vec{\vec{p}}|_{\mathrm{max}} = \sqrt{\tilde{k}_{\mathrm{max}}^2 + \tilde{m}_{\phi}^2 \tilde{m}_{\chi}^2}.$

The spatial distributions of χ particles in this range are homogeneous and isotropic. $\tilde{n}_{\chi}(\eta) = \int d^3\tilde{p}\tilde{f}^{(i)}(\vec{\tilde{p}},\eta)$:

$$\implies \frac{d\tilde{f}^{(f)}(\vec{\tilde{p}}_{4},\eta)}{d\eta} \simeq \tilde{n}_{\chi}^{2} \frac{\delta(\sqrt{\frac{1}{4}}\vec{\tilde{p}}_{4}^{2} + \tilde{m}_{\phi}^{2} - \tilde{m}_{\chi}^{2} - \sqrt{\tilde{m}_{\phi}^{2} - \tilde{m}_{\chi}^{2}})}{(\sqrt{\frac{1}{4}}\vec{\tilde{p}}_{4}^{2} + \tilde{m}_{\phi}^{2} - \tilde{m}_{\chi}^{2}} - \sqrt{\tilde{m}_{\phi}^{2} - \tilde{m}_{\chi}^{2}})} \mathcal{B}(|\vec{\tilde{p}}_{4}|)$$

$$\implies |\vec{\tilde{p}}_4| \rightarrow 0 \implies$$
 Coherence and Correlation $(\lambda \gg n_{\phi}^{-1/3})$

The curved space effect on the number density n_{ϕ} :

Using $\tilde{n}=\int \tilde{f}d^3\tilde{p}$ and $\tilde{f}^{(f)}(\tilde{p_j},\eta)\simeq 0$ with j=3,4 in the Eq.(9), we get

$$\frac{d\tilde{\eta}_4(\eta)}{d\eta} = \tilde{\beta}\tilde{n}_1\tilde{n}_2\tilde{\sigma}\tilde{v}.\tag{11}$$

The curved space effect on the number density n_{ϕ} :

Using $\tilde{n}=\int \tilde{f}d^3\tilde{p}$ and $\tilde{f}^{(f)}(\vec{p_j},\eta)\simeq 0$ with j=3,4 in the Eq.(9), we get

$$\frac{d\tilde{\eta}_4(\eta)}{d\eta} = \tilde{\beta}\tilde{n}_1\tilde{n}_2\tilde{\sigma}\tilde{v}.\tag{11}$$

Since $\tilde{n}_i = a^3 n_i$, $\tilde{\sigma} = \sigma_0 a^{-1}$, $|\vec{\tilde{v}}| = v_0$, $n_i(t) = \frac{C_i(t)}{a^3(t)}$, $H = \xi a^{-s}$, we get

$$C_{\phi} \simeq \frac{C_1 \beta \sigma_0 v_0}{(|s-2|)\xi} a^{|s-2|} \left[1 - \left(\frac{a_1}{a} \right)^{|s-2|} \right] \quad \text{for} \quad s-2 > 0 ,$$
 (12)

$$C_{\phi} \simeq \frac{C_1 \beta \sigma_0 v_0}{(|s-2|)\xi} a_1^{-|s-2|} \left[1 - \left(\frac{a_1}{a} \right)^{|s-2|} \right] \quad \text{for} \quad s-2 < 0 \ .$$
 (13)

At initial times C_{ϕ} reaches higher values with the increasement of a for s < 2 and it grows faster for s > 2 \Longrightarrow Macroscopic nature of BEC is realized.

Conclusion

- Effective Minkowski space formulation seems to be useful formalism to study particle physics processes in curved space-time provided that some conditions are satisfied, e.g. in the study of BEC for FRW metric.
- By using the effective Minkowski space formulation we have shown that curved space effects for FRW metric promote the formation of BEC scalar field in some simple models.
- A separate study is needed when $\ \tilde{f}^{(f)}(\vec{\tilde{p_j}},\eta) \neq 0$ with j=3,4.

Thank you

Kemal Gültekin

For more details:

R. Erdem and K. Gültekin,

A mechanism for formation of Bose-Einstein condensation in cosmology, arXiv :1908.08784 [gr-qc]

(JCAP 10 (2019), 061)