Cosmological constraints on multi-interacting dark matter

Deanna C. Hooper

Based on Becker, **DCH**, Kahlhoefer, Lesgourgues, Schöneberg (2010.04074)

PONT 2020 10th December 2020

Why interacting DM?

- The standard cosmological paradigm has several issues: small scale crisis, H₀ and S₀ tensions, EDGES anomaly
- Many alternatives to cold dark matter have been proposed to solve these, such as interacting dark matter
- Each type of interaction can provide different benefits
- We want to see if we can combine these effects
- We have implemented dark matter with multiple possible interaction channels in CLASS

DM - baryon interactions

- We have implemented DM baryon interactions with a power-law dependence on the relative bulk velocity (*Dvorkin et al. 1311.2937, Muñoz et al. 1509.00029, Slatyer et al. 1803.09734*)
- DM and baryons are assumed to be non-relativistic ($m_{\rm DM} \geq 1$ MeV), and following a Maxwell velocity distribution
- We consider a momentum transfer cross section of the form

$$\sigma = \sigma_{\rm DM-b} v^{n_b}$$

• We consider $n_b=\{-4,4\}$. Well-motivated cases include $n_b=0$ (contact interactions) and $n_b=-4$ (milicharged, may explain EDGES)

DM - photon interactions

- We consider DM photon interactions similar to the standard Thomson scattering (Wilkinson et al. 1309.7588, Stadler et al. 1803.10229)
- We assume the interactions are independent of temperature
- We parametrise the scattering cross section relative to the Thompson cross section as

$$u_{\rm DM-\gamma} = \frac{\sigma_{\rm DM-\gamma}}{\sigma_{\rm Th}} \left(\frac{m_{\rm DM}}{100 {\rm GeV}}\right)^{-1}$$

• Suppress the matter power spectrum, may solve the S₈ tension

DM - dark radiation interactions

- DM DR interactions were implemented in CLASS v2.9 (Archidiacono, DCH, et al. 1907.01496)
- For general interactions, implementation based on the ETHOS formalism (Cyr-Racine et al. 1512.05344)
- DR is assumed to be massless and not interacting with SM particles.
 Can be either free-streaming or fluid-like
- Parameters: current momentum exchange rate $\Gamma^0_{\rm DM-DR}$, amount of dark radiation $N_{\rm DR}$, temperature dependence of scattering rate $n_{\rm DR}$
- Case of $n_{\rm DR}=0$ may solve H₀ and S₈ tensions (Buen-Abad et al. 1505.03542)

Multi-interacting DM in CLASS

- We consider one dark matter species with multiple possible interaction channels
- CLASS now integrates the dark matter temperature together with normal matter temperature
- An analytic calculation of the decoupling redshifts ensures an early enough start without wasting computing time
- Special treatment for different tight coupling regimes
- This implementation allows us to study the imprint of multiinteracting dark matter on cosmological observables

Effects on the observables

Effects on the observables

IDM cross sections

Cosmological tensions

Becker, **DCH**, et al. 2010.04074

- DM photon interactions push to a lower S₈ than ΛCDM
- DM DR interactions push to higher H₀ than ΛCDM
- Together they allow for both higher H₀ and lower S₈ values
- Comes at the expense of three new parameters

Next step: Lyman- α Data

- Interacting DM models suppress structures on small scales: Lyman- α data crucial to constrain these models
- We have previously developed a new approach for using Lyman- α data without needing new hydrodynamical simulations (Murgia et al. 1704.07838, Archidiacono, DCH, et al. 1907.01496)
- We have already used this approach to constrain DM dark radiation interactions
- We are in the final stages of extending this method to also cover
 DM baryon and DM photon interactions

Summary

- We have developed a new version of CLASS: one dark matter species can have simultaneous interactions with baryons, photons, and dark radiation
- We have shown that the effects of different interactions on the cosmological observables are additive
- The existing bounds on the different interaction strengths are robust to the underlying model
- Such interacting models can solve both the H₀ and S₈ tensions, but at the expense of adding three new parameters
- Lyman- α data is expected to severley constrain these models
- The public release of our code as CLASS v3.1 paves the way for the study of various rich dark sectors

Thank you for your attention