

11/12/2020

Hubble induced phase transitions: Defects are not forever

Dario Bettoni

Based on: arXiv:1810.11117 (JCAP 1902 (2019) 034) and arXiv:1911.03484 (JCAP01 (2020) 002)

J. Rubio (IST, Lisbon), G. Domenech (INFN, Padova), A. Lopez-Eigueren (Tufts University)

Introduction

Gravity-mediated inteplay between inflation and matter fields

Rich phenomenology

¡Usually in terms of homogeneous

field evolution!

- Baryogenesis [Bettoni, Rubio (2018)]
- Cosmic strings [Bettoni, Domenech, Rubio (2018)]
- Domain Walls [Bettoni, Rubio (2019)]
- Reheating [Dimopoulos et al. (2018), Opferkuch et al. (2019)]
- Dark Matter [Fairbairn et al. (2018) & Alonso-Álvarez (2018)]

Key concepts:

- Spontaneous breaking of internal symmetries
- Formation of topological defects
- The dynamics of defects leads to
 - Gravitational waves spectrum
 - Heating (radiation domination)

$$h_{ij}'' + k^2 h_{ij} = 16\pi Ga(\tau) T_{ij}^{TT}$$

Hubble building defects

Spectator field $\rho_{\chi} \ll \rho_{\rm inf}$

Non-minimal coupling

Internal symmetries

$$V_{\text{eff}} = (m_{\chi}^2 + \xi R)|\chi|^2 + \frac{\lambda}{4}|\chi|^4$$

Stiff equation of state $R = 3(1-3w)H^2 < 0$

$$R = 3(1 - 3w)H^2 < 0$$

E.g., quintessential inflation

U(1) symmetry

arXiv:1810.11117

 Z_2 symmetry

Minimum phase: The field approaches the new time dependent minimum

 $a_{\rm kin}$

Trapping ...

or Jumping?

Highly non-linear dynamics, simulations are needed!

Symmetry Breaking

$$_{\bullet}~\chi(\vec{x})_{\,\mathrm{with}}\langle\chi\rangle=0$$

- Semi-classical process
- Spinodal/Tachyonic instability
- Classicalization (analytical)

$$\omega_{\kappa}^{2}(z) = \kappa^{2} - \frac{\nu^{2} - 1/4}{(z + \nu)^{2}}$$

Following dynamics needs numerical simulations. However, *statistical* properties

Treat field as classical Gaussian random field with quantum initial conditions

Cosmic string formation

- Time dep. VEV
- Short-lived
- fat string
- Non scaling

$$\Omega_{\rm cs} \sim \frac{|\chi(t)|^2}{M_{\rm P}^2} \begin{cases} a^{\sqrt{6\xi}} \\ a^{-\frac{6}{n-2}} \end{cases}$$

 $a_{
m tr}$

Symmetry restoration:

Exact Effective

 $a_{\rm kin}$

$$R = 0 \qquad \omega_{\kappa}^{2}(z) = \kappa^{2} - M^{2}(z) + 3\lambda Y_{\text{rms}}^{2}(z)$$

- The origin is again the minimum
- Field start to oscillate around the origin

Cosmic defects decay!

GW spectrum

$$\Omega_{\rm GW}(\tau, k) = \int_{\tau_{\rm i}}^{\tau} d\log \tau' \frac{\Delta P_{\rm GW}(\tau', k)}{\Delta \log \tau'} \left(\frac{a(\tau')}{a(\tau)}\right)^{b}$$

Instantaneous GW spectrum

$$\frac{\Delta P_{\rm GW}(t,k)}{\Delta N} \simeq \begin{cases} P_{\rm peak}(t) \left(\frac{k}{k_{\rm peak}(t)}\right)^{\alpha} & \text{for } k \lesssim k_{\rm peak}, \\ P_{\rm peak}(t) \left(\frac{k}{k_{\rm peak}(t)}\right)^{-\bar{\alpha}} & \text{for } k > k_{\rm peak}, \end{cases}$$

$$P_{
m peak}(t) \sim \left(\frac{|\chi(t)|}{M_{
m P}}\right)^4 \qquad k_{
m peak}(t) \sim aH$$

Enhancement due to background

$$\rho_{\rm GW} \sim a^{-4} \qquad \rho_{\phi} \sim a^{-6}$$

GW spectrum

$$\Omega_{\rm GW}(\tau_0, k)h^2 = \Omega_{\rm R}h^2 \left(\frac{|\chi(\tau_{\rm kin}|)}{M_{\rm P}}\right)^4 \Theta^{-1}F(k)$$

$$\left(f_0^{\text{kin}} \sim 3 \times 10^{11} \text{Hz} \left(\frac{H_{\text{kin}}}{10^{11} \text{GeV}}\right)^{1/2} \left(\frac{\Theta}{10^{-14}}\right)^{-1/4} \right) f_0^{\text{osc}} \sim 3 \times 10^{-3} \text{Hz} \left(\frac{H_{\text{kin}}}{10^{11} \text{GeV}}\right)^{1/2} \left(\frac{\Theta}{10^{-14}}\right)^{3/4} \left(\frac{a_{\text{rad}}}{a_{\text{osc}}}\right)^2 \right)$$

Conclusions

NMC

+

Kinetic dominated epoch

Formation of topological defects and associated GW background

- Potentially detectable with forthcoming experiments
- Slopes related to the NMC and HO operators
- Peak position related to transition between rolling and minimum phases and ⊕
- Amplitude of the peak related to $H_{\rm kin}$ and Θ

Conclusions

The process requires a quantum and local description

In order to draw phenomenological conclusions and parameter estimation need to take into account

- Backreaction
- Gradients

- Defects dynamics
- GW production

Numerical simulations needed to quantify are running...
... stay tuned!