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Fig. 1: This figure shows the e↵ective noise in the LoTSS-Deep
continuum maps as compared to other existing and future sur-
veys. A spectral index of ↵ = �0.7 has been used to convert flux
densities to the 1.4 GHz reference frequency.

(see Padovani 2016, and references therein). The LoTSS-Deep
Fields target noise levels of ultimately . 10 µJy.beam�1, thereby
entering a new fainter, higher redshift regime where star forming
galaxies and radio quiet AGN will outnumber the population of
radio loud AGN, and thereby probing the evolution of those pop-
ulations over cosmic time. Fig. 1 is inspired by that of Smolvcić
et al. (2017a) and shows a sensitivity and surveyed area compar-
ison between various existing and future surveys. These include
TGSS (Intema et al. 2017), FIRST (Becker et al. 1995), NVSS
(Condon et al. 1998), VLA-COSMOS (Schinnerer et al. 2004;
Smolvcić et al. 2017b), VLASS (Lacy et al. 2020), EMU (Norris
2010), VLA-SWIRE (Owen & Morrison 2008), SSA13 (Foma-
lont et al. 2006), Stripe-82 (Heywood et al. 2016), XXL (Butler
et al. 2018, and references therein), DEEP2 (Mauch et al. 2020),
LOTSS-DR1 (Shimwell et al. 2017b), HDF-N (Richards 2000),
WENSS (Rengelink et al. 1997), GLEAM (Wayth et al. 2015),
and SKA (Prandoni & Seymour 2015a).

The depth of the LoTSS-Deep Fields is unlikely to be rou-
tinely surpassed at these low frequencies even into the era of the
first phase of the Square Kilometer Array (SKA, Dewdney et al.
2009) because, although the SKA will have the raw sensitivity
to easily reach such depths, the confusion noise of the SKA-low
will likely increase the image rms to values exceeding the tar-
get depth of the LoTSS-deep images (see e.g. Zwart et al. 2015;
Prandoni & Seymour 2015b). In order to construct the LoTSS-
Deep Fields, we have selected the Boötes, Lockman Hole, and
ELAIS-N1 fields, together with the North Ecliptic Pole (NEP).
Each of them is covered by a wealth of multiwavelength data,
necessary to derive photometric redshifts and low frequency ra-
dio luminosities, thereby providing an e�cient way to estimate
Star Formation Rate (SFR hereafter) in galaxies for example. To-
gether, these four multiwavelength fields allow us to probe a total
sky area of & 30 deg2, in order to probe all galaxy environments
at z > 1.

It is, however, quite challenging to make thermal noise lim-
ited images at low frequencies because of the presence of Di-
rection Dependent E↵ects (dde), such as the ionospheric distor-
tions, and the complex primary beam shapes of phased arrays.
We have shown (Shimwell et al. 2019) that using a novel set of

calibration and imaging algorithms developed by Tasse (2014a),
Smirnov & Tasse (2015) and Tasse et al. (2018) we were able
to estimate and compensate for the dde, and thus use LOFAR to
produce thermal noise limited maps from 8-hour LOFAR obser-
vations in a systematic and automated way, while keeping the
computational e�ciency high enough to be able to deal with the
high LOFAR data rates.

In this first paper of a series we present an improved strategy
to reach thermal noise limited images after hundreds of hours of
integration on the Boötes and Lockman Hole extragalactic fields,
reaching ⇠ 30 µJy.beam�1 noise levels, while being more robust
against absorbing faint unmodeled extended emission and dy-
namic range issues. In Sec. 2 we introduce the dd calibration and
imaging problem, together with the existing software that we use
to tackle it. We describe our dde calibration and imaging strategy
(ddf-pipeline-v2) in Sec. 3 (for completion in appendix A we de-
scribe ddf-pipeline-v1 that was presented in detail in Shimwell
et al. 2019). In Sec. 4 we use ddf-pipeline-v2 to synthesize deep
images over the Boötes and Lockman Hole extragalactic fields
and present these deep low frequency images. The subsequent
papers in this series will present the deeper ELAIS-N1 data prod-
ucts (Sabater et al. 2020, in prep.), the multiwavelength cross
matching (Kondapally et al. 2020, in prep.) and the photomet-
ric redshifts and galaxy characterisation (Duncan et al. 2020, in
prep.).

2. LoTSS and the third generation calibration and

imaging problem

Calibration and imaging techniques have greatly evolved
since the first radio interferometers have become operational.
First generation calibration is commonly refered as direction-
independent (di) calibration, where calibration solutions are
transferred to the target from an amplitude and/or phase calibra-
tor field. Second generation calibration is the innovation, begin-
ning in the mid-1970s, of using the target field to calibrate itself
(self-calibration: Pearson & Readhead 1984). Third generation
calibration and imaging consists in estimating and compensat-
ing for direction-dependent e↵ects (dde).

As mentioned above, it is challenging to synthesize high res-
olution thermal noise limited images with LOFAR (van Haarlem
et al. 2013). Specifically, LOFAR (i) operates at very low fre-
quency (⌫ < 250 MHz), (ii) has very large fields of view (fwhm
of 2 – 10 degrees), and (iii) combines short (⇠ 100 m) and long
(⇠ 2000 km) baselines to provide sensitivity to both the compact
and extended emission. Because of the presence of the iono-
sphere and the usage of phased array beams, the combination
of (i) and (ii) make the calibration problem direction-dependent
by nature. In Sec. 2.1 we introduce the mathematical formalism
used throughout this paper, while in Sec. 2.2 and 2.3 we describe
the algorithms and software used for di and dd calibration and
imaging.

2.1. Measurement equation formalism

The Radio Interferometry Measurement Equation (rime, see
Hamaker et al. 1996) describes how the underlying electric
field coherence (the sky model), and the the various direction-
independent and direction-dependent Jones matrices (denoted G
and J respectively), map to the measured visibilities. In the fol-
lowing, we consider the electric field in linear notation (along
the x and y axes), at frequency ⌫ in direction s = [l,m, n =p

1 � l2 � m2 ]T (where T is the matrix transpose) and write
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Fundamental assumptions of cosmology 

• Statistically isotropic and homogeneous Universe


• Gaussian matter and curvature fluctuations


• Scale-invariant power spectrum 


• Structure grows via gravitational instability, described by general relativity


• Dark matter and cosmological constant
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Consequences for radio sky 
• Statistically isotropic distribution of radio sources


• Gaussian fluctuations, thus all information is contained in the one- and 
two-point distribution functions


• Use radio sources as test particles to probe the large scale structure of 
the Universe at large and ultra-large scales and over a huge redshift range
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We used LoTSS-DR1 (green pointings) to 
develop pipelines and tested them; 

established that low frequency radio sources 
allow us to recover known cosmology

LoTSS-wide: DR1, Shimwell et al. 2019Siewert et al. 2020



LoTSS-wide DR1
• 424 square degrees (Hetdex region)


• 325,694 radio sources


• AGNs, SFGs, clusters, etc.


• Median rms noise: � Jy/beam


• angular resolution: 6’’


• Value added catalogue: 
318,520 sources of which  
231,716 sources are matched to 
Pan-STARRS and/or WISE


• Photo-z’s for ~ 50% of all radio sources 

71μ

LoTSS-wide: DR1, Shimwell et al. 2019, Williams et al. 2019, Duncan et al. 2019
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Completeness and masking

Siewert et al.: LoTSS – Statistics

Table 1. Number of included cells (Ncell) and sky coverage (⌦) for di↵erent masks and flux density thresholds (S min). Unless explicitly stated
otherwise, we use the default ‘mask d’ throughout this work. Thus we highlight the respective entry in bold font. The retained number of sources
for each mask are shown for the LoTSS-DR1 radio source (Nrs) and value-added source (Nvas) catalogues. For detailed explanation see Sect. 3.4,
3.5 and 6.2

.

mask Ncell ⌦ S min Nrs Nvas Description
(sr) (mJy)

none 8422 0.13458 0.00 325 694 318 520 all sources
p 7182 0.11476 0.00 306 684 300 601 sources within union of 53 discs (✓ = 1.7 deg)

d 7176 0.11467
0.00 306 670 300 588

& exclude cells with less than five value added sources1.00 108 539 102 940
2.00 55 459 51 288
4.00 33 040 30 556

3 7104 0.11352 0.00 305 186 299 311 & exclude cells with S rms > 3 ⇥median(S rms)1.05 101 714 96 404

2 6954 0.11112
0.00 301 527 295 903

& exclude cells with S rms > 2 ⇥median(S rms)0.70 158 226 152 662
1.05 99 411 94 326

1 2957 0.04725

0.00 152 498 150 568

& exclude cells with S rms > median(S rms)

0.35 136 150 134 178
0.70 66 027 64 118
1.00 42 329 40 599
1.05 39 919 38 222
2.00 20 848 19 719
4.00 11 805 11 269

z 7139 0.11407
0.00 - 153 111 ‘mask d’ & missing Pan-STARRS information

& only sources with redshift information2.00 - 24 420
4.00 - 14 506

z1 2940 0.04698
0.00 - 76 602 ‘mask 1’ & missing Pan-STARRS information

& only sources with redshift information2.00 - 9505
4.00 - 5432

Table 2. Undersampled pointings with name and position.

Name RA Dec
(deg) (deg)

P164+55 164.633 54.685
P211+50 211.012 49.912
P221+47 221.510 47.461
P225+47 225.340 47.483
P227+53 227.685 52.515

Fig. 3. Top: Completeness of the LoTSS-DR1 catalogue per HEALPix
cell. Bottom: Completeness of cells after applying a flux density thresh-
old of 0.39 mJy, which corresponds to an overall point source complete-
ness of 95%.

6000 sources each for each of the 58 pointings. The complete-
ness of each pointing is shown in Fig. 2, where pointings at the

edge of the survey are marked in green and pointings in the inner
field are marked in blue. Additionally, five pointings are marked
in red, which are clearly undersampled, for reference see Table
2. Using all pointings, the survey is 95% point source complete
at 0.43 mJy and reaches 99% completeness at 1.0 mJy. Rejecting
the five most incomplete pointings, the 95% level is at 0.39 mJy
and the 99% level is reduced to 0.80 mJy.

As we use HEALPix cells to determine the source count
statistics, we estimate the completeness for each cell. Without
any flux density threshold the completeness per cell is shown
in Fig. 3. The structure of the completeness across the survey
matches the number density of Fig. 1. Areas with high number
densities appear to be already more complete without assuming
any flux density threshold and underdense regions are compa-
rable to areas with low completeness. Applying a flux density
threshold of 0.39 mJy, corresponding to a point source complete-
ness of 95% in the region without the five pointings of Table 2,
results in a much improved uniformity of the completeness (see
also Fig. 3).

3.3. Consistency of source counts

Completeness and total source counts will be a function of the
distance from the pointing centre, as the sensitivity is not uni-
form across the primary beam. This is investigated by means
of radial source counts around the pointing centres. All sources
within angular distance, ✓, from the pointing centre are counted
and the sum is normalised by the solid angle of the correspond-
ing disc. We split the pointings into three groups, depending on
their position and whether they appear undersampled (see Table
2). In Fig. 4 we show source counts for pointings at the edge of
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Fig. 2. Left: Estimated point-source completeness for each of the 58 pointings in the HETDEX field as a function of flux density. Blue, green and
red (dotted) lines indicate inner, outer and the five most incomplete pointings, respectively. Right: Mean point source completeness of all pointings
(solid line) and after rejection of the five most incomplete pointings (dotted line).

putationally expensive to correlate all pixel pairs. On the other
hand, the individual LoTSS pointings are too large to define cell
sizes that are useful for cosmological analysis, as there are about
6000 sources per pointing.

The scheme in HEALPix4(Górski et al. 2005) is one such
method that satisfies the above requirements (equal area, no
overlap, complete sky coverage) and has been developed for the
purpose of the analysis of the cosmic microwave background.
We use it in the so-called ring scheme, which numbers the cells
in rings of decreasing declination. In order to avoid confusion
with imaging pixels, we will denote HEALPix pixels as cells in
the following. The cell size is specified by means of the parame-
ter Nside, which can take values of 2m, where m is an integer. The
total number of cells on the sky is given by 12N

2
side.

For each cell, we count the number of radio sources, either in
the catalogue originally produced by PyBDSF (LoTSS-DR1 ra-
dio source catalogue) or in the final LoTSS-DR1 value-added
source catalogue, where radio components of a single source
have been grouped and artefacts removed. The position of each
source was taken as either the output position from PyBDSF or
the RA and Dec value that was assigned in the value-added cat-
alogue (see Williams et al. 2019 for a description of how these
were generated).

The mean number of sources per cell is

N = �⌦cell =
Nsurvey

⌦survey

4⇡
12N

2
side

, (16)

where Nsurvey and ⌦survey denote the total number of sources and
the total solid angle covered by the survey. We want to find a
value of Nside, that guarantees that all cells contain at least one
source, if the cell was properly sampled, meaning that each cell
area should be completely within the survey area and we would
like to disregard regions with very low completeness. We assume
that the source counts are Poisson distributed and estimate the
probability that a cell does not contain a source as

p0 = e
�N . (17)

The probability that all cells contain at least one source is
then given by P = (1 � p0)Ncell , with Ncell = 12N

2
side⌦survey/4⇡ is

4 http://healpix.sourceforge.net

the number of cells covering the survey area. We wish to keep
the probability to find empty cells, P0(Nside) = 1 � P ⇡ p0Ncell
well below one, but at the same time would like to allow for
the best angular resolution. With ⌦survey = 424 square degrees
(0.12916 sr) and Nrs = 325 694 we find P0(256) = 3 ⇥ 10�14,
while P0(512) is of order unity. In a resolution of Nside = 256,
the cells have a mean spacing of ✓̄i, j = 0.229 deg and a cell
covers ⌦pix ⇡ 1.60 ⇥ 10�5 sr. The set of all non-empty cells
defines the e↵ective survey area. The number of cells within the
survey area for the chosen Nside and after masking can be seen
in Table 1. Figure 1 shows the cell counts of the LoTSS-DR1
radio source catalogue at a resolution of Nside = 256, which is a
good compromise between large enough cell size to make sure
that the shot noise in each cell is not the dominant feature (i.e. all
cells contain at least one source) and to retain as much angular
resolution as possible. One can also see that plotting the number
counts per cell has advantages over a map that shows each radio
source as a dot, as such a map quickly saturates when the surface
density of objects is high (see Fig. 1).

3.2. Completeness

The LoTSS-DR1 catalogue was generated by combining 58 in-
dividual LOFAR pointings on the sky. The current LOFAR cali-
bration and imaging pipeline used in DR1 produces sub-standard
images in a few places due to poor ionospheric conditions and/or
due to the presence of bright sources. Such areas are not in-
cluded. Furthermore, in some regions, where the astrometric po-
sition o↵sets from Pan-STARRS is large, the LoTSS maps are
blanked. This results in an inhomogeneous sampling of the HET-
DEX spring field as is apparent from the source density map pre-
sented in Fig. 1.

We estimated the point source completeness of all pointings
in the HETDEX field by injecting random sources in the residual
maps and using the same PyBDSF set up used for the LoTSS-
DR1 radio source catalogue. Only sources with flux densities
five times greater than the local rms noise are retained. The com-
pleteness itself is estimated by taking the fraction of recovered
sources to the total number of injected sources above a certain
flux density threshold. In total we simulated 50 samples with

Article number, page 6 of 29

A&A proofs: manuscript no. main_v5

Fig. 4. Top: Source counts for each pointing within angular distance
✓ around the pointing centre, normalised by covered area. Pointings
are classified by position in the HETDEX field, with pointings on the
edge (green), in the inner field (blue) and undersampled ones (red, dot-
ted). The mean is shown in black with standard deviation (grey band)
of all pointings. Bottom: Source counts around the five brightest radio
sources in terms of integrated flux density from the radio source (dashed
lines) and value-added source catalogue (solid lines). The mean number
counts around the five brightest sources are shown in black for both cat-
alogues and additionally also the mean over all pointings (dash dotted).

the HETDEX field (green), inner pointings (blue) and pointings
which are excluded from the further analysis (red dotted). The
mean source counts of all pointings is shown in black, with the
1� region in grey. The source counts of green pointings drop
after the angular distance reaches regions which are not covered
by overlapping pointings of the survey any more. Pointings in the
inner field have more continuous source counts, as they overlap
with other pointings. The five undersampled pointings from the
latter appear in this test also as the undersampled ones.

Additionally, we study the source counts around the five
brightest sources. The five sources are listed in Table 3 and are
the same in the LoTSS-DR1 radio source and value-added cat-
alogues. They are displayed in Fig. 1 as black circles to show
the underlying regions. Comparing both catalogues, the radio
source catalogue shows a stronger e↵ect on the source counts
due to limited dynamic range around bright sources. This e↵ect
is visible by eye in Fig. 1 (bottom), where the bright sources are

Table 3. Five brightest sources of LoTSS-DR1 in terms of total flux
density.

Name RA Dec S int
(deg) (deg) (Jy)

ILTJ114543.39+494608.0 176.43 49.77 14.49
ILTJ134526.39+494632.4 206.36 49.78 14.13
ILTJ144301.53+520138.2 220.76 52.03 14.10
ILTJ121529.77+533553.6 183.87 53.60 11.98
ILTJ125208.61+524530.4 193.04 52.76 8.35

Fig. 5. LoTSS-DR1 HETDEX spring field masks: ‘mask p’ rejects all
cells shown in dark blue and includes 53 pointings modelled by discs of
radius 1.7 deg. Our default ‘mask d’ additionally rejects cells with less
than five sources (yellow cells), see also text in Sec.3.4. For analysis
that includes redshift information ‘mask z’ additionally rejects a strip
shown in light blue. For further details, see the text in Sect. 5.3.

located in underdense regions. In contrast, in the value-added
catalogue the mean of sources becomes flatter, because many
sources are matched together. Overall we see a deficit of sources
around the five brightest sources compared to the overall mean
of all pointings, but that deficit is well within the variance of
source counts and thus we decided to keep regions that include
bright sources in our analysis.

3.4. Survey area

A proper definition of the survey area directly a↵ects the one-
and two-point statistics, especially the mean surface density. As
we exclude all sources of the five most incomplete pointings (see
Table 2), it is therefore important to define the region being in-
vestigated throughout this work, excluding these pointings.

To remove the sources of those five pointings and to model
the boundaries of the survey, we produce a mask (mask p). We
model each pointing as a disc with radius of 1.7 deg, inferred
from the (average) radius of pointings in the mosaic and mask
all cells which are not included in the union of all discs (see
Fig. 5). We verified that this procedure does not result in a single
empty cell, consistent with the argument that we used to set the
value of Nside.

We test for the robustness of this method by also masking
cells containing fewer than five sources. This results in removing
another six cells and 14 sources. We adopt this slightly stronger
mask (mask d) as the basis of our analysis. The total number of
sources and the e↵ective survey area for the various masks and
cuts can be found in Table 1. Our base mask (mask d) applied to
the LoTSS-DR1 catalogue results in a mean number of sources
per cell of n̄ = 42.0 and a mean surface density of �̄ = 2.6215 ⇥
106 sr�1 = 798.6 deg�2 = 0.2218 arcmin�2.

The histogram for the masking that excludes the five bad
pointings and all cells with less than five sources is shown in
Fig. 6. For comparison we also plot a Poisson distribution with
identical mean. We observe a broadening of the source count
distribution when compared to a Poisson distribution, which ob-
viously is not a good fit to the data. Thus we see that the naive
expectation about the number count distribution is not met.
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Fig. 6. Histogram of source counts per cell (blue) and binned Poisson
distribution with empirical mean (red line) from the LoTSS-DR1 radio
source catalogue at Nside = 256, masked and including only cells with
at least five sources (mask d).

3.5. Local rms noise

To further characterise the properties of LoTSS-DR1, we take a
closer look at the properties of the local rms noise. We define a
set of tiered masks to reject cells with noise above certain noise
thresholds.

Fluctuations in the local rms noise are expected for several
reasons. In the vicinity of bright sources, limitations of dynamic
range give rise to an increase of the local rms noise. Directions
and epochs with unfavourable ionospheric conditions will also
result in higher noise levels. To find regions of higher noise,
we therefore produced a HEALPix map of the local rms per
HEALPix cell, as well as the corresponding histogram of the
local rms noise distribution (see Fig. 7). The map is produced
by averaging the local rms noise associated to each source in the
cell, which is defined as the averaged background rms value of
the corresponding island, obtained from the LoTSS-DR1 cata-
logue.

Using the local rms noise attached to each source gives rise
to a slightly larger cell average, than doing cell averages on
the noise maps themselves. This e↵ect is due to bright sources,
which increase the noise. The mean local rms noise of the
HEALPix cells is 94 µJy beam�1 and median local rms noise
in a cell is 76 µJy beam�1, which is in good agreement with the
median rms noise 71 µJy beam�1 in the total observed area based
on the much smaller mosaic pixels (Shimwell et al. 2019).

To produce a tiered set of noise masks, we require the lo-
cal rms noise to be below one, two, and three times the median
rms noise of 0.07 mJy beam�1 and denote the resulting masks by
mask 1, mask 2, and mask 3, respectively. Most of the sources
are una↵ected with the 0.21 mJy beam�1 and 0.14 mJy beam�1

rms mask, but for the upper limit of 0.07 mJy beam�1 rms noise
(mask 1), we obtained less than 50 percent of the original num-
ber of sources (see Table 1). The di↵erence in the masking can
also be seen in the remaining number of cells Ncell and sky cov-
erage ⌦ (see Table 1). These noise masks are shown in Fig. 8.

We also checked that the variance of the number count dis-
tribution becomes smaller with decreasing the upper rms noise
limit. We return to more details of the statistical evaluation in
Sect. 5.

Fig. 7. Local rms noise per HEALPix cell, calculated via the mean of the
local rms around each LoTSS-DR1 radio source. The heat map (top) and
histogram (bottom) of the local rms is clipped at an upper limit of five
times the median rms noise. The median rms noise of 0.07 mJy/beam,
as well as the values of two and three times the median rms noise are
marked in the histogram with black dashed lines.

Fig. 8. Sky coverage of the three local rms noise masks. The red cells
are included for an average noise < 0.07 mJy beam�1 in the HEALPix
cells (‘mask 1’), red and yellow pixels are included for an average noise
of < 0.14 mJy beam�1 (‘mask 2’) and red, yellow and light blue cells
are included for an average noise of < 0.21 mJy beam�1 (‘mask 3’).
Dark blue cells are additionally included in ‘mask d’. Regions in grey
are excluded by all masks.

In the analysis below, we combine spatial masking with flux
density thresholds in order to improve the completeness and re-
liability of the studied sample of radio sources. The faintest, at
five times signal to local noise, observed radio sources in the
LoTSS-DR1 survey have a flux density of around 0.1 mJy, and,
as shown above, the survey is certainly not complete at such low
flux densities. Thus, below we test di↵erent flux density thresh-
olds to increase the completeness and reliability of the survey.
The source counts corresponding to flux density thresholds (for
unresolved sources) of five, ten, and 15 times the rms noise of the
masked survey are listed in Table 1 for both the LoTSS-DR1 ra-
dio source and the value-added source catalogue. We can easily
see that a cosmological data analysis has to find a good compro-
mise between high demands on data quality (more aggressive
masking and higher flux density thresholds) and the demand for
statistics (large number of radio sources).
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Fig. 6. Histogram of source counts per cell (blue) and binned Poisson
distribution with empirical mean (red line) from the LoTSS-DR1 radio
source catalogue at Nside = 256, masked and including only cells with
at least five sources (mask d).

3.5. Local rms noise

To further characterise the properties of LoTSS-DR1, we take a
closer look at the properties of the local rms noise. We define a
set of tiered masks to reject cells with noise above certain noise
thresholds.

Fluctuations in the local rms noise are expected for several
reasons. In the vicinity of bright sources, limitations of dynamic
range give rise to an increase of the local rms noise. Directions
and epochs with unfavourable ionospheric conditions will also
result in higher noise levels. To find regions of higher noise,
we therefore produced a HEALPix map of the local rms per
HEALPix cell, as well as the corresponding histogram of the
local rms noise distribution (see Fig. 7). The map is produced
by averaging the local rms noise associated to each source in the
cell, which is defined as the averaged background rms value of
the corresponding island, obtained from the LoTSS-DR1 cata-
logue.

Using the local rms noise attached to each source gives rise
to a slightly larger cell average, than doing cell averages on
the noise maps themselves. This e↵ect is due to bright sources,
which increase the noise. The mean local rms noise of the
HEALPix cells is 94 µJy beam�1 and median local rms noise
in a cell is 76 µJy beam�1, which is in good agreement with the
median rms noise 71 µJy beam�1 in the total observed area based
on the much smaller mosaic pixels (Shimwell et al. 2019).

To produce a tiered set of noise masks, we require the lo-
cal rms noise to be below one, two, and three times the median
rms noise of 0.07 mJy beam�1 and denote the resulting masks by
mask 1, mask 2, and mask 3, respectively. Most of the sources
are una↵ected with the 0.21 mJy beam�1 and 0.14 mJy beam�1

rms mask, but for the upper limit of 0.07 mJy beam�1 rms noise
(mask 1), we obtained less than 50 percent of the original num-
ber of sources (see Table 1). The di↵erence in the masking can
also be seen in the remaining number of cells Ncell and sky cov-
erage ⌦ (see Table 1). These noise masks are shown in Fig. 8.

We also checked that the variance of the number count dis-
tribution becomes smaller with decreasing the upper rms noise
limit. We return to more details of the statistical evaluation in
Sect. 5.

Fig. 7. Local rms noise per HEALPix cell, calculated via the mean of the
local rms around each LoTSS-DR1 radio source. The heat map (top) and
histogram (bottom) of the local rms is clipped at an upper limit of five
times the median rms noise. The median rms noise of 0.07 mJy/beam,
as well as the values of two and three times the median rms noise are
marked in the histogram with black dashed lines.

Fig. 8. Sky coverage of the three local rms noise masks. The red cells
are included for an average noise < 0.07 mJy beam�1 in the HEALPix
cells (‘mask 1’), red and yellow pixels are included for an average noise
of < 0.14 mJy beam�1 (‘mask 2’) and red, yellow and light blue cells
are included for an average noise of < 0.21 mJy beam�1 (‘mask 3’).
Dark blue cells are additionally included in ‘mask d’. Regions in grey
are excluded by all masks.

In the analysis below, we combine spatial masking with flux
density thresholds in order to improve the completeness and re-
liability of the studied sample of radio sources. The faintest, at
five times signal to local noise, observed radio sources in the
LoTSS-DR1 survey have a flux density of around 0.1 mJy, and,
as shown above, the survey is certainly not complete at such low
flux densities. Thus, below we test di↵erent flux density thresh-
olds to increase the completeness and reliability of the survey.
The source counts corresponding to flux density thresholds (for
unresolved sources) of five, ten, and 15 times the rms noise of the
masked survey are listed in Table 1 for both the LoTSS-DR1 ra-
dio source and the value-added source catalogue. We can easily
see that a cosmological data analysis has to find a good compro-
mise between high demands on data quality (more aggressive
masking and higher flux density thresholds) and the demand for
statistics (large number of radio sources).
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Fig. 1. Distribution of radio sources observed in the LoTSS-DR1 HETDEX spring field. Plotted are all individual sources (top), as well as the
number counts per cell in Cartesian projection at HEALPix resolution Nside = 256 (bottom). Observed are nearly 325 000 sources within 58
pointings on the sky covering 424 square degrees. The positions of the five brightest radio sources in terms of integrated flux density are indicated
in black (see Sect. 3.3 for details).

inhabit. Further to this, with Halo Occupation Distribution Mod-
elling (HOD; see descriptions and uses in e.g. Berlind & Wein-
berg 2002; Zheng et al. 2005; Hatfield et al. 2016), the properties
of how galaxies occupy dark matter haloes can be determined.
This will be especially important with deep radio observations,
such as the LOFAR deeper tier surveys (Rottgering 2010; van
Haarlem et al. 2013), where it may be possible to observe the ‘1-
halo’ clustering (see e.g. Yang et al. 2003; Zehavi et al. 2004),
which describes the clustering between radio sources in the same
parent dark matter halo. By observing both the ‘2-halo’ and ‘1-
halo’ term and modelling the observed clustering within a HOD
framework, it is possible to determine quantities which describe
the distribution of central and satellite galaxies for di↵erent ra-
dio source populations. Finally, if the cross correlation function
is instead investigated, the clustering observed may also be im-
portant in investigating how di↵erent radio sources within single
dark matter haloes may be a↵ected by other galaxies within the
same halo (see e.g. Hatfield & Jarvis 2017).

Additionally, parameters describing the total density of mat-
ter, ⌦m, and the rms amplitude of fluctuations in the matter den-
sity in a sphere of 8 h

�1 Mpc, �8, will a↵ect P(k, z). We note that
⌦m tells us about the degree to which dark matter dominates the
matter budget in the Universe, whilst �8 relates to the degree to
which structures have grown by the present day.

Dark energy parameters, like the equation of state of dark
energy at scale factor a, which is given by w = w0 + (1 � a)wa

(Chevallier & Polarski 2001; Linder 2003), where the present
day equation of state is w0, and its time evolution is parametrised
by wa, a↵ect the growth of structure and hence enter into P(k, z).

We can also assess parameters describing modifications to
gravity (Amendola et al. 2008; Zhao et al. 2010), like the slip pa-
rameter ⌘, which is the ratio of the space- and time- perturbations
in the metric. In addition we can examine the Poisson equation
r

2� = 4⇡Ga
2µ⇢�, where µ parametrises deviations from the GR

expectation µ = 1. These parameters again enter into P(k, z) as
they a↵ect the growth of structures.

Finally, primordial non-Gaussianity of density modes a↵ects
the measured two-point statistics (Dalal et al. 2008; Matarrese &
Verde 2008; Ferramacho et al. 2014; Raccanelli et al. 2015). On
large scales, the e↵ective bias is greatly increased, leading to a
substantial increase in amplitude of the auto-correlation function
or power spectrum. Constraints on the non-Gaussianity parame-
ter fNL are expected to improve on constraints by Planck.

3. LoTSS-DR1: data quality

3.1. Requirements and cell size

To study the cosmic large scale structure, we require three es-
sential properties of a radio survey. First of all, the survey must
cover a sizeable fraction of the sky in order to measure properties
on large angular scales and to ensure that the e↵ects of interest
are not dominated by cosmic variance. Secondly, the survey must
sample the sky fairly homogeneously to some minimal flux den-
sity, which then allows for reliable and complete source counts.
Thirdly, in order to identify foreground e↵ects and to classify
radio sources, identification with an optical or infra-red coun-
terpart and associated photometric or spectroscopic redshift, is
essential.

In order to connect number counts with theoretical predic-
tions, we must estimate�(S , e) by counting radio sources in cells
of equal and non-overlapping areas, a necessary (but not su�-
cient) condition for the statistical independence of the counts.
Finally, these cells should cover the sky completely. Thus, we
need to select a scheme to pixelize the sky and for this pixeli-
sation we need to decide how large those cells should be. The
pixel sizes of the LoTSS imaging pipeline and used by the source
finder PyBDSF are too small to be e�cient for cosmological
tests (most of them contain only noise) and it would be com-
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Fig. 19. Counts-in-cell map of the LoTSS-DR1 value-added source catalogue for S > 1.0 mJy and after applying ‘mask d’ (left) and ‘mask 1’
(right).

Fig. 20. Angular two-point correlation of sources from the LoTSS-DR1
value-added source catalogue after masking with ‘mask d’ (top) and
‘mask 1’ (bottom) and at flux densities above 1, 2, and 4 mJy. Positive
and negative values are shown with full and open symbols, respectively.
The grey shaded region indicates angular separations with decreasing
number of weighted pair counts.

survey. They found the Poisson error to be less than the bootstrap
estimate by a factor of two for small scales around ✓ ⇠ 0.05 deg
and even larger for increasing separations. The geometry of the
survey provides an increasing number of correlation weighted
pair counts up to angular separations of ✓ < 6 deg, at larger an-
gular separations the weighted pair counts decrease and finally
drop steeply at 30 deg. In the figures we shade angular scales
✓ > 6 deg in grey.

In the top panel of Fig. 20, we observe consistent behaviour
for all three flux density samples above three degrees. Below

three degrees the 1 mJy sample is more correlated than the 2
and 4 mJy samples, which are more consistent. However, it can
be seen that there are many angular bins in which the 4 mJy
sample shows a low value of the two-point correlation function.
We believe this is likely as a result of having fewer sources in that
sample. The bottom panel of that figure explores what happens
if we restrict our analysis to the low-noise region of the survey
after applying ‘mask 1’ (see Sec. 3.5). Now all three samples are
more consistent with each other. However, the number of sources
has been reduced by about a factor of two in each sample.

The observed increase of correlation for decreasing flux den-
sity thresholds in ‘mask d’, which is not observed in the low-
noise region of ‘mask 1’, is investigated further. Particularly, we
ask if flux dependent correlation is related to the method of gen-
erating the mock catalogue, as it relies on the local noise pat-
terns. To do so, we measure the correlation function of the mock
catalogue itself, by comparing to a pure random sample (spatial
Poisson process). In Fig. 21, we see that there is almost a van-
ishing mock auto-correlation (denoted mock-random in the leg-
end) above the typical size of an individual pointing (1.7 deg in
radius), whereas for smaller angular separations the correlation
is an order of magnitude smaller than that of the data sample.
We also show in Fig. 21 the data-mock and data-random (spa-
tial Poisson process) auto-correlations. The data-mock and data-
random results agree at all scales with small di↵erences. This
also holds true for the three di↵erent masks ‘1’, ‘2’, and ‘d’,
which we have tested separately. The close similarity of results
based on pure random samples and the mock catalogue shows
that the flux density dependence of the observed correlations is
not a result of how we generate the mock catalogue. We also see
from Figs. 20 and 22 that the reduced noise level of ‘mask 1’
increases the correlation for the 2 and 4 mJy samples, but does
not change the 1 mJy sample significantly.

Whilst the procedure of generating mocks (Sect. 4) does ac-
count in the large sense for the inhomogeneity of completeness
(see e.g. Fig. 3 and 9), it may have completeness issues close to
the five-sigma detection threshold. This could be due to a variety
of reasons such as completeness when using PyBDSF to detect
sources (which is not used for the randoms); the assumption of
point sources when generating randoms and finally flux scale is-
sues within the data. However, when applying flux thresholds
that are significantly above the averaged 95% completeness flux
density of 0.39 mJy, variations in completeness should not a↵ect
our results at a significant level.

To further investigate the origin of the flux density de-
pendence of the angular two-point correlation, we perform a
jack-knife test and split up the survey into three regions on
the sky, namely ‘Right’, ‘Center’, and ‘Left’. These lie within
the following right ascension intervals: [161, 184], (184, 208],
(208, 230] deg, respectively. We then compute w(✓) and errors as
mentioned above and compare the results, shown in Fig. 23 for
the 1 and 2 mJy samples of ‘mask d’ and in Fig. 24 for ‘mask
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tion found for LoTSS-DR1 radio sources, and a bias function
from the literature. We present our conclusions in Sect. 7.

This work is complemented by four Appendices. In App. A
we describe a masking procedure for the TGSS-ADR1 catalogue
that is used for comparison and estimate the corresponding an-
gular two-point correlation function. Five common estimators
for the angular two-point correlation function are described and
compared in the context of LoTSS-DR1 in App. B. We also test
the accuracy of the software package TreeCorr (Jarvis et al.
2004) that we use for the computation of the angular two-point
correlation function by means of an independent, computation-
ally slow but presumably exact brute force algorithm (App. C).
In App. D we show that the contribution of the kinematic radio
dipole to the angular two-point correlation function is negligible
for the angular scales probed in this work.

2. Large scale structure in radio continuum surveys

Before we investigate the data, we first discuss what the standard
model of cosmology predicts for the statistical tests that we will
consider throughout this work.

2.1. Source counts in cells

The cosmological principle is fundamental to modern cosmol-
ogy, stating that on large enough scales the distribution of mat-
ter and light is isotropic and homogeneous on spatial sections
of space-time. Isotropy on large scales is observed at a wide
range of frequencies, from the distribution of radio sources, to
the distribution of gamma-ray bursts, and is most precisely tested
by means of the cosmic microwave sky (see e.g. Peebles 1993;
Planck Collaboration et al. 2016, 2019). Therefore we also ex-
pect to find an statistically isotropic distribution of extragalactic
radio sources for LoTSS, which means that the expectation value
of the number of radio sources per unit solid angle, or surface
density �, with flux density above a certain threshold S min, is
independent of the position on the sky e. The number counts in
a pixel (or cell) of solid angle ⌦pix centred at e are

N(e, S min) =
Z

⌦pix

�(e, S min)d⌦, (1)

with (ensemble) expectation value

hN(e, S min)i = N̄(S min) = �̄(S min)⌦pix. (2)

The simplest model for the distribution of radio sources as-
sumes that they are (i) identically and (ii) independently dis-
tributed, and (iii) pointlike (i.e. it is possible to reduce the pixel
size until each pixel would contain at most one fully contained
source). These assumptions define what is called a homogenous
Poisson process (see e.g. Peebles 1980). Thus the naive expecta-
tion is that the probability of finding k sources above a flux den-
sity threshold S min in any cell of fixed size is given by a Poisson
distribution with intensity parameter �:

p
P
k
=
�k

k!
e
��, , (3)

with expectation N̄ ⌘ E[k] = � and variance Var[k] = � = N̄.
Deviations from a Poisson distribution are expected due to

e↵ects from gravitational clustering of large-scale structure [a
violation of condition (ii)], resolved sources [a violation of con-
dition (iii)], and multi-component sources, such as FRII radio

galaxies in which the radio lobes are not statistically indepen-
dent from each other [violation of condition (ii)]. Di↵erent types
of radio sources could follow di↵erent statistical distributions,
which would then violate condition (i). These e↵ects and addi-
tional observational systematics are expected in radio continuum
surveys, and thus we must expect that radio sources should not
be perfectly Poisson distributed.

Let us consider the expected modifications due to multiple
radio components and show that this e↵ect can be modelled by
means of a compound Poisson distribution (James 2006), mean-
ing that the distribution that follows from adding up n identi-
cally distributed and mutually independent random counts ni,
with i = 1 to n, and n itself follows a Poisson distribution with
mean �. Let us first assume that the number of radio compo-
nents is also Poisson distributed. Then the probability p to find
k sources in a cell follows from p(k) =

P
1

n=0 p(k|n)p(n), where
the first factor is the conditional probability to find k radio com-
ponents, like distinct hot spots and the core, associated with n

galaxies and the second factor is the probability to have n galax-
ies. We further assume � is the mean number of components per
galaxy and thus the mean of the conditional probability is n�.
This results in

p
CP
k
=

1X

n=0

"
(n�)k

e
�n�

k!
�n

e
��

n!

#
, (4)

with expectation and variance now given by

N̄ ⌘ E[k] = ��, Var[k] = ��(1 + �) = N̄(1 + �). (5)

Thus, we see that unidentified multiple radio components can
increase the variance of the source counts, for example, for a
textbook FRII with a detected core we would see three compo-
nents which would immediately lead to an increase of the vari-
ance. This statement is independent of the size of the cell, but
how many radio components can be identified does depend on
the angular resolution and completeness of the radio continuum
survey.

It is useful to define the clustering parameter (Peebles 1980)

nc ⌘
Var[k]
E[k]

, (6)

which is a proxy for the number of sources per ‘cluster’. For the
Poisson distribution nc = 1, while nc = 1 + � for a compound
Poisson distribution. Groups of radio sources, like a group of
SFGs, also contribute to nc, and thus nc is also a tracer of cluster-
ing at small angular scales. The measurement of nc alone can not
distinguish between galaxy groups, multi-component sources,
and imaging artefacts.

Whilst we believe assuming a Poisson distribution for the
number of radio components per physical source will be appro-
priate for this work, we can chose another distribution, which
will result in another compound distribution. To give a second
example, assuming a logarithmic distribution results in a nega-
tive binomial distribution (James 2006), which interestingly pro-
vides the best-fit to three dimensional counts-in-cell in the Sloan
digital sky survey (Hurtado-Gil et al. 2017).

2.2. Differential source counts

While counts in cells provides information on the spatial distri-
bution of radio sources, it is also interesting to study their distri-
bution in flux density. The number of sources per solid angle and
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tion found for LoTSS-DR1 radio sources, and a bias function
from the literature. We present our conclusions in Sect. 7.

This work is complemented by four Appendices. In App. A
we describe a masking procedure for the TGSS-ADR1 catalogue
that is used for comparison and estimate the corresponding an-
gular two-point correlation function. Five common estimators
for the angular two-point correlation function are described and
compared in the context of LoTSS-DR1 in App. B. We also test
the accuracy of the software package TreeCorr (Jarvis et al.
2004) that we use for the computation of the angular two-point
correlation function by means of an independent, computation-
ally slow but presumably exact brute force algorithm (App. C).
In App. D we show that the contribution of the kinematic radio
dipole to the angular two-point correlation function is negligible
for the angular scales probed in this work.

2. Large scale structure in radio continuum surveys

Before we investigate the data, we first discuss what the standard
model of cosmology predicts for the statistical tests that we will
consider throughout this work.

2.1. Source counts in cells

The cosmological principle is fundamental to modern cosmol-
ogy, stating that on large enough scales the distribution of mat-
ter and light is isotropic and homogeneous on spatial sections
of space-time. Isotropy on large scales is observed at a wide
range of frequencies, from the distribution of radio sources, to
the distribution of gamma-ray bursts, and is most precisely tested
by means of the cosmic microwave sky (see e.g. Peebles 1993;
Planck Collaboration et al. 2016, 2019). Therefore we also ex-
pect to find an statistically isotropic distribution of extragalactic
radio sources for LoTSS, which means that the expectation value
of the number of radio sources per unit solid angle, or surface
density �, with flux density above a certain threshold S min, is
independent of the position on the sky e. The number counts in
a pixel (or cell) of solid angle ⌦pix centred at e are

N(e, S min) =
Z

⌦pix

�(e, S min)d⌦, (1)

with (ensemble) expectation value

hN(e, S min)i = N̄(S min) = �̄(S min)⌦pix. (2)

The simplest model for the distribution of radio sources as-
sumes that they are (i) identically and (ii) independently dis-
tributed, and (iii) pointlike (i.e. it is possible to reduce the pixel
size until each pixel would contain at most one fully contained
source). These assumptions define what is called a homogenous
Poisson process (see e.g. Peebles 1980). Thus the naive expecta-
tion is that the probability of finding k sources above a flux den-
sity threshold S min in any cell of fixed size is given by a Poisson
distribution with intensity parameter �:

p
P
k
=
�k

k!
e
��, , (3)

with expectation N̄ ⌘ E[k] = � and variance Var[k] = � = N̄.
Deviations from a Poisson distribution are expected due to

e↵ects from gravitational clustering of large-scale structure [a
violation of condition (ii)], resolved sources [a violation of con-
dition (iii)], and multi-component sources, such as FRII radio

galaxies in which the radio lobes are not statistically indepen-
dent from each other [violation of condition (ii)]. Di↵erent types
of radio sources could follow di↵erent statistical distributions,
which would then violate condition (i). These e↵ects and addi-
tional observational systematics are expected in radio continuum
surveys, and thus we must expect that radio sources should not
be perfectly Poisson distributed.

Let us consider the expected modifications due to multiple
radio components and show that this e↵ect can be modelled by
means of a compound Poisson distribution (James 2006), mean-
ing that the distribution that follows from adding up n identi-
cally distributed and mutually independent random counts ni,
with i = 1 to n, and n itself follows a Poisson distribution with
mean �. Let us first assume that the number of radio compo-
nents is also Poisson distributed. Then the probability p to find
k sources in a cell follows from p(k) =

P
1

n=0 p(k|n)p(n), where
the first factor is the conditional probability to find k radio com-
ponents, like distinct hot spots and the core, associated with n

galaxies and the second factor is the probability to have n galax-
ies. We further assume � is the mean number of components per
galaxy and thus the mean of the conditional probability is n�.
This results in

p
CP
k
=

1X

n=0

"
(n�)k

e
�n�

k!
�n

e
��

n!

#
, (4)

with expectation and variance now given by

N̄ ⌘ E[k] = ��, Var[k] = ��(1 + �) = N̄(1 + �). (5)

Thus, we see that unidentified multiple radio components can
increase the variance of the source counts, for example, for a
textbook FRII with a detected core we would see three compo-
nents which would immediately lead to an increase of the vari-
ance. This statement is independent of the size of the cell, but
how many radio components can be identified does depend on
the angular resolution and completeness of the radio continuum
survey.

It is useful to define the clustering parameter (Peebles 1980)

nc ⌘
Var[k]
E[k]

, (6)

which is a proxy for the number of sources per ‘cluster’. For the
Poisson distribution nc = 1, while nc = 1 + � for a compound
Poisson distribution. Groups of radio sources, like a group of
SFGs, also contribute to nc, and thus nc is also a tracer of cluster-
ing at small angular scales. The measurement of nc alone can not
distinguish between galaxy groups, multi-component sources,
and imaging artefacts.

Whilst we believe assuming a Poisson distribution for the
number of radio components per physical source will be appro-
priate for this work, we can chose another distribution, which
will result in another compound distribution. To give a second
example, assuming a logarithmic distribution results in a nega-
tive binomial distribution (James 2006), which interestingly pro-
vides the best-fit to three dimensional counts-in-cell in the Sloan
digital sky survey (Hurtado-Gil et al. 2017).

2.2. Differential source counts

While counts in cells provides information on the spatial distri-
bution of radio sources, it is also interesting to study their distri-
bution in flux density. The number of sources per solid angle and
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Fig. 10. Sample statistics of number counts in cells as a function of flux density threshold. Shown are the clustering parameter nc (variance over
mean), which is expected to be one for the Poisson distribution, the skewness g1 and excess kurtosis g2 � 3 with error bars calculated from 100
bootstrap samples. On the left hand side for the LoTSS-DR1 radio source catalogue, on the right hand side for the LoTSS-DR1 value-added source
catalogue. From top to bottom: mask d and masks 2 and 1.

but at flux density thresholds above 1 mJy, the clustering parame-
ter is almost constant and only slightly above unity. It approaches
unity faster for the value added catalogue. It is also interesting to
observe that the radio source catalogue shows a strong evolution
of excess kurtosis g2 � 3 with increasing flux density thresh-
old, except for noise mask 1, which masks all but the cleanest
cells. In contrast, the value-added catalogue shows the qualita-
tively expected behaviour for excess kurtosis and skewness for
all masks considered. The value-added catalogue di↵ers from the
original radio source catalogue in a statistically significant way,
especially with respect to higher moments, despite the fact that
the number of sources in both catalogues di↵ers by less than 2
per cent.

In Fig. 11 we compare the observed coe�cients of skewness
and excess kurtosis of the LoTSS-DR1 value-added source cat-
alogue with ‘mask d’ to their theoretical expected values for a
Poisson and a compound Poisson distribution. We observe that
the compound Poisson distribution provides a significant im-
provement over the Poisson distribution, which extends to values
well into the regime in which we can regard the catalogue to be
complete.

Fig. 11. Skewness (g1) and excess kurtosis (g2�3) of the masked LoTSS
DR1 value-added source catalogue (mask d), also plotted are the ex-
pected moments of a Poisson and compound Poisson distribution. Er-
rors bars for the data sample are computed from bootstrap sampling.
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Fig. 12. Histograms of LoTSS-DR1 counts-in-cell for the flux density thresholds 1, 2, 4 and 8 mJy. Also shown are the best-fit Poisson and
compound Poisson distributions.

Table 4. Pearson �2-test statistic of counts-in-cell distribution for the
masked LoTSS-DR1 value-added source catalogue with ‘mask d’ for
four flux density thresholds. We compare a Poisson (P) and a Com-
pound Poisson (CP) distribution to the measured histograms. For each
threshold value, we provide the number of sources in the catalogue, the
clustering parameter nc, the reduced �2-values (�2/dof) and the degrees
of freedom (dof = number of histogram bins minus number of parame-
ters of distribution) for both statistical models.

S min N nc
�2

P
dofP

dofP
�2

CP
dofCP

dofCP
(mJy)

1 102 940 1.44 30.67 32 0.76 31
2 51 288 1.22 11.67 20 1.12 19
4 30 556 1.15 7.69 14 1.38 13
8 19 612 1.11 3.52 11 0.46 10

To further quantify the quality of the fit, we tested both dis-
tributions with a Pearson chi-square test for four di↵erent flux
density thresholds applied on the LoTSS-DR1 value-added cat-
alogue with mask d. The results of that test are shown in Fig. 12
and Table 4. While the coe�cient of skewness shows very nice
agreement between the compound Poisson distribution and the
data, the coe�cient of excess kurtosis shows better agreement
with the compound Poisson distribution compared with the Pois-
son distribution. In terms of the Pearson �2-test the compound
Poisson distribution describes the data significantly better than
the Poisson distribution, see Table 4. Values of �2/dof of order
unity indicate a good fit. For the 1 mJy sample, this ratio is 30.7

and 0.76 for the Poisson and compound Poisson distributions,
respectively.

We conclude that the counts-in-cell distribution of the
LoTSS-DR1 value-added catalogue is not Poissonian. The com-
pound Poisson distribution provides an excellent fit to the data,
but other distributions (not studied in this work) might also pro-
vide a good fit to the data.

We can also test if the mock catalogue shows the same sta-
tistical behaviour as the data. Their clustering parameter and co-
e�cients of skewness and excess kurtosis are shown in Fig. 13.
In order to compare the mock catalogue to the LoTSS-DR1, we
randomly draw sub-samples of the mock catalogue that contain
the same number of data points as the LoTSS-DR1 value-added
source catalogue. At S > 1 mJy, we find that the clustering pa-
rameter in the mocks is closer to one and the higher statistical
moments are closer to a Poisson distribution than the LoTSS-
DR1 value-added source catalogue. We checked that fitting a
compound Poisson distribution to the mocks also improves the
fits (as there are more free parameters), but not by as much in the
case of the LoTSS-DR1 value added source catalogue. We thus
conclude that there are indeed clustering e↵ects in the LoTSS-
DR1 data on top of the e↵ects that are taken care of in the mock
catalogue.

5.2. Differential source counts

Let us now turn our attention to the di↵erential source counts as
a function of flux density (we use the integrated flux density for
all sources). In Fig. 14 we plot the di↵erential number counts of
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Fig. 15. Top: Comparison of LoTSS-DR1 di↵erential source counts us-
ing ‘mask d’ and SKADS 151 MHz and T-RECS ‘wide’ 150 MHz sim-
ulations. The grey band corresponds to a ±20% variation of the LoTSS
flux density scale due to uncertainties in the flux density calibration.
Bottom: Contributions from AGNs and SFGs in the T-RECS ‘wide’ dif-
ferential source counts as compared to the total LoTSS-DR1 di↵erential
source counts. All: Error bars are due to Poisson noise in each flux den-
sity bin, which have equal bin width in log10(S ).

Fig. 16. Number of radio sources as a function of available z for four
di↵erent flux density thresholds, with error bars due to Poisson noise.
Only sources with available redshift (‘z_best’) of the LoTSS-DR1 value
added source catalogue after applying ‘mask z’ are considered here.

The median redshift increases continuously from 0.50 for the
1 mJy to 0.64 for the 8 mJy sample. This is in good qualitative
agreement with the expectation (supported also by the simula-
tions discussed above), that the brighter samples are dominated
by AGNs at relatively high redshift while in the faintest sam-

Fig. 17. Di↵erential source counts of the LoTSS-DR1 value-added
sources masked with ‘mask z’ separated by redshift percentiles, z33 =
0.376 and z66 = 0.705. Additionally the di↵erential source counts of all
sources (‘All’) and of all sources with redshift information (‘Any z’) are
shown.

ple SFGs at lower redshift start to dominate the statistics. First
classifications of AGNs and SFGs in the LoTSS-DR1 catalogue
have been done by Hardcastle et al. (2019) and Sabater et al.
(2019). We additionally separated all sources with available red-
shift information after masking with ‘mask z’ by the 33 and 66
percentiles, which are:

z33 = 0.376 and z66 = 0.705, (25)

respectively. From these three samples we inferred the di↵eren-
tial source counts, which are presented in Fig. 17. These di↵eren-
tial source counts support the above expectation, that the source
distribution at fainter flux densities is dominated by objects at
lower redshift and vice versa at brighter flux densities by objects
at higher redshift.

Radio sources with redshift information are very likely (non-
zero probability of misidentification) to be real sources and so
we can consider that sample of radio sources as an independently
confirmed sample. It is then interesting to compare its statistical
properties with those of the sample without redshift information.

In Fig. 18 we show the clustering parameter nc as a function
of flux density threshold after applying ‘mask z’. In the top panel
we compare the radio sources with redshift information to those
without redshift information. We see that the values for nc agree
very well with each other for all considered flux density thresh-
olds. At flux densities below 1 mJy, both sets of sources seem to
cluster less than the sum of both sets.

We also show in the bottom panel of Fig. 18 how nc changes
when we exclude all sources estimated to be below a certain red-
shift. Interestingly, we find that excluding radio sources from the
local neighbourhood (z < 0.2) decreases the clustering parame-
ter nc. The e↵ect increases if we exclude radio sources from a
larger volume and is strongest if we exclude all objects in the lo-
cal Hubble volume (z < 1). This e↵ect is seen for all flux density
thresholds, but is most prominent for thresholds below 1 mJy.
This is consistent with the expectation that there is more clus-
tering in the late Universe, but a much more detailed study will
be necessary to make quantitative statements, which we leave
for a future work. We dismiss radio sources below 1 mJy in the
following section when we study the two-point correlation func-
tion.

We conclude our study of the one-point statistics by point-
ing out that LoTSS-DR1 produces reliable radio source counts
and shows statistical properties that are self-consistent and con-
sistent with previous observations and simulations above inte-
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Fig. 15. Top: Comparison of LoTSS-DR1 di↵erential source counts us-
ing ‘mask d’ and SKADS 151 MHz and T-RECS ‘wide’ 150 MHz sim-
ulations. The grey band corresponds to a ±20% variation of the LoTSS
flux density scale due to uncertainties in the flux density calibration.
Bottom: Contributions from AGNs and SFGs in the T-RECS ‘wide’ dif-
ferential source counts as compared to the total LoTSS-DR1 di↵erential
source counts. All: Error bars are due to Poisson noise in each flux den-
sity bin, which have equal bin width in log10(S ).

Fig. 16. Number of radio sources as a function of available z for four
di↵erent flux density thresholds, with error bars due to Poisson noise.
Only sources with available redshift (‘z_best’) of the LoTSS-DR1 value
added source catalogue after applying ‘mask z’ are considered here.

The median redshift increases continuously from 0.50 for the
1 mJy to 0.64 for the 8 mJy sample. This is in good qualitative
agreement with the expectation (supported also by the simula-
tions discussed above), that the brighter samples are dominated
by AGNs at relatively high redshift while in the faintest sam-

Fig. 17. Di↵erential source counts of the LoTSS-DR1 value-added
sources masked with ‘mask z’ separated by redshift percentiles, z33 =
0.376 and z66 = 0.705. Additionally the di↵erential source counts of all
sources (‘All’) and of all sources with redshift information (‘Any z’) are
shown.

ple SFGs at lower redshift start to dominate the statistics. First
classifications of AGNs and SFGs in the LoTSS-DR1 catalogue
have been done by Hardcastle et al. (2019) and Sabater et al.
(2019). We additionally separated all sources with available red-
shift information after masking with ‘mask z’ by the 33 and 66
percentiles, which are:

z33 = 0.376 and z66 = 0.705, (25)

respectively. From these three samples we inferred the di↵eren-
tial source counts, which are presented in Fig. 17. These di↵eren-
tial source counts support the above expectation, that the source
distribution at fainter flux densities is dominated by objects at
lower redshift and vice versa at brighter flux densities by objects
at higher redshift.

Radio sources with redshift information are very likely (non-
zero probability of misidentification) to be real sources and so
we can consider that sample of radio sources as an independently
confirmed sample. It is then interesting to compare its statistical
properties with those of the sample without redshift information.

In Fig. 18 we show the clustering parameter nc as a function
of flux density threshold after applying ‘mask z’. In the top panel
we compare the radio sources with redshift information to those
without redshift information. We see that the values for nc agree
very well with each other for all considered flux density thresh-
olds. At flux densities below 1 mJy, both sets of sources seem to
cluster less than the sum of both sets.

We also show in the bottom panel of Fig. 18 how nc changes
when we exclude all sources estimated to be below a certain red-
shift. Interestingly, we find that excluding radio sources from the
local neighbourhood (z < 0.2) decreases the clustering parame-
ter nc. The e↵ect increases if we exclude radio sources from a
larger volume and is strongest if we exclude all objects in the lo-
cal Hubble volume (z < 1). This e↵ect is seen for all flux density
thresholds, but is most prominent for thresholds below 1 mJy.
This is consistent with the expectation that there is more clus-
tering in the late Universe, but a much more detailed study will
be necessary to make quantitative statements, which we leave
for a future work. We dismiss radio sources below 1 mJy in the
following section when we study the two-point correlation func-
tion.

We conclude our study of the one-point statistics by point-
ing out that LoTSS-DR1 produces reliable radio source counts
and shows statistical properties that are self-consistent and con-
sistent with previous observations and simulations above inte-
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Fig. 18. Clustering parameter nc as function of flux density threshold
and available redshift information based on the value ‘z_best’ from the
LoTSS-DR1 value-added source catalogue after application of ‘mask
z’. Top: We compare radio sources with and without redshift infor-
mation and contrast them with the full sample. Bottom: Only objects
with redshifts above the quoted value are included in the respective data
points. Error bars are computed from bootstrap sampling.

grated flux densities of 1 mJy. The corresponding counts-in-cell
map for ‘mask d’ and ‘mask 1’ with S > 1 mJy is shown in
Fig. 19.

6. Two-point statistics

6.1. The angular two-point correlation function

In order to estimate the angular two-point correlation of radio
sources, we make use of the estimator proposed by Landy &
Szalay (1993),

ŵ(✓) =
DD � 2DR + RR

RR
, (26)

where DD,DR, and RR denote the normalised pair counts at sep-
aration angle ✓ for data-data, data-random, and random-random
source pairs (see App. B for details). The Landy-Szalay (LS) es-
timator has minimal bias and minimal variance and is claimed
to be more robust than other estimators (see Kerscher et al. 2000
and App. B). Data points are taken from the LoTSS-DR1 value-
added source catalogue and random points either from the mock
catalogue (default) described in Sect. 4, or from a purely random
sample. Data and random catalogues are masked alike.

For a large enough random source catalogue, the expectation
value of the LS estimator is (Landy & Szalay 1993):

hŵ(✓)i =
1 + w(✓)
1 + w⌦

� 1 ⇡ w(✓) � w⌦, (27)

where w⌦ =
R

Gp(✓)w(✓)d✓, with Gp(✓) being the normalised
count of pairs of ‘atomic’ cells (cells that are small enough to
contain at most one point source) at separation ✓ in the analysed
survey area. Thus, the LS estimator (as well as all other esti-
mators that have been proposed in the literature) is biased. The
function Gp(✓) depends on the binning.

The bias of the estimator is due to the so-called integral con-
straint, which is an e↵ect of the finite survey area and reflects
the fact that we cannot measure an unbiased estimate of the two-
point correlation based on a single estimate of the total number

of sources in the survey region. Given a model for w(✓), we can
estimate this bias from the random source catalogue via:

w⌦ =

P
bins RR(✓)w(✓)
P

bins RR(✓)
. (28)

The variance of the estimator is (Landy & Szalay 1993)

Var[ŵ(✓)] =
 

1 + w(✓)
1 + w⌦

!2 2
Nd(Nd � 1)Gp(✓)

(29)

⇡
2

Nd(Nd � 1)Gp(✓)
, (30)

where Nd denotes the number of data points in the survey. The
second expression holds for the assumption that the two-point
correlation is small compared to unity. The factor Nd(Nd � 1)/2
scales the Poisson noise with the overall number of pairs and the
factor Gp(✓) accounts for how many independent pairs can be
probed at angular separation ✓.

For calculating the correlations, we make use of the publicly
available code TreeCorr6 in version 3.3 (Jarvis et al. 2004).
TreeCorr uses an algorithm that structures the sources in cells
according to a logarithmic binning of cell separation. In that
way, the numerical problem of calculating the two-point corre-
lations for objects in cells with N1 and N2 members is reduced
from scaling with O(N1N2) to O(N1 +N2), which leads to a huge
speed-up compared to a naive algorithm. As it is advised to use
mock catalogues that are much larger than the data catalogues,
the computational time scales linearly with the number of mock
sources considered. Using TreeCorr, we fix the range to 0.1 deg
 ✓  32 deg with equal bin width of � ln(✓/1 deg) = 0.1. In or-
der to account for the shot noise in samples with smaller numbers
of sources, we increase the bin width by factors of two. The bin
centres are estimated by using the mean value of ln(✓/1 deg) for
all pairs in the bin. The TreeCorr parameter bin_slop controls
the accuracy of the computation. It turns out that one must take
care to change its default setting to obtain the required accuracy
once the two-point correlations are at or below O(10�2), as dis-
cussed and demonstrated in some detail in App. C. bin_slop=0
gives the best possible result. It should also be stressed that for
angles exceeding a few degrees it is important to compute an-
gular distances on great circles, which is achieved by setting the
TreeCorr parameter metric=‘Arc’. We have verified that us-
ing the Euclidean metric instead makes a noticeable di↵erence
at the largest angular scales accessible in LoTSS-DR1.

We base our analysis on the LoTSS-DR1 value-added source
catalogue. We start our analysis with ‘mask d’ and flux density
thresholds of 1, 2, and 4 mJy. At flux density thresholds larger
than 1 mJy we expect the point source completeness to be well
above 99 per cent. We also apply corresponding flux density
thresholds on the mock catalogue (Sect. 4), which then contains
1 923 339, 995 218, and 545 520 mock sources for ‘mask d’ and
798 490, 412 922, and 226 385 mock sources for ‘mask 1’, re-
spectively.

The angular two-point correlation function w(✓) with statis-
tical errors calculated by TreeCorr is shown in Fig. 20 for dif-
ferent flux density thresholds. The error estimation of TreeCorr
is based on the Poisson noise in each separation bin. We addi-
tionally tested error estimations in terms of bootstrapping and
found no large di↵erence in both estimations, see App. C for de-
tails. Previous radio continuum surveys showed larger bootstrap
errors than Poisson errors, see Cress et al. (1996) for the FIRST
6 http://github.com/rmjarvis/TreeCorr

Article number, page 16 of 29

A&A proofs: manuscript no. main_v5

Fig. 18. Clustering parameter nc as function of flux density threshold
and available redshift information based on the value ‘z_best’ from the
LoTSS-DR1 value-added source catalogue after application of ‘mask
z’. Top: We compare radio sources with and without redshift infor-
mation and contrast them with the full sample. Bottom: Only objects
with redshifts above the quoted value are included in the respective data
points. Error bars are computed from bootstrap sampling.

grated flux densities of 1 mJy. The corresponding counts-in-cell
map for ‘mask d’ and ‘mask 1’ with S > 1 mJy is shown in
Fig. 19.

6. Two-point statistics

6.1. The angular two-point correlation function

In order to estimate the angular two-point correlation of radio
sources, we make use of the estimator proposed by Landy &
Szalay (1993),

ŵ(✓) =
DD � 2DR + RR

RR
, (26)

where DD,DR, and RR denote the normalised pair counts at sep-
aration angle ✓ for data-data, data-random, and random-random
source pairs (see App. B for details). The Landy-Szalay (LS) es-
timator has minimal bias and minimal variance and is claimed
to be more robust than other estimators (see Kerscher et al. 2000
and App. B). Data points are taken from the LoTSS-DR1 value-
added source catalogue and random points either from the mock
catalogue (default) described in Sect. 4, or from a purely random
sample. Data and random catalogues are masked alike.

For a large enough random source catalogue, the expectation
value of the LS estimator is (Landy & Szalay 1993):

hŵ(✓)i =
1 + w(✓)
1 + w⌦

� 1 ⇡ w(✓) � w⌦, (27)

where w⌦ =
R

Gp(✓)w(✓)d✓, with Gp(✓) being the normalised
count of pairs of ‘atomic’ cells (cells that are small enough to
contain at most one point source) at separation ✓ in the analysed
survey area. Thus, the LS estimator (as well as all other esti-
mators that have been proposed in the literature) is biased. The
function Gp(✓) depends on the binning.

The bias of the estimator is due to the so-called integral con-
straint, which is an e↵ect of the finite survey area and reflects
the fact that we cannot measure an unbiased estimate of the two-
point correlation based on a single estimate of the total number

of sources in the survey region. Given a model for w(✓), we can
estimate this bias from the random source catalogue via:

w⌦ =

P
bins RR(✓)w(✓)
P

bins RR(✓)
. (28)

The variance of the estimator is (Landy & Szalay 1993)

Var[ŵ(✓)] =
 

1 + w(✓)
1 + w⌦

!2 2
Nd(Nd � 1)Gp(✓)

(29)

⇡
2

Nd(Nd � 1)Gp(✓)
, (30)

where Nd denotes the number of data points in the survey. The
second expression holds for the assumption that the two-point
correlation is small compared to unity. The factor Nd(Nd � 1)/2
scales the Poisson noise with the overall number of pairs and the
factor Gp(✓) accounts for how many independent pairs can be
probed at angular separation ✓.

For calculating the correlations, we make use of the publicly
available code TreeCorr6 in version 3.3 (Jarvis et al. 2004).
TreeCorr uses an algorithm that structures the sources in cells
according to a logarithmic binning of cell separation. In that
way, the numerical problem of calculating the two-point corre-
lations for objects in cells with N1 and N2 members is reduced
from scaling with O(N1N2) to O(N1 +N2), which leads to a huge
speed-up compared to a naive algorithm. As it is advised to use
mock catalogues that are much larger than the data catalogues,
the computational time scales linearly with the number of mock
sources considered. Using TreeCorr, we fix the range to 0.1 deg
 ✓  32 deg with equal bin width of � ln(✓/1 deg) = 0.1. In or-
der to account for the shot noise in samples with smaller numbers
of sources, we increase the bin width by factors of two. The bin
centres are estimated by using the mean value of ln(✓/1 deg) for
all pairs in the bin. The TreeCorr parameter bin_slop controls
the accuracy of the computation. It turns out that one must take
care to change its default setting to obtain the required accuracy
once the two-point correlations are at or below O(10�2), as dis-
cussed and demonstrated in some detail in App. C. bin_slop=0
gives the best possible result. It should also be stressed that for
angles exceeding a few degrees it is important to compute an-
gular distances on great circles, which is achieved by setting the
TreeCorr parameter metric=‘Arc’. We have verified that us-
ing the Euclidean metric instead makes a noticeable di↵erence
at the largest angular scales accessible in LoTSS-DR1.

We base our analysis on the LoTSS-DR1 value-added source
catalogue. We start our analysis with ‘mask d’ and flux density
thresholds of 1, 2, and 4 mJy. At flux density thresholds larger
than 1 mJy we expect the point source completeness to be well
above 99 per cent. We also apply corresponding flux density
thresholds on the mock catalogue (Sect. 4), which then contains
1 923 339, 995 218, and 545 520 mock sources for ‘mask d’ and
798 490, 412 922, and 226 385 mock sources for ‘mask 1’, re-
spectively.

The angular two-point correlation function w(✓) with statis-
tical errors calculated by TreeCorr is shown in Fig. 20 for dif-
ferent flux density thresholds. The error estimation of TreeCorr
is based on the Poisson noise in each separation bin. We addi-
tionally tested error estimations in terms of bootstrapping and
found no large di↵erence in both estimations, see App. C for de-
tails. Previous radio continuum surveys showed larger bootstrap
errors than Poisson errors, see Cress et al. (1996) for the FIRST
6 http://github.com/rmjarvis/TreeCorr
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Fig. 18. Clustering parameter nc as function of flux density threshold
and available redshift information based on the value ‘z_best’ from the
LoTSS-DR1 value-added source catalogue after application of ‘mask
z’. Top: We compare radio sources with and without redshift infor-
mation and contrast them with the full sample. Bottom: Only objects
with redshifts above the quoted value are included in the respective data
points. Error bars are computed from bootstrap sampling.

grated flux densities of 1 mJy. The corresponding counts-in-cell
map for ‘mask d’ and ‘mask 1’ with S > 1 mJy is shown in
Fig. 19.

6. Two-point statistics

6.1. The angular two-point correlation function

In order to estimate the angular two-point correlation of radio
sources, we make use of the estimator proposed by Landy &
Szalay (1993),

ŵ(✓) =
DD � 2DR + RR

RR
, (26)

where DD,DR, and RR denote the normalised pair counts at sep-
aration angle ✓ for data-data, data-random, and random-random
source pairs (see App. B for details). The Landy-Szalay (LS) es-
timator has minimal bias and minimal variance and is claimed
to be more robust than other estimators (see Kerscher et al. 2000
and App. B). Data points are taken from the LoTSS-DR1 value-
added source catalogue and random points either from the mock
catalogue (default) described in Sect. 4, or from a purely random
sample. Data and random catalogues are masked alike.

For a large enough random source catalogue, the expectation
value of the LS estimator is (Landy & Szalay 1993):

hŵ(✓)i =
1 + w(✓)
1 + w⌦

� 1 ⇡ w(✓) � w⌦, (27)

where w⌦ =
R

Gp(✓)w(✓)d✓, with Gp(✓) being the normalised
count of pairs of ‘atomic’ cells (cells that are small enough to
contain at most one point source) at separation ✓ in the analysed
survey area. Thus, the LS estimator (as well as all other esti-
mators that have been proposed in the literature) is biased. The
function Gp(✓) depends on the binning.

The bias of the estimator is due to the so-called integral con-
straint, which is an e↵ect of the finite survey area and reflects
the fact that we cannot measure an unbiased estimate of the two-
point correlation based on a single estimate of the total number

of sources in the survey region. Given a model for w(✓), we can
estimate this bias from the random source catalogue via:

w⌦ =

P
bins RR(✓)w(✓)
P

bins RR(✓)
. (28)

The variance of the estimator is (Landy & Szalay 1993)

Var[ŵ(✓)] =
 

1 + w(✓)
1 + w⌦

!2 2
Nd(Nd � 1)Gp(✓)

(29)

⇡
2

Nd(Nd � 1)Gp(✓)
, (30)

where Nd denotes the number of data points in the survey. The
second expression holds for the assumption that the two-point
correlation is small compared to unity. The factor Nd(Nd � 1)/2
scales the Poisson noise with the overall number of pairs and the
factor Gp(✓) accounts for how many independent pairs can be
probed at angular separation ✓.

For calculating the correlations, we make use of the publicly
available code TreeCorr6 in version 3.3 (Jarvis et al. 2004).
TreeCorr uses an algorithm that structures the sources in cells
according to a logarithmic binning of cell separation. In that
way, the numerical problem of calculating the two-point corre-
lations for objects in cells with N1 and N2 members is reduced
from scaling with O(N1N2) to O(N1 +N2), which leads to a huge
speed-up compared to a naive algorithm. As it is advised to use
mock catalogues that are much larger than the data catalogues,
the computational time scales linearly with the number of mock
sources considered. Using TreeCorr, we fix the range to 0.1 deg
 ✓  32 deg with equal bin width of � ln(✓/1 deg) = 0.1. In or-
der to account for the shot noise in samples with smaller numbers
of sources, we increase the bin width by factors of two. The bin
centres are estimated by using the mean value of ln(✓/1 deg) for
all pairs in the bin. The TreeCorr parameter bin_slop controls
the accuracy of the computation. It turns out that one must take
care to change its default setting to obtain the required accuracy
once the two-point correlations are at or below O(10�2), as dis-
cussed and demonstrated in some detail in App. C. bin_slop=0
gives the best possible result. It should also be stressed that for
angles exceeding a few degrees it is important to compute an-
gular distances on great circles, which is achieved by setting the
TreeCorr parameter metric=‘Arc’. We have verified that us-
ing the Euclidean metric instead makes a noticeable di↵erence
at the largest angular scales accessible in LoTSS-DR1.

We base our analysis on the LoTSS-DR1 value-added source
catalogue. We start our analysis with ‘mask d’ and flux density
thresholds of 1, 2, and 4 mJy. At flux density thresholds larger
than 1 mJy we expect the point source completeness to be well
above 99 per cent. We also apply corresponding flux density
thresholds on the mock catalogue (Sect. 4), which then contains
1 923 339, 995 218, and 545 520 mock sources for ‘mask d’ and
798 490, 412 922, and 226 385 mock sources for ‘mask 1’, re-
spectively.

The angular two-point correlation function w(✓) with statis-
tical errors calculated by TreeCorr is shown in Fig. 20 for dif-
ferent flux density thresholds. The error estimation of TreeCorr
is based on the Poisson noise in each separation bin. We addi-
tionally tested error estimations in terms of bootstrapping and
found no large di↵erence in both estimations, see App. C for de-
tails. Previous radio continuum surveys showed larger bootstrap
errors than Poisson errors, see Cress et al. (1996) for the FIRST
6 http://github.com/rmjarvis/TreeCorr
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Fig. 18. Clustering parameter nc as function of flux density threshold
and available redshift information based on the value ‘z_best’ from the
LoTSS-DR1 value-added source catalogue after application of ‘mask
z’. Top: We compare radio sources with and without redshift infor-
mation and contrast them with the full sample. Bottom: Only objects
with redshifts above the quoted value are included in the respective data
points. Error bars are computed from bootstrap sampling.

grated flux densities of 1 mJy. The corresponding counts-in-cell
map for ‘mask d’ and ‘mask 1’ with S > 1 mJy is shown in
Fig. 19.

6. Two-point statistics

6.1. The angular two-point correlation function

In order to estimate the angular two-point correlation of radio
sources, we make use of the estimator proposed by Landy &
Szalay (1993),

ŵ(✓) =
DD � 2DR + RR

RR
, (26)

where DD,DR, and RR denote the normalised pair counts at sep-
aration angle ✓ for data-data, data-random, and random-random
source pairs (see App. B for details). The Landy-Szalay (LS) es-
timator has minimal bias and minimal variance and is claimed
to be more robust than other estimators (see Kerscher et al. 2000
and App. B). Data points are taken from the LoTSS-DR1 value-
added source catalogue and random points either from the mock
catalogue (default) described in Sect. 4, or from a purely random
sample. Data and random catalogues are masked alike.

For a large enough random source catalogue, the expectation
value of the LS estimator is (Landy & Szalay 1993):

hŵ(✓)i =
1 + w(✓)
1 + w⌦

� 1 ⇡ w(✓) � w⌦, (27)

where w⌦ =
R

Gp(✓)w(✓)d✓, with Gp(✓) being the normalised
count of pairs of ‘atomic’ cells (cells that are small enough to
contain at most one point source) at separation ✓ in the analysed
survey area. Thus, the LS estimator (as well as all other esti-
mators that have been proposed in the literature) is biased. The
function Gp(✓) depends on the binning.

The bias of the estimator is due to the so-called integral con-
straint, which is an e↵ect of the finite survey area and reflects
the fact that we cannot measure an unbiased estimate of the two-
point correlation based on a single estimate of the total number

of sources in the survey region. Given a model for w(✓), we can
estimate this bias from the random source catalogue via:

w⌦ =

P
bins RR(✓)w(✓)
P

bins RR(✓)
. (28)

The variance of the estimator is (Landy & Szalay 1993)

Var[ŵ(✓)] =
 

1 + w(✓)
1 + w⌦

!2 2
Nd(Nd � 1)Gp(✓)

(29)

⇡
2

Nd(Nd � 1)Gp(✓)
, (30)

where Nd denotes the number of data points in the survey. The
second expression holds for the assumption that the two-point
correlation is small compared to unity. The factor Nd(Nd � 1)/2
scales the Poisson noise with the overall number of pairs and the
factor Gp(✓) accounts for how many independent pairs can be
probed at angular separation ✓.

For calculating the correlations, we make use of the publicly
available code TreeCorr6 in version 3.3 (Jarvis et al. 2004).
TreeCorr uses an algorithm that structures the sources in cells
according to a logarithmic binning of cell separation. In that
way, the numerical problem of calculating the two-point corre-
lations for objects in cells with N1 and N2 members is reduced
from scaling with O(N1N2) to O(N1 +N2), which leads to a huge
speed-up compared to a naive algorithm. As it is advised to use
mock catalogues that are much larger than the data catalogues,
the computational time scales linearly with the number of mock
sources considered. Using TreeCorr, we fix the range to 0.1 deg
 ✓  32 deg with equal bin width of � ln(✓/1 deg) = 0.1. In or-
der to account for the shot noise in samples with smaller numbers
of sources, we increase the bin width by factors of two. The bin
centres are estimated by using the mean value of ln(✓/1 deg) for
all pairs in the bin. The TreeCorr parameter bin_slop controls
the accuracy of the computation. It turns out that one must take
care to change its default setting to obtain the required accuracy
once the two-point correlations are at or below O(10�2), as dis-
cussed and demonstrated in some detail in App. C. bin_slop=0
gives the best possible result. It should also be stressed that for
angles exceeding a few degrees it is important to compute an-
gular distances on great circles, which is achieved by setting the
TreeCorr parameter metric=‘Arc’. We have verified that us-
ing the Euclidean metric instead makes a noticeable di↵erence
at the largest angular scales accessible in LoTSS-DR1.

We base our analysis on the LoTSS-DR1 value-added source
catalogue. We start our analysis with ‘mask d’ and flux density
thresholds of 1, 2, and 4 mJy. At flux density thresholds larger
than 1 mJy we expect the point source completeness to be well
above 99 per cent. We also apply corresponding flux density
thresholds on the mock catalogue (Sect. 4), which then contains
1 923 339, 995 218, and 545 520 mock sources for ‘mask d’ and
798 490, 412 922, and 226 385 mock sources for ‘mask 1’, re-
spectively.

The angular two-point correlation function w(✓) with statis-
tical errors calculated by TreeCorr is shown in Fig. 20 for dif-
ferent flux density thresholds. The error estimation of TreeCorr
is based on the Poisson noise in each separation bin. We addi-
tionally tested error estimations in terms of bootstrapping and
found no large di↵erence in both estimations, see App. C for de-
tails. Previous radio continuum surveys showed larger bootstrap
errors than Poisson errors, see Cress et al. (1996) for the FIRST
6 http://github.com/rmjarvis/TreeCorr
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Fig. 9. Mock catalogue of random sources that are detectable at five
times the local rms noise and masked with ‘mask d’.

4. Mock catalogues

As discussed in Section 2.3, the two-point correlation function
quantifies the excess in clustering observed within a galaxy cat-
alogue at di↵erent separation scales compared to that of a uni-
form distribution of galaxies. As such, it is necessary to con-
struct a mock random catalogue which is a realistic distribution
of sources that could be observed but has no knowledge of large
scale structure. With a uniform noise distribution, this would in-
volve constructing a catalogue where random positions across
the observable survey area are selected. However, as can be seen
in Fig. 7, the noise across the field of view is non-uniform. This
will a↵ect how sources of di↵erent flux densities can be detected
across the field of view. To account for this non-uniform noise,
therefore, and its e↵ect on the detection of sources when con-
structing a random catalogue, we follow the method of Hale et al.
(2018).

To obtain a mock catalogue that accurately reflects radio
sources that could be observed with LOFAR, we make use of
the SKA Design Study Simulated Skies (SKADS; Wilman et al.
2008, 2010). These extragalactic simulated catalogues provide
a realistic distribution of sources that could be observed across
100 square degrees, with flux density measurements at five fre-
quencies ranging from 151 MHz to 18 GHz. These sources are
a mixture of both AGN as well as SFGs and have further in-
formation on the type of AGN (Fanaro↵ & Riley (1974) Type
I/II sources as well as radio quiet quasars) or SFG (i.e. normal
star forming galaxy or starburst). As these SKADS catalogues
have realistic radio flux density distributions, they are used to
construct a mock catalogue by comparing whether the flux den-
sity of a randomly generated source from the SKADS catalogue
could be observed above the noise within the LoTSS image.

Therefore, the rms maps from LoTSS were used to deter-
mine whether a randomly generated source would be detectable
above the noise and could realistically be observed. To generate
a mock catalogue, random positions within the observed region
were generated and a flux density from the SKADS catalogue
were also assigned to the sources. Under the assumption that the
source is unresolved, the flux density from SKADS5 was com-
bined with a randomly generated flux density to account for the
noise at the position (see Hale et al. 2018) to form a total ‘mea-
sured’ flux density. This noise was selected from a normal dis-
tribution centred on zero with a sigma given by the rms at that
position. The measured flux density for a source was then com-
pared to the rms noise at the location of the source. A source
only remained within the mock catalogue if this measured flux
density was at least five times greater than the rms value at its
position. We generated enough random positions until we had
roughly a total of 20 times the number of detected sources of the
LoTSS- DR1 radio source catalogue.

5 Using the 1.4 GHz fluxes scaled to the frequency of LoTSS using
↵ = 0.7

The distribution of the sources within this mock catalogue
(after masking has been applied) can be seen in Fig. 9.

5. One-point statistics

5.1. Distribution of radio source counts

As shown in Sect. 3, the distribution of number counts is broader
than expected for a Poisson distribution. The naive assumption
of a Poisson distribution arises from the expectation of a ho-
mogeneous and isotropic universe and independent, identically
distributed and point-like radio sources.

There are at least four contributions to a deviation from a ho-
mogeneous spatial Poisson process: a) multi-component sources
(Magliocchetti et al. 1998), b) fluctuations of the calibration,
c) confused sources (several sources are counted as a single
source), d) cosmic structure. Here we investigate the statistical
properties of the counts in cell by measuring moments of the
empirical counts-in-cell distribution and comparing it to theoret-
ical models.

Let ki denote the counts in the ith cell. Then the central mo-
ments of a sample map are given by:

mj =
1

Ncell

NcellX

i=1

(ki � µ) j, (18)

with the sample mean:

µ =
1

Ncell

NcellX

i=1

ki. (19)

To analyse the counts-in-cell statistics, we calculate the clus-
tering parameter nc (see Eq. 6) as a function of the flux density
threshold. We also calculate the coe�cients of skewness (g1) and
excess kurtosis (g2 � 3) (Zwillinger & Kokoska 2000):

g1 ⌘
m3

m
3/2
2

, g2 � 3 ⌘
m4

m
2
2
� 3. (20)

For the Poisson distribution, Eq. (3), with � = µ, we find:

g
P
1 = µ

�1/2, g
P
2 � 3 = µ�1, (21)

and n
P

c = 1.
For the compound Poisson distribution (Eq. 4),

g
CP
1 =

�2 + 3� + 1
(��)1/2(� + 1)3/2 , g

CP
2 � 3 =

�3 + 6�2 + 7� + 1
��(� + 1)2 , (22)

and nc = 1 + �. With �� = µ we can rewrite the coe�cients as:

g
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µ
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2
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#
, (23)
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2 � 3 =

1
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2
c � 2nc � 1
n

2
c

#
. (24)

In Fig. 10 we show the clustering parameter nc (red circles)
and the coe�cients of skewness (blue triangle) and excess kur-
tosis (yellow squares) for the LoTSS-DR1 radio source and the
LoTSS-DR1 value-added source catalogues as a function of flux
density threshold and for three di↵erent masks (mask d, mask 2
and mask 1). Error bars are computed from 100 bootstrap sam-
ples, but are in most cases smaller than the symbol. It can be seen
that for the lowest flux density thresholds nc is well above unity,
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Fig. 21. Comparison of two-point angular (auto-)correlation functions
for ‘mask d’ for di↵erent random catalogues: mock catalogue based on
LoTSS local rms noise (data-mock), homogeneous random catalogue
accounting for survey geometry only (data-random), and the correlation
of the mock catalogue (mock-random) for flux densities above 1 mJy
(top) and 2 mJy (bottom). We fitted the data to the power-law model de-
scribed in the text. Positive and negative values are shown with full and
open symbols, respectively. The grey shaded region indicates angular
separations with decreasing number of weighted pair counts.

1’. We observe for the 1 mJy sample of ‘mask d’ that the angular
two-point correlation functions of the three regions agree at the
smallest angular separations, but show significantly less correla-
tion for the central region as compared to the left and the right
region at scales around 1 deg. The reason for this discrepancy is
not fully understood, we think it may be due to issues in the flux
density calibration of individual pointings.

The hypothesis of a fluctuation in the flux density calibration
is supported by the observed lack of source counts south of the
unobserved hole in the HETDEX field. To see that, we compare
the LoTSS-DR1 radio source catalogue (Fig. 1) and the mock
catalogue (Fig. 9). According to the mock catalogue, which is
based on the local rms noise (Fig. 7), we should see an overdense
region, whereas the actual source counts reveal an underdensity.
Also the completeness map (Fig. 2) supports the findings from
the mock catalogue. An underestimation of the flux scales in the
corresponding pointings would give rise to exactly that e↵ect.
It would lead to smaller observed flux densities, which would
lead to less observed sources close to the detection limit, but in
terms of noise to cleaner and more complete regions. A simple

Fig. 22. Angular two-point correlation from the LoTSS-DR1 value-
added source catalogue after masking with ‘mask d’, ‘mask 1’, and
‘mask 2’ at flux densities above 1 mJy (top) and 2 mJy (bottom) for
data-mock pairs; see caption of Fig. 21 for further details. We fitted the
data of ‘mask 1’ to the power-law model described in the text. Positive
and negative values are shown with full and open symbols, respectively.
The grey shaded region indicates angular separations with decreasing
number of weighted pair counts.

model for the flux calibration assumes a linear relation between
the true flux scale and the actual flux scale used in each pointing,
S p = cpS

true + op, where cp is fixed observing one or several
calibrator sources for each particular pointing. For large enough
flux densities, the o↵set op, which is expected to be at least of the
order of the rms noise, is irrelevant, but becomes relevant close
to the detection threshold. Consequently, samples with increased
flux density threshold are less a↵ected by flux density calibration
o↵sets.

For the 2 mJy sample of ‘mask d’, the right region is con-
sistent with the full sample, whereas the left region shows an
increased correlation and the central region a decreased correla-
tion. We note that the left region has the most complicated ge-
ometry. The interpretation of Fig. 23 is complicated by di↵erent
values of w⌦ for the three di↵erent regions, due to their di↵erent
survey geometry and sky coverage. We conclude that the 2 mJy
sample shows a more self-consistent behaviour as compared to
the 1 mJy sample. However, the di↵erences in the angular two-
point correlation function that occur in di↵erent regions within
the field at 2 mJy are not well understood. It is hoped that this
will be reduced with the next data release of the LoTSS survey,
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is consistent with the findings for TGSS-ADR1 at much higher
flux densities, but di↵ers from the slope found at higher frequen-
cies. The amplitude found in LoTSS-DR1 is smaller than the one
found for TGSS-ADR, but larger than the one from NVSS and
WENSS.

6.2. The angular two-point correlation function for redshift
sub-samples

We further make use of the available redshift information in the
LoTSS-DR1 catalogue, namely the ‘z_best’ values. We first di-
vide the LoTSS-DR1 catalogue into two sub-samples based on
the information whether a ‘z_best’ value for a given radio source
is available or not. We then compute the angular two-point cor-
relation function for the sub-sample with redshift information,
called ‘Any z’, which is shown in Fig. 25 for ‘mask z’ (top). As
the results of Sect. 6.1 show more consistent results for ‘mask
1’ than for ‘mask d’, we additionally generate a redshift mask
for the region of ‘mask 1’, which is denoted as ‘mask z1’. The
results for the angular two-point correlation with ‘mask z1’ are
shown in Fig. 25 (bottom). Based on the strong di↵erence be-
tween the angular two-point correlation of the 1 and 2 mJy sam-
ples of ‘mask d’, we neglect the 1 mJy in the further analysis.

Additionally, we test di↵erent redshift sub-samples defined
in Eq. (25) in Sect. 5.3, where the survey is split up into three
parts, namely z1: z < z33, z2: z33  z < z66, and z3: z66  z.
These parts are separated by the 33 and 66 percentiles, defined
in terms of the survey without any flux density thresholds and
are kept the same for higher flux density thresholds. The mea-
sured angular two-point correlations for a flux density threshold
of 2 mJy, masked with ‘mask z’ for the three redshift bins are
presented in Fig. 26. Due to the strongly decreased number of
sources per bin in the 2 mJy samples, we increased the bin width
to � ln(✓/1 deg) = 0.4.

Fitting a power law, as defined in Eq. (31), gives the results
shown in Table 6. We can see that the goodness-of-fit is close
to one, except for the first redshift bin. We see stronger corre-
lation for most of the redshift bins, which is expected as there
is less smearing. The exponent � and the amplitude A are larger
as compared to the best-fit LoTSS-DR1 2 mJy ‘mask 1’ sample
and to the NVSS values. And the amplitudes increase further if
we consider individual bins in redshift as compared to the study
that includes any value of the redshifts.

However, a disclaimer is in order: We did not estimate and
propagate errors on the redshift estimation. Thus, the error bars
shown assume that the redshift estimates used here are exact.
We expect that the errors for the ‘Any z’ sample are nevertheless
realistic, as only the fact is used that those sources have optical
and infrared counterparts and the photometric redshift estimator
found a solution. But when we split up the radio sources with
photometric redshift into three bins, the reliability of the redshift
estimate becomes an issue. It is well known that there is a finite
and non-negligible probability that AGNs from bin z3 would be
misestimated and end up as sources in bin z1, see Duncan et al.
(2019). Propagating this e↵ect through our analysis pipeline and
correcting for it was beyond the scope of this work. Since only
half of the LoTSS-DR1 radio sources have redshift information
available, it is currently impossible to measure the bias evolution
of the complete sample. We also note that due to only half of
the sources having redshifts available, there will be underlying
selection e↵ects in these sub-samples that may not necessarily
represent the full sample as a whole.

Fig. 25. Comparison of the angular two-point correlation function es-
timated from the LoTSS-DR1 value-added source catalogue for radio
sources with redshift information and theoretical expectations (solid
lines) for the best-fit ⇤CDM cosmological parameters from Planck,
generated using CAMB sources with Halofit and b(z) from Eq. (28).
The integral constraint w⌦ is computed for the expectations and sub-
tracted from them. Positive values are shown with full symbols and solid
lines, whereas negative values are shown with open symbols and dashed
lines.

6.3. Comparison of angular two-point correlations to
expectation of cosmological standard model

In order to compare our measured angular two-point correla-
tion function to expectations, we rely on the publicly available
CAMB sources code (Challinor & Lewis 2011) to calculate the
angular power spectrum Cl for 2  l  4000. From this power
spectrum we infer the two-point correlation function w(✓) by
using Eq. (14). In doing so, we assume a vanishing monopole
and dipole. The theoretical monopole vanishes by definition and
the theoretically expected dipole is the sum of a structure dipole
and the kinematic dipole (Ellis & Baldwin 1984) caused by the
proper motion of the Solar system. We have checked with a sim-
ulation that the survey area of LoTSS-DR1 would pick up that
dipole at a level that is about an order of magnitude below the
actually observed signal and we thus neglect the dipole contribu-
tion in this analysis (see App. D for further details). The dipole
contribution will become more important at larger angular sepa-
rations for larger survey areas (Bengaly et al. 2018).
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Fig. 26. Angular two-point correlation function for three redshift bins
z1, z2 and z3 for a flux density threshold of 2 mJy. The lines show the
expectations for the cosmological standard model. Both panels use the
Halofit option of CAMB sources, which accounts for the non-linear
evolution of large scale structure. In the top panel we use the bias func-
tion of Eq. (32), whereas we use a piecewise constant bias in the bottom
panel. The integral constraint w⌦ is computed for the expectations and
subtracted from them. Positive values are shown with full symbols and
solid lines, whereas negative values are shown with open symbols and
dashed lines.

In order to predict the angular two-point correlation, we have
to specify a cosmological model, the redshift distribution of the
observed sources and how well they trace the underlying matter
density distribution, which is expressed as a bias function. We fix
the cosmological parameters to the best-fit⇤CDM cosmology of
the Planck 2018 analysis (Planck Collaboration et al. 2018a,b),
which are the Hubble rate today (H0), the dimensionless, Hubble
independent baryon density (⌦bh

2) and cold dark matter density
(⌦ch

2) with h = H0/(100 km s�1 Mpc�1), the primordial am-
plitude of curvature perturbation (As) and the spectral index of
curvature perturbation (ns) with their recent best-fit values:

H0 = 67.32 km s�1 Mpc�1,

⌦bh
2 = 0.022383, ⌦ch

2 = 0.12011,

ln(1010
As) = 3.0448, ns = 0.96605.

The optical depth, which is usually also reported, is of no con-
cern for the prediction of the angular power spectrum of mat-

ter. The redshift distribution of radio sources is estimated from
the histogram of the measured photo-z from the LoTSS-DR1
value-added source catalogue, shown in Fig. 16, which is used
as source window function for the three di↵erent flux density
threshold samples. For the galaxy bias, b(z), we use a parametri-
sation introduced by Nusser & Tiwari (2015); Tiwari & Nusser
(2016) as a fit to NVSS data:

b(z) = 1.6 + 0.85z + 0.33z
2, (32)

which was adapted by Bengaly et al. (2018) and Dolfi et al.
(2019) in the context of TGSS data. The CAMB package al-
lows to include the e↵ects of gravitational lensing and it allows
users to include e↵ects of non-linear structure formation via its
halo-fit option (Takahashi et al. 2012; Mead et al. 2015). Addi-
tionally, we do not use the Limber approximation, which is per
default used for l > 100. An inappropriate application of the
Limber approximation gives rise to ringing phenomena in w(✓)
that depend on the details of the binning of the redshift distribu-
tion function. We make use of the cubic-spline interpolation of
CAMB to generate a smooth window function from the observed
redshift distribution for sources with z  2.

In Fig. 25 we show the two-point correlations from radio
sources with available redshift information for the 2 and 4 mJy
flux density thresholds and compare them to the predictions of
non-linear theory, including the Halofit and count lensing op-
tions of the CAMB package and the bias from Eq. (32). In order
to account for the integral constraint, we calculate it using Eq.
(28) with the random-random pairs obtained by TreeCorr and
the expectation from CAMB in order to subtract it from the ex-
pectation. We find reasonable agreement for angular separations
below a few degrees, for the 2 and 4 mJy samples of ‘mask z’,
as well as of ‘mask z1’. The agreement between the theoreti-
cal expectations and the results for the 2 and 4 mJy samples is
remarkable as we did not adjust any model parameter.

Besides varying the flux density threshold, we can also put
the data into several redshift bins, as done previously in Sect. 5.3
and 6.2, which allows us to test the bias model in more detail. We
compare two scenarios for the 2 mJy ‘mask z’ sample only, as
the angular two-point correlation behaves similarly for ‘mask z’
and ‘mask z1’. For the first scenario we use of the Halofit option
of CAMB, together with the bias function b(z) and include the
e↵ect of lensing. We see in the top-left panel of Fig. 26 that the
CAMB predictions for redshift bin z1 overestimate the amount
of correlation while we obtain a reasonable agreement for the z2
bin at smallest angular scales and for z3 below ⇠ 0.8 degrees.
A possible explanation is that the bias function (32), which is
based on NVSS data, overestimates the amount of bias at lower
redshifts for a population mix that includes many more SFGs
compared to NVSS.

In order to test this hypothesis, we compute a second sce-
nario, where we use a constant bias b(z1) = b1 = 1.2 for the
z1 bin, make use of the Halofit option of CAMB and include
lensing. Doing so, the expectation of the first redshift bin is in
better agreement below 2 deg with the estimated two-point cor-
relation function. This indicates that LoTSS-DR1 radio sources
at small photometric redshift are almost unbiased tracers of the
large scale structure, which is to be expected if the sample is
dominated by SFGs (which are thought to or assumed to have
smaller bias, see, for example, the models used in Wilman et al.
(2008) and results from Hale et al. (2018)). This also may relate
to selection e↵ects of which sources have associated redshifts,
which may preferentially select low redshift SFGs over higher
redshift AGN. We also use a piecewise constant bias of b2 = 2
and b3 = 3 for the redshift bins z2 and z3 respectively, which also
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Fig. 26. Angular two-point correlation function for three redshift bins
z1, z2 and z3 for a flux density threshold of 2 mJy. The lines show the
expectations for the cosmological standard model. Both panels use the
Halofit option of CAMB sources, which accounts for the non-linear
evolution of large scale structure. In the top panel we use the bias func-
tion of Eq. (32), whereas we use a piecewise constant bias in the bottom
panel. The integral constraint w⌦ is computed for the expectations and
subtracted from them. Positive values are shown with full symbols and
solid lines, whereas negative values are shown with open symbols and
dashed lines.

In order to predict the angular two-point correlation, we have
to specify a cosmological model, the redshift distribution of the
observed sources and how well they trace the underlying matter
density distribution, which is expressed as a bias function. We fix
the cosmological parameters to the best-fit⇤CDM cosmology of
the Planck 2018 analysis (Planck Collaboration et al. 2018a,b),
which are the Hubble rate today (H0), the dimensionless, Hubble
independent baryon density (⌦bh

2) and cold dark matter density
(⌦ch

2) with h = H0/(100 km s�1 Mpc�1), the primordial am-
plitude of curvature perturbation (As) and the spectral index of
curvature perturbation (ns) with their recent best-fit values:

H0 = 67.32 km s�1 Mpc�1,

⌦bh
2 = 0.022383, ⌦ch

2 = 0.12011,

ln(1010
As) = 3.0448, ns = 0.96605.

The optical depth, which is usually also reported, is of no con-
cern for the prediction of the angular power spectrum of mat-

ter. The redshift distribution of radio sources is estimated from
the histogram of the measured photo-z from the LoTSS-DR1
value-added source catalogue, shown in Fig. 16, which is used
as source window function for the three di↵erent flux density
threshold samples. For the galaxy bias, b(z), we use a parametri-
sation introduced by Nusser & Tiwari (2015); Tiwari & Nusser
(2016) as a fit to NVSS data:

b(z) = 1.6 + 0.85z + 0.33z
2, (32)

which was adapted by Bengaly et al. (2018) and Dolfi et al.
(2019) in the context of TGSS data. The CAMB package al-
lows to include the e↵ects of gravitational lensing and it allows
users to include e↵ects of non-linear structure formation via its
halo-fit option (Takahashi et al. 2012; Mead et al. 2015). Addi-
tionally, we do not use the Limber approximation, which is per
default used for l > 100. An inappropriate application of the
Limber approximation gives rise to ringing phenomena in w(✓)
that depend on the details of the binning of the redshift distribu-
tion function. We make use of the cubic-spline interpolation of
CAMB to generate a smooth window function from the observed
redshift distribution for sources with z  2.

In Fig. 25 we show the two-point correlations from radio
sources with available redshift information for the 2 and 4 mJy
flux density thresholds and compare them to the predictions of
non-linear theory, including the Halofit and count lensing op-
tions of the CAMB package and the bias from Eq. (32). In order
to account for the integral constraint, we calculate it using Eq.
(28) with the random-random pairs obtained by TreeCorr and
the expectation from CAMB in order to subtract it from the ex-
pectation. We find reasonable agreement for angular separations
below a few degrees, for the 2 and 4 mJy samples of ‘mask z’,
as well as of ‘mask z1’. The agreement between the theoreti-
cal expectations and the results for the 2 and 4 mJy samples is
remarkable as we did not adjust any model parameter.

Besides varying the flux density threshold, we can also put
the data into several redshift bins, as done previously in Sect. 5.3
and 6.2, which allows us to test the bias model in more detail. We
compare two scenarios for the 2 mJy ‘mask z’ sample only, as
the angular two-point correlation behaves similarly for ‘mask z’
and ‘mask z1’. For the first scenario we use of the Halofit option
of CAMB, together with the bias function b(z) and include the
e↵ect of lensing. We see in the top-left panel of Fig. 26 that the
CAMB predictions for redshift bin z1 overestimate the amount
of correlation while we obtain a reasonable agreement for the z2
bin at smallest angular scales and for z3 below ⇠ 0.8 degrees.
A possible explanation is that the bias function (32), which is
based on NVSS data, overestimates the amount of bias at lower
redshifts for a population mix that includes many more SFGs
compared to NVSS.

In order to test this hypothesis, we compute a second sce-
nario, where we use a constant bias b(z1) = b1 = 1.2 for the
z1 bin, make use of the Halofit option of CAMB and include
lensing. Doing so, the expectation of the first redshift bin is in
better agreement below 2 deg with the estimated two-point cor-
relation function. This indicates that LoTSS-DR1 radio sources
at small photometric redshift are almost unbiased tracers of the
large scale structure, which is to be expected if the sample is
dominated by SFGs (which are thought to or assumed to have
smaller bias, see, for example, the models used in Wilman et al.
(2008) and results from Hale et al. (2018)). This also may relate
to selection e↵ects of which sources have associated redshifts,
which may preferentially select low redshift SFGs over higher
redshift AGN. We also use a piecewise constant bias of b2 = 2
and b3 = 3 for the redshift bins z2 and z3 respectively, which also
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less optimal than minimum variance quadratic estimators,
it is able to achieve almost equivalent uncertainties for suf-
ficiently flat power spectra (as is the case here) with a much
higher computational speed. We bin both power spectra in
bands of �` = 50 starting at ` = 2.

The estimated overdensity map contains shot noise due
to the discrete nature of galaxy number counts. The associ-
ated contribution to the angular power spectrum (commonly
called the “noise bias”), can be estimated analytically as de-
scribed in Alonso et al. (2019). We will assess the validity of
this calculation in Section 5.1.

We also use NaMaster to estimate the covariance ma-
trix of the power spectra following Garćıa-Garćıa et al.
(2019). This is calculated as the so-called Gaussian covari-
ance, which approximates both  and �g as Gaussian ran-
dom fields. The covariance matrix estimator implemented
in NaMaster accurately accounts for the correlation between
di↵erent ` bins induced by the incomplete sky coverage.
Since the estimator requires a best-guess estimate of the
underlying power spectra (Cgg

`
, C

g

`
and C



` ), the covari-
ance is estimated in two steps: first, we compute theoreti-
cal power spectra for cosmological parameters fixed to the
best-fit values found by Planck (Planck Collaboration et al.
2018a) and a constant galaxy bias bg = 1.3 assuming the
LoTSS redshift distribution, which provides a good visual
fit to the data. The resulting covariance is then used in the
likelihood described in Section 4.3 to find the best-fit param-
eters. These are used to estimate new theory power spectra
that are then used by NaMaster to estimate our final co-
variance matrix. Note that the auto-spectra C

gg

`
and C



`

should contain both the signal and noise contributions. For
C

gg

`
we use the shot noise component described above, while

for C


` we use the noise curves provided in the Planck data
release.

It is worth noting that, although the Gaussian covari-
ance described above assumes Gaussian statistics for both
�g and , which is known to be inaccurate due to the non-
linear growth of structure, the covariance estimated using
this method accounts for the largest fraction of the statisti-
cal uncertainty (Barreira et al. 2018; Nicola et al. 2020), and
is an excellent approximation in the range of scales studied
here.

4.3 Likelihood

In order to extract information from the measured C
gg

`
and

C
g

`
we use a Gaussian likelihood of the form:

�
2 ⌘ �2 log p(d|q) = (d � t(q))TCov�1(d � t(q)), (20)

where the data vector d denotes all measured power spectra
and t(q) is the theoretical prediction for d given a set of
parameters q.

We will present results for di↵erent choices of data vec-
tor and parameters. Specifically, we will present constraints
based on C

gg

`
and C

g

`
alone, as well as from the combina-

tion of both. We will also explore di↵erent combinations of
three free parameters:

• The galaxy bias bg (within the two redshift evolution mod-
els described in Section 2.2).

• ztail, which quantifies the extent of the redshift distribution
tail when parametrized according to Eq. 16.
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Figure 3. Galaxy auto-correlation Cgg

`
(top panel) and its

cross-correlation with the CMB lensing convergence Cg

`
(bot-

tom panel). The measured power spectra are shown as black
points with error bars. The solid red curve shows the best-fit
theory prediction assuming the SKADS redshift distribution, the
Planck cosmological parameters, and a galaxy bias that grows in-
versely with the linear growth factor (Eq. 15), with an amplitude
bg = 2.1. The noise bias due to shot noise in the auto-correlation
is shown as a gray line in the top panel. The gray points and error
bars in the bottom panel show a null cross-correlation calculated
by correlating the galaxy overdensity map with a randomly ro-
tated CMB convergence map.

• The amplitude of matter fluctuations as parametrized by
�8.

We fix all cosmological parameters (including �8 when not
used as a free parameter) to the best-fit values found by
Planck (Planck Collaboration et al. 2018a).

We will only use the multipoles ` smaller than `max =
500, corresponding to a wavenumber kmax ' 0.15 Mpc�1 at
z ' 1. Thus we make sure that we only use modes where
a linear, scale-dependent bias relation is a good approxi-
mation, and where the non-Gaussian contributions to the
covariance matrix can be neglected.

5 RESULTS

5.1 Power spectra and covariances

The power spectra C
gg

`
and C

g

`
, measured using the meth-

ods described in Section 4.2, are shown as black points with
error bars in the upper and lower panels of Figure 3. The
correlation matrix rij = Covij/

p
CoviiCovjj associated with

the covariance matrix of the full data vector is shown in
Fig. 4. The lowest multipoles of C

gg

`
and C

g

`
are ⇠ 40%

correlated.
Before using these measurements to extract parameter

constraints, we perform a number of sanity checks and null
tests. The main concern regarding C

gg

`
is the presence of
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Figure 8. 1� constraints on the redshift distribution of the
LoTSS flux-limited sample obtained from the combination of Cgg

`

and Cg

`
. Results are shown for a constant bias model (gray re-

gion), and for a bias that grows with the inverse of the linear
growth factor (orange region). The redshift distributions inferred
from the photometric redshifts in the LoTSS value-added catalog,
from the 3 GHz VLA-COSMOS catalog, and from the SKADS
simulations are shown in red, green and blue respecitvely for com-
parison. All redshift distribution are normalized to have the same
maximum amplitude. The constraints show a preference for longer
redshift tails than the one predicted by the LoTSS photo-zs.

While the VLA-COSMOS and SKADS estimates are
roughly compatible with each other, they di↵er from the
LoTSS-VAC result by more than 7�. The di↵erences be-
tween the di↵erent redshift distribution estimates are there-
fore highly significant in this context. In order to investigate
this further, we repeat the exercise using only the CMB lens-
ing cross-correlation. In this case the constraints are fully
compatible with each other (albeit with larger error bars):

bg = 1.35 ± 0.25, (LoTSS),

bg = 1.46 ± 0.28, (VLA � COSMOS), (24)

bg = 1.59 ± 0.31, (SKADS).

The reason for the disagreement between the di↵erent
inferred bias values with the full data vector is the well-
known fact that both the galaxy bias and the width of the
redshift distribution have a degenerate e↵ect on the ampli-
tude of the galaxy auto-correlation. Structure is washed out
in samples with broader redshift distributions, which can be
compensated with a larger bg.

To understand the role played by both parameters in
the auto- and cross-correlation, Figure 6 shows the mea-
sured power spectra together with the theoretical predic-
tions for varying values of the galaxy bias bg (left panel)
and the high-redshift tail ztail (right panel). While the galaxy
bias a↵ects the amplitude of the auto- and cross-correlations
(quadratically and linearly respectively), an increasing high-
redshift tail lowers the auto-correlation while leaving the
cross-correlation almost constant. We can understand the
latter result as follows: since the CMB lensing kernel W ex-
tends to very high redshifts, a variation in the width of the
galaxy redshift distribution leaves the overlap between Wg

Figure 9. 1� constraints on the galaxy bias bg(z) from the com-
bination of Cgg

`
and Cg

`
. Results are shown for a constant bias

model (gray region), and for a bias that grows with the inverse
of the linear growth factor (orange region). The figure also shows
measurements of the bias for di↵erent radio galaxy samples in
Hale et al. (2018) (black symbols with error bars), and for the
NVSS sample of Nusser & Tiwari (2015).

and W almost unchanged. On the one hand, this makes the
cross-correlation between CMB lensing and galaxy cluster-
ing robust to uncertainties in the redshift distribution width.
On the other hand, the di↵erent response of the auto- and
cross-correlation to ztail should allow us to break its degen-
eracy with bg, allowing us to simultaneously constrain both
parameters by combining Ĉ

gg

`
and Ĉ

g

`
.

To explore this, we parametrize the redshift distribu-
tion according to Eq. 16 and derive constraints on two
free parameters, bg and ztail, with flat priors bg 2 (0.6, 6)
and ztail 2 (0.1, 5). The resulting constraints are shown
in Fig. 7 for the constant-amplitude (orange contours) and
constant-bias (black-gray contours) redshift dependent mod-
els of bg(z). Looking at the constant-amplitude constraints,
the uncertainty on bg (�(bg) = 0.28) degrades significantly
with respect to the previous results where the redshift distri-
bution was fixed to the SKADS estimate. The high-redshift
tail, on the other hand, is constrained to be ztail = 1.30+0.27

�0.40.
In the constant-bias case, a larger value of bg is preferred, to
compensate for the lack of growth as a function of redshift,
which is accompanied by a preference for larger values of ztail

and overall larger uncertainties on both parameters. In both
cases, however, the data show a preference for larger redshift
tails than that implied by the photometric redshifts included
in the LoTSS value-added catalog. This can be seen explic-
itly in Figure 8, which shows the 1� bounds on the recovered
redshift distribution in comparison with the estimates from
the LoTSS VAC, VLA-COSMOS and SKADS.

The corresponding constraints on bg(z) are shown in
Fig. 9 in both cases. The true redshift evolution of the ef-
fective galaxy bias for the LoTSS sample analysed here is
most likely not constant but potentially less steep than the
constant-amplitude model, therefore lying somewhere be-
tween these two extremes. To illustrate this, the figure also
shows the bias values measured for di↵erent radio popula-
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Galaxy-galaxy and galaxy-lensing convergence correlation (LoTSS-DR1— Planck) 
Theory is based on SKADS and Planck 2018 best-fit cosmology with bias ~ 1/D(z) 

Reconstruction of redshift distribution 
for all LoTSS soucres depends on bias 

S > 2 mJy



 Cosmic tensions 
• Can LoTSS contribute to the 

discussion of the H0 and S8 tensions? 


• Not with LoTSS-DR1, but a first test 
is promising 


• LoTSS-DR1 data disfavour constant 
bias, evolving bias prefers lower 
value of S8


• Need to break degeneracies between 
redshift distribution and bias function 
(is the same for H0)
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tions by Hale et al. (2018), and the NVSS sample of Nusser
& Tiwari (2015). The results above therefore imply that the
true underlying distribution is probably more compatible
with the SKADS or VLA-COSMOS estimates than the dis-
tribution of photometric redshifts in the LoTSS VAC.

5.4 Constraints on bias and �8

Under the assumption that the true underlying redshift dis-
tribution of the LoTSS sample is well described by the
SKADS estimate, we can use the combination of Ĉ

gg

`
and

Ĉ
g

`
to break the degeneracy between bg and the amplitude

of matter fluctuations parametrized by �8. Given the ex-
isting redshift distribution uncertainties, and the degener-
acy with other cosmological parameters, the resulting con-
straints would be neither robust nor competitive. The aim
of this exercise is therefore twofold: a sanity check to ver-
ify that our data is broadly compatible with the standard
cosmological model, and a demonstration of the use of con-
tinuum surveys for cosmology.

The results are shown in Figure 10 for the constant-
bias and constant-amplitude redshift dependent models. The
constraints on �8 for both bias models are

�8 = 0.69+0.14
�0.21, (constant amplitude),

�8 = 0.79+0.17
�0.32, (constant bias). (25)

Both values are in agreement with each other as well as with
those those found by Planck (�8 = 0.811 ± 0.006, shown in
blue in the figure), with a preference for lower �8 values
along the bg-�8 degeneracy direction.

6 CONCLUSIONS

Radio continuum surveys are a valuable probe to study the
properties and evolution of star-forming galaxies and AGNs.
Unimpeded by dust attenuation, radio surveys cover a much
broader range of redshifts, and correspondingly larger vol-
umes, than their optical counterparts. Because of this, con-
tinuum surveys also constitute a potential avenue to recon-
struct the growth of structure over the largest scales, and
therefore have drawn the interest of the cosmology commu-
nity.

However, the lack of redshift information from radio
continuum data makes these surveys reliant on matching to
deep optical catalogs to constrain the radial distribution of
the sources, and to reconstruct the redshift evolution of their
properties. The potential incompleteness of the optical cross-
matches makes redshift calibration one of the largest sources
of systematic uncertainty in the potential use of radio con-
tinuum surveys for cosmology. This is akin to the challenges
faced by ongoing and future photometric weak lensing sur-
veys when characterising and propagating the uncertainties
in the redshift distribution of galaxies (Sánchez et al. 2020;
Hildebrandt et al. 2020; Schaan et al. 2020).

In this paper we have studied the clustering of galaxies
on the flux-density limited LoTSS first data release, both
through the harmonic-space auto-correlation, and through
their cross-correlation with the lensing convergence of the
CMB, as measured by Planck. The cross-correlation is de-
tected at the 5� level.

0.2 0.6 1.0 1.4
�8

2

4

6

8

b g

2 4 6 8
bg

bg � 1/D(z)

bg = const.

Figure 10. Constraints on the galaxy bias parameter bg and the
amplitude of matter inhomogeneities �8 from the combination of
Cgg

`
and Cg

`
. Results are shown for a constant-bias model (black

contours) and for a bias that evolves with the inverse of the lin-
ear growth factor (orange contours). The blue band shows the
constraints on �8 found by Planck Planck Collaboration et al.
(2018a). Our power spectrum measurements are in good agree-
ment with the standard ⇤CDM model as constrained by Planck.

To illustrate the challenge posed by the uncertainties
in the redshift distribution dp/dz, we have considered three
estimates of this quantity: from the LoTSS value-added cat-
alog, from the VLA-COSMOS cross-matched sample (which
includes both spectroscopic and photometric redshifts), and
from the SKADS simulations. We have shown that the trun-
cated high-redshift tail from the LoTSS-VAC photometric
redshifts leads to radically di↵erent interpretations of the
clustering amplitude when compared with the results from
the VLA-COSMOS or SKADS redshift distributions. On the
other hand, the CMB lensing cross-correlation alone is fairly
insensitive to variations in dp/dz, and leads to consistent
measurements of the galaxy bias.

The robustness of the CMB-lensing cross-correlation to
redshift distribution uncertainties, allows us to break the
degeneracy between the galaxy bias and the width of the
dp/dz by combining it with the clustering auto-correlation.
Through this joint analysis, we are able place constraints
on the high-redshift tail of the distribution, showing that it
is underestimated by the LoTSS-VAC photo-zs, and better
represented by the VLA-COSMOS and SKADS estimates.
To our knowledge, this is the first attempt in the literature at
calibrating redshift distributions through cross-correlations
with CMB lensing. This is akin to the “cross-correlation red-
shifts” approach, based on using cross-correlations against
samples with a known redshift distribution (Newman 2008;
Alonso et al. 2017; Gatti et al. 2018) (in this case, the CMB
lensing kernel). Given the broad range of redshifts covered
by the CMB lensing kernel, it is unlikely that this approach
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(a) The central part of the P26Hetdex03 8 hours LOFAR-HBA scan as imaged
by Alg. 0.

(b) Region (1) as imaged by Alg. 0

(c) Region (1) as imaged by Alg. 1

(d) The central part of the P26Hetdex03 8 hours LOFAR-HBA scan as imaged
by Alg. 1.

(e) Region (2) as imaged by Alg. 0

(f) Region (2) as imaged by Alg. 1

Fig. 7: This figure shows the di↵erences between the maps produced by Alg. 0 and Alg. 1 from a typical 8 hour scans (here the
P26Hetdex03 pointing in the HETDEX field, see Shimwell et al. 2017a). The colorscale is the same on all panels, and diplayed
using an inverse hyperbolic sine function to render both the low level artifacts and some bright sources.
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(a) The central part of the P26Hetdex03 8 hours LOFAR-HBA scan as imaged
by Alg. 0.

(b) Region (1) as imaged by Alg. 0

(c) Region (1) as imaged by Alg. 1

(d) The central part of the P26Hetdex03 8 hours LOFAR-HBA scan as imaged
by Alg. 1.

(e) Region (2) as imaged by Alg. 0

(f) Region (2) as imaged by Alg. 1

Fig. 7: This figure shows the di↵erences between the maps produced by Alg. 0 and Alg. 1 from a typical 8 hour scans (here the
P26Hetdex03 pointing in the HETDEX field, see Shimwell et al. 2017a). The colorscale is the same on all panels, and diplayed
using an inverse hyperbolic sine function to render both the low level artifacts and some bright sources.
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Sky temperature at 144 MHz
• ARCADE 2: excess radiation over CMB plus Milky Way  

at high radio frequencies  
Fixsen et al 2011


• Can the extragalactic radio background explain the excess? 


• LoTSS Deep Fields: Tsky (144 MHz) = 44 ± 2 K,  
does not explain TARCADE2 (extrapolated to 144 MHz) ~190 K


• Unlikely that ARCADE 2 excess is due to extragalactic radio 
sources, unless they are huge (> 1 deg)


• Also relevant to EDGES result,  
extrapolation to 78 MHz: Tsky (78 MHz) = 235 ± 18 K 
(assuming spectral index - 2.7 ± 0.1)
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Fig. 4. Source counts for the deep fields with the ‘flux-density completeness’ correction described in the text applied to the data. Lines, symbols
and other source count plots as in Fig. 1. Error bars for the deep fields include the statistical uncertainties on completeness correction factors.

and so calculated a spectral radiance for each field. The mean
of these values is then the mean sky brightness contributed by
sources above the noise level in the wide-field data. (Because
the mosaics overlap, each sky pixel is not uniformly weighted in
this sum, but no bias shoud be introduced by this process.) We
emphasise that it is not safe to sum over the maps alone to ob-
tain the sky temperature, because any undeconvolved emission
present will not be accounted for correctly, but the sums can be
used to check whether PyBDSF is missing flux. Summing over
2.1⇥1011 pixels in the full-resolution mosaics, we obtain a mean
of 21.8 ± 0.2 kJy sr�1 (statistical uncertainties only), which is in
excellent agreement with the value obtained by integration of the
source counts for these fields (21.8 kJy sr�1) or by direct sum-
mation of the source fluxes (21.7 kJy sr�1). Interestingly, the sum
over the low-resolution mosaics is slightly higher at 22.5 ± 0.2
kJy sr�1, which could reflect either a tendency for di↵use struc-
ture to be missed in the maps and catalogues at 6 arcsec reso-
lution or some di↵erential calibration uncertainty between long
and short baselines. The di↵erence is only a few per cent and
thus does not have a significant e↵ect on our conclusions.

4. Discussion and conclusions

We have estimated the total contribution of discrete sources be-
tween 100 µJy and 100 Jy to the sky temperature at 144 MHz
to be 44 ± 2 K. We derived this from a combination of three
deep surveys, extending down to an rms noise level of 20 µJy
per beam, after applying completeness corrections and deriving
the bright end of the source counts from a shallower but much
larger survey conducted with the same instrument and analysed
using comparable techniques. Our estimate should thus include
contributions from discrete sources with 144-MHz flux densities
from 100 µJy to ⇠ 100 Jy.

Our estimate of the sky temperature from discrete sources is
substantially higher than the best existing discrete source-count
based estimate at these frequencies given by Vernstrom et al.
(2011), who used only the 6C counts to obtain T = 18 K at 150
MHz (20 K at 144 MHz).7 Our value exceeds even their highest
extrapolation down to low flux densities, presumably because
7 Here and throughout where a temperature index is not known we
convert quoted literature temperatures to 144 MHz on the assumption
of a temperature index � = 2.7, T / ⌫��, since the spectral index of

of the non-negligible contribution from both faint and di↵use
sources that were not present in their extrapolation.

Our result is in remarkable agreement with the estimate of
Bridle (1967) of a sky temperature for the isotropic component
of 30 ± 7 K at 178 MHz (53 ± 12 K at 144 MHz) and of course
is consistent with the rough upper limit on temperature from the
northern-sky survey of Turtle & Baldwin (1962) (80 K at 178
MHz or 140 K at 144 MHz).

However, it is clear that the LOFAR-detected source popu-
lation cannot explain the entirety of the background reported by
Fixsen et al. (2011), which would correspond to 190 K at 144
MHz (we use the best-fitting power-law model from their work)
and which is supported by more recent independent observations
such as those of Dowell & Taylor (2018). Even with LOFAR’s
sensitivity to both faint and extended sources, we are reproduc-
ing only a quarter of the ARCADE-2 background level. If the
downturn in the corrected source counts below 200 µJy is to be
believed (and it seems qualitatively consistent with what is ex-
pected from source count models and P(D) analysis at higher
frequencies: Condon et al. 2012; Mauch et al. 2020) then no
extrapolation of the currently detectable source population will
make up this discrepancy; once the number counts fall below
n / S

�2 they rapidly cease to make a significant contribution
to the sky temperature. If we ignore any evidence for a down-
turn, then power-law extrapolation, n / S

�5/2, of the observed
number counts from their observed peak level at around 200 µJy
down to levels of a few µJy would explain all of the ARCADE-2
background, but this is very definitely not what is expected from
source models, and Condon et al. (2012) argue that such a nu-
merous bright source population is ruled out by P(D) analysis;
in any case the long baselines of LOFAR would be needed to
avoid the confusion limit in studying such a source population
down to the lowest flux levels.

The use of LOFAR, with its excellent sensitivity to extended
emission, also rules out the possibility that a significant fraction
of the excess can be due to di↵use radio emission, as discussed
by, for example, Vernstrom et al. (2015), unless it is well be-
low the sensitivity limits of even the deep surveys. The fact that
we can directly account for a higher fraction of the ARCADE-
2 background than has hitherto been possible may be a result

the extragalactic population is known to be ↵ ⇡ 0.7, S / ⌫�↵: see, for
example, Hardcastle et al. (2016).
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Fig. 3. ‘Flux density completeness’ corrections for the three deep fields.

no restrictions; that is, there is no attempt to avoid placing a
simulated source on top of an existing bright source.

3. We then re-extract a catalogue from the modified image. In
general we expect this catalogue to have a higher total flux
density and a larger number of sources than the original cat-
alogue, since it retains all the original sources.

4. Steps 2 and 3 are repeated many times for each input flux
density.

5. For each input source flux density, the mean ratio, over all in-
jected sources and all iterations, of the recovered excess flux
density to the true input excess flux density gives us the ‘flux
density completeness’ correction – the fraction of flux den-
sity from sources of that flux density that we would expect to
be able to recover for that field. This, rather than the fraction
of sources recovered with a given flux density, is the quantity
we require for estimating corrections to the total integrated
flux density from all sources.

6. Steps 2-5 are repeated for a sequence of input flux densities
in the range 100 µJy – 5 mJy to derive a table of per-field,
per-flux completeness corrections.

Fig. 3 shows the resulting completeness corrections, while
Fig. 4 shows the source counts for the three deep fields with these
corrections applied – to do this we simply linearly interpolate the
completeness curves of Fig. 3 and apply their reciprocal to the
number count contributed by each source to the binned source
counts. Unsurprisingly, the corrections make a non-negligible
di↵erence at the low flux-density end, implying a power law in
numbers that may be slightly steeper than the Euclidean index
of 2.5. The three deep fields show slightly di↵erent corrected
curves: the most reliable, being the deepest, is presumably the
ELAIS-N1 result, and there are large uncertainties on the com-
pleteness corrections for the other two fields below 200 µJy. If
taken at face value, the ELAIS-N1 curve implies a genuine turn
down in the number counts of sources below 200 µJy at 144
MHz. The other two deep fields do not constrain this because
their completeness corrections are not reliable below this flux
density level. We note that the implied downturn at the lowest
flux densities is already in tension with some of the models pro-
posed by Ewall-Wice et al. (2020), which would imply flat or
rising S

2
n below 1 mJy when we combine their sources with the

star-forming galaxy population. However, we are at the limits
of what can be done with the small numbers of sources in our
EN1 sample and deeper LOFAR observations are needed to con-
strain the population at the lowest flux densities. Mandal et al.

(in prep.) will discuss the faint end of the source counts in the
deep fields.

3.3. Total sky temperature

In principle the sky temperature contribution from a complete
sample is easy to calculate. The spectral radiance I⌫ is given by

I⌫ =

P
S i

⌦
, (1)

where S i are the flux densities of individual sources in W Hz�1

m�2 and ⌦ is the total solid angle covered by the survey in sr.
The sky brightness temperature is then given by

Tb =
I⌫c

2

2k⌫2
. (2)

Alternatively, we can integrate over the binned number counts to
obtain

I⌫ =

Z
S n(S ) dS , (3)

where n is the di↵erential number count, and then convert the
spectral radiance to temperature in the same way.

We are in a position to make the calculation in both ways,
since we can either numerically integrate the binned source
counts of Fig. 4 or add up individual source flux densities apply-
ing the completeness correction to the summed fluxes. In both
cases we switch between the use of the wide-field and deep-field
data at a flux-density value of 4 mJy, conservatively chosen as
the point where the source counts for the wide and deep sur-
veys diverge; the actual choice of this threshold between 1 and
4 mJy makes very little di↵erence to the results. We verify that
the two possible approaches give the same answer, as expected.
For all deep three fields — with the DR2 13h data supplying the
bright end of the source counts – we obtain a total spectral radi-
ance (sky surface brightness) of approximately 28 kJy sr�1 at 144
MHz. Using integration of the source counts down to the lowest
levels for which we have reliable completeness corrections, we
then obtain sky temperature values of 44.5 ± 3.0 K for Boötes,
43.3±2.8 K for ELAIS-N1 and 45.4±3.3 K for Lockman, where
the error estimates take account of the flux scale uncertainties
that we have assigned to the wide and deep fields (the dominant
contribution) but also the statistical uncertainties on the com-
pleteness correction factor. Taking the mean of the three fields,
our best estimate for the total contribution to the sky temperature
of discrete sources above 100 µJy is 44.4 ± 1.7 K. We note that
the e↵ect of the flux density completeness correction is gener-
ally a boost to sky brightness or temperature by between 10 and
20 per cent, but only of order 10 per cent for our most reliable
field, ELAIS-N1. Thus, even if our completeness corrections are
over-generous as discussed above, a conservative lower limit on
the contribution of discrete sources to the sky temperature would
be ⇠ 40 K.

3.4. Consistency check using images

For the DR2 data we carried out a further consistency check to
establish whether significant extended flux density was missed
by the PyBDSF decomposition itself. To do this we took the mo-
saic images covered by our catalogue, both at high (6 arcsec)
and low (20 arcsec) resolution, calculated the number of non-
blank pixels and the sum of the flux density over those pixels,
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Fig. 3. ‘Flux density completeness’ corrections for the three deep fields.

no restrictions; that is, there is no attempt to avoid placing a
simulated source on top of an existing bright source.

3. We then re-extract a catalogue from the modified image. In
general we expect this catalogue to have a higher total flux
density and a larger number of sources than the original cat-
alogue, since it retains all the original sources.

4. Steps 2 and 3 are repeated many times for each input flux
density.

5. For each input source flux density, the mean ratio, over all in-
jected sources and all iterations, of the recovered excess flux
density to the true input excess flux density gives us the ‘flux
density completeness’ correction – the fraction of flux den-
sity from sources of that flux density that we would expect to
be able to recover for that field. This, rather than the fraction
of sources recovered with a given flux density, is the quantity
we require for estimating corrections to the total integrated
flux density from all sources.

6. Steps 2-5 are repeated for a sequence of input flux densities
in the range 100 µJy – 5 mJy to derive a table of per-field,
per-flux completeness corrections.

Fig. 3 shows the resulting completeness corrections, while
Fig. 4 shows the source counts for the three deep fields with these
corrections applied – to do this we simply linearly interpolate the
completeness curves of Fig. 3 and apply their reciprocal to the
number count contributed by each source to the binned source
counts. Unsurprisingly, the corrections make a non-negligible
di↵erence at the low flux-density end, implying a power law in
numbers that may be slightly steeper than the Euclidean index
of 2.5. The three deep fields show slightly di↵erent corrected
curves: the most reliable, being the deepest, is presumably the
ELAIS-N1 result, and there are large uncertainties on the com-
pleteness corrections for the other two fields below 200 µJy. If
taken at face value, the ELAIS-N1 curve implies a genuine turn
down in the number counts of sources below 200 µJy at 144
MHz. The other two deep fields do not constrain this because
their completeness corrections are not reliable below this flux
density level. We note that the implied downturn at the lowest
flux densities is already in tension with some of the models pro-
posed by Ewall-Wice et al. (2020), which would imply flat or
rising S

2
n below 1 mJy when we combine their sources with the

star-forming galaxy population. However, we are at the limits
of what can be done with the small numbers of sources in our
EN1 sample and deeper LOFAR observations are needed to con-
strain the population at the lowest flux densities. Mandal et al.

(in prep.) will discuss the faint end of the source counts in the
deep fields.

3.3. Total sky temperature

In principle the sky temperature contribution from a complete
sample is easy to calculate. The spectral radiance I⌫ is given by

I⌫ =

P
S i

⌦
, (1)

where S i are the flux densities of individual sources in W Hz�1

m�2 and ⌦ is the total solid angle covered by the survey in sr.
The sky brightness temperature is then given by

Tb =
I⌫c

2

2k⌫2
. (2)

Alternatively, we can integrate over the binned number counts to
obtain

I⌫ =

Z
S n(S ) dS , (3)

where n is the di↵erential number count, and then convert the
spectral radiance to temperature in the same way.

We are in a position to make the calculation in both ways,
since we can either numerically integrate the binned source
counts of Fig. 4 or add up individual source flux densities apply-
ing the completeness correction to the summed fluxes. In both
cases we switch between the use of the wide-field and deep-field
data at a flux-density value of 4 mJy, conservatively chosen as
the point where the source counts for the wide and deep sur-
veys diverge; the actual choice of this threshold between 1 and
4 mJy makes very little di↵erence to the results. We verify that
the two possible approaches give the same answer, as expected.
For all deep three fields — with the DR2 13h data supplying the
bright end of the source counts – we obtain a total spectral radi-
ance (sky surface brightness) of approximately 28 kJy sr�1 at 144
MHz. Using integration of the source counts down to the lowest
levels for which we have reliable completeness corrections, we
then obtain sky temperature values of 44.5 ± 3.0 K for Boötes,
43.3±2.8 K for ELAIS-N1 and 45.4±3.3 K for Lockman, where
the error estimates take account of the flux scale uncertainties
that we have assigned to the wide and deep fields (the dominant
contribution) but also the statistical uncertainties on the com-
pleteness correction factor. Taking the mean of the three fields,
our best estimate for the total contribution to the sky temperature
of discrete sources above 100 µJy is 44.4 ± 1.7 K. We note that
the e↵ect of the flux density completeness correction is gener-
ally a boost to sky brightness or temperature by between 10 and
20 per cent, but only of order 10 per cent for our most reliable
field, ELAIS-N1. Thus, even if our completeness corrections are
over-generous as discussed above, a conservative lower limit on
the contribution of discrete sources to the sky temperature would
be ⇠ 40 K.

3.4. Consistency check using images

For the DR2 data we carried out a further consistency check to
establish whether significant extended flux density was missed
by the PyBDSF decomposition itself. To do this we took the mo-
saic images covered by our catalogue, both at high (6 arcsec)
and low (20 arcsec) resolution, calculated the number of non-
blank pixels and the sum of the flux density over those pixels,
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Conclusions
• At 144 MHz, radio sources above 2 mJy are dominantly AGNs, which are distributed over a huge range 

in redshift.


• Allow us to study the evolution of structure formation from high z utill today.


• At flux densities below 2 mJy, SFGs dominate and will allow us to investigate the largest scales on the 
sky at z < 1, as radio sources do not suffer from dust extinction and we can therefore observe wider 
area than optical surveys.


• The distribution of large scale structure as inferred from LoTSS-DR1 is compatible with 
statistical isotropy and the Planck 2018 best-fit model. With LoTSS-DR2 will allow us to measure 
several cosmological parameters.


• The counts-in-cell statistics deviates from a Poissonian distribution, a compound Poisson 
distribution provides a good fit. 


• Faint extragalactic radio sources can make up 1/4 of the ARCADE-2 excess radiation. 
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Outlook
• LoTSS Deep Fields DR1 (Böotes, Lockman hole, Elias-N1: measure redshift 

distribution (95% of all sources have photo-z’s), AGN/SFG separation, 
corresponding luminosity functions, and their evolution (in press A&A, 2021)


• Use LoTSS-DR2 (5700 square degrees, 4.5 million radio sources, improved 
flux density calibration, second half of 2021) to gain an order of magnitude in 
sky coverage and statistics, will allow us to constrain cosmological models


• LOFAR-WEAVE (to start in 2021) will provide spectroscopic follow up of 1 
million LoTSS selected radio sources 


• LoLSS: Corresponding survey at 42 — 66 MHz, will cover 25 - 30% of sky
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