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Figure 1. Contours of constant log10fEDE(zc) (vertical/solid) and log10zc (horizontal/dashed) as a function of the axion mass,
m, and decay constant, f . The red lines show the contours for n = 2 and the black for n = 3. Since H0 = 100h km/s/Mpc =
2.13h ⇥ 10�33 eV the mass parameter of the potential that helps to resolve the Hubble tension ranges between 10�28 eV .
m . 10�26 eV and 0.01 . f/Mpl . 1.

|Vn,��| so that

m
2
n

���� (1 � cos ⇥i)
n�1 (n � 1 + n cos ⇥i)

���� ' 9H
2(zc),

(7)
showing that for a fixed ⇥i a value of m determines zc.
Since the field only starts to become dynamical at zc, the
fraction of the total energy density in the field at zc is
approximately given by

fEDE(zc) ' Vn(⇥i)

⇢tot(zc)
=

m
2
f

2

⇢tot(zc)
(1 � cos ⇥i)

n
. (8)

Eq. (7) shows m
2 / ⇢tot(zc) which implies that fEDE(zc)

is determined by f , n, and ⇥i. Additionally, the rate
at which the field dilutes, i.e., the equation of state once
the field oscillates, is simply set by n through w� ⌘ (n �
1)/(n + 1) [17].

The role of ⇥i is a little more subtle. As first discussed
in Ref. [16], once we have fixed n, zc and fEDE(zc), the
value of ⇥i controls the oscillation frequency of the back-
ground field and in turn, the e↵ective sound speed of the
perturbations. The change in the background oscillation
frequency is clearly visible in Figure 2, where we plot
the evolution of fEDE with z for various n and ⇥i, in
a model where fEDE(zc = 104) = 0.1. Note also that,
at the background level, ⇥i has a suble impact on the
redshift-asymmetry of the energy injection.

Finally we note that if the potential becomes too steep
around its minimum then it is possible for the field to
reach an attractor solution in which it will never oscil-
late. As discussed in Refs. [41, 42] if n > 5 during ra-
diation domination or n > 3 during matter domination
there exists a power-law attractor for � / t

�↵ where
↵ = 2/(2n � 2). Given that the resolution to the Hubble
tension using a canonical scalar field requires oscillations
(to make the e↵ective sound speed smaller than one [14]),
we expect n > 5 to be disfavored by the data. As we dis-
cuss in Sec. III, this is indeed what we find.
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Figure 2. The evolution of the fraction of the total energy
density in the EDE as a function of redshift for zc = 104 and
fEDE(zc) = 0.1. Note that as the initial field displacement
becomes larger the asymmetry of fEDE(z) and oscillation fre-
quency of the background field increases.

B. Linear Perturbations

Most previous work on the cosmological implications
of scalar fields used an approximate set of fluid equations
to evolve the scalar field perturbations [12, 16]. Once the
field starts to oscillate we can average over the oscillations
of the background field to produce a set of approximate
‘cycle-averaged’ fluid equations with an e↵ective sound
speed in the field’s local rest-frame, c

2
s

⌘ h�P�i/h�⇢�i,
which is both scale and time-dependent [43]. Here we do
not make this approximation and instead solve the exact
(linearized) KG equation,

��
00
k

+ 2H��
0
k

+
⇥
k

2 + a
2
Vn,��

⇤
��k = �h

0
�

0
/2, (9)

where the prime denotes derivatives with respect to con-
formal time, we have written the metric potential in syn-
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Early dark energy and the Hubble tension
Poulin, Smith, Karwal, 
Kamionkowski

Smith, Poulin, and Amin
• Studied ‘cycle-averaged’ ( ) in PRL 122 (2019)  
•  Solved exact (linear) equations in 1908.06995

c2
eff = ⟨δP⟩/⟨δρ⟩

•  controls effective sound-speed; in order to fit CMB, Θi c2
eff ≃ 0.8

See also ‘Acoustic Dark 
Energy’, Lin++ 1905.12618

• Fit Planck CMB, JLA, BAO, SH0ES

• The EDE cosmology fits cosmological observations just as well as 
ΛCDM

�/f
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Figure 3. Posterior distributions of the cosmological parameters reconstructed from a run to all data (including Planck high-`
polarization) in the ⇤CDM (blue) and EDE (red) cosmology. From top to bottom we show: the ⇤CDM parameters, 2D
distributions of H0 and fEDE(zc) vs a subset of parameters, the 1D posterior distribution of the EDE parameters. We show
the SH0ES determination of H0 in the gray bands.

f = 0.18 ± 0.06 Mpl m = 3.4+2.3
−3.0 × 10−27 eV•  

7

68 71 74
H0

0.05
0.10
0.15

f E
D

E
(z

c)

3.4 3.6 3.8
Log10(zc)

3 4 5
n

0.114 0.126 0.138
�cdm

2.22 2.27 2.32
10�2�b

2.1 2.2 2.3
10�9As

0.96 0.98 1.00
ns

0.03 0.07 0.11
�reio

0.03 0.10 0.17
fEDE(zc)

67.5
70.0
72.5
75.0

H
0

3.4 3.6 3.8
Log10(zc)

3 4 5
n

0.114 0.126 0.138
�cdm

2.22 2.27 2.32
10�2�b

2.1 2.2 2.3
10�9As

0.96 0.98 1.00
ns

0.03 0.07 0.11
�reio

0.04 0.08 0.12
�reio

0.114

0.126

0.138

�
cd

m

2.22

2.27

2.32

10
�

2 �
b

2.1

2.2

2.3

10
�

9 A
s

0.96

0.98

1.00

n
s

68 71 74
H0

0.04

0.08

0.12

� r
ei

o

0.114 0.126 0.138
�cdm

2.22 2.27 2.32
10�2�b

2.1 2.2 2.3
10�9As

0.96 0.98 1.00
ns

0.05 0.10 0.15
fEDE(zc)

3.3 3.6 3.9
Log10(zc)

3 4 5
n

0.5 1.5 2.5
�i

Figure 3. Posterior distributions of the cosmological parameters reconstructed from a run to all data (including Planck high-`
polarization) in the ⇤CDM (blue) and EDE (red) cosmology. From top to bottom we show: the ⇤CDM parameters, 2D
distributions of H0 and fEDE(zc) vs a subset of parameters, the 1D posterior distribution of the EDE parameters. We show
the SH0ES determination of H0 in the gray bands.
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Novel prediction: Non-linear structures from the EDE

• The linear Klein-Gordon equation exhibits parametric resonance: modes passing 
through the resonance band experiences growth, potentially becoming non-
linear. e.g. Amin++ 1410.3808

n = 2, Θi = 3

• GWs and non-linear structures may have observable consequences in the small-scale 
CMB

1.× 10-16 2.× 10-16 5.× 10-16 1.× 10-15
0

2.× 10-13
4.× 10-13
6.× 10-13
8.× 10-13
1.× 10-12

1.2× 10-12
1.4× 10-12

Amin, Lozanov, and Smith, in prep.

• May produce features in TT power spectrum at small scales ( )ℓ ∼ 3000 & 6000

CMB-HD, Sehgal++ 1906.10134



Early dark energy and the LSS
• LSS will provide useful information

4 Klypin, Poulin, Prada, Primack et al.

Table 1. Parameters of cosmological models.

Parameter EDE ⇤CDM ⇤CDM
SPA20 MultiDark-Planck13 CMB-Planck18

⌦m 0.293 0.307 0.315±0.007
⌦coldh

2 0.132 0.119 0.120 ±0.001
⌦barh

2 0.0225 0.0221 0.0224±0.0001
H0 [km s�1Mpc�1] 72.81 67.77 67.36±0.54
ns 0.986 0.965 0.965±0.004
�8 0.836 0.820 0.811±0.006
Age [Gyr] 13.032 13.825 13.797±0.023
zdrag 1061.28 1059.09 1059.94±0.30
rdrag [Mpc] 140.1 147.8 147.1±0.3

EDE and ⇤CDM models are not very large. This is especially true
on long wavelengths k <⇠ 0.1hMpc�1 where the difference in the
power spectra is just ⇠ 2%. So, one needs many realizations to
reduce the cosmic variance and see the real differences.

All the GLAM simulations were started at initial redshift
zinit = 100 or zinit = 150 using the Zeldovich approximation. Ta-
ble 2 presents the numerical parameters of our simulation suite:
box-size, number of particles, particle mass mp , number of mesh
points N3

g , cell-size of the density/force mesh ✏ , the number of
time-steps Nstep, and the number of realizations Nr .

The GLAM code is very fast as compared with high-resolution
codes such as GADGET (Springel 2005) or ART (Kravtsov et al.
1997). For example, our most expensive simulations EDE0.5 and
⇤CDM0.5 used just ⇠ 2500 cpu-hours on a dual Intel Platinum
8280M computational node, which is just 2 days of wall-clock time.
The limiting factor of GLAM simulations is the force resolution ✏ .
It is defined by the cell size - the ratio of the box size L to the
mesh size Ng: ✏ = L/Ng. So, the larger the mesh size Ng, the bet-
ter is the resolution. Klypin & Prada (2018) give detailed analysis
of convergence and accuracies of the GLAM code. Just as with
any Particle-Mesh code, the resolution is defined by the available
memory: the larger the memory, the better the resolution. We use
computational nodes each with 1.5Tb RAM and two Intel Platinum
8280M processors with combined 56 cores.

We use a spherical overdensity (SO) halo finder, which is a
stripped down variant of the Bound Density Maxima (BDM) halo
finder (Klypin et al. 2011; Knebe et al. 2011). Limited force reso-
lution does not allow subhalos to survive in virialized halos. This
is why we study only distinct halos (those that are not subhalos) in
the present paper.

3 POWER SPECTRA

Figure 2 shows the z = 0 linear power spectra of fluctua-
tions in the EDE and ⇤CDM models. Differences between power
spectra of fluctuations are relatively small. On long wavelengths
(k <⇠ 0.1hMpc�1) the differences are mostly explained by the nor-
malizations: [�8(EDE)/�8(⇤CDM)]2 = 1.039. The differences
increase on small scales and become substantial. For example, at
k = 5hMpc�1 the amplitude of fluctuations in the EDE model is
17% bigger than in the ⇤CDM model.

The reason for this increase comes from the differences in the
slope ns of the primordial power spectra. At first sight the differ-
ence of 0.02 in the slope seems to be small. However, it results in
large differences in amplitude when one compares waves that differ

Figure 3. Similar to Figure 2 but for nonlinear evolution at z = 0. Re-
sults from different box sizes and resolutions nicely match in overlapping
regions. Nonlinear evolution dramatically changes the shape of the power
spectrum at small scales. The BAO peaks are slightly damped, broadened
and shifted. To some degree the nonlinear effects reduce the differences
between the models, but they do not wipe them out.

dramatically in wavelength: 15% for waves that differ by a factor of
1000 in wavelength. A more subtle effect is related to the halo mass
function, which depends not only on the amplitude of fluctuations
but also on the slope of the power spectrum.

The domain of BAOs (k = 0.07�0.3hMpc�1) is also different
in the models. At first glance, the wiggles that are clearly seen in the
top panel of Figure 2 are the familiar BAOs. They are not, though
they are related to BAOs. If the positions of the BAO peaks were the
same, there would not have been wiggles in the ratio of the power
spectra. Without the early dark energy component the position of
BAO peaks is mostly defined by⌦bar/⌦m and⌦mh2 (Eisenstein &
Hu 1998). There is an additional effect in EDE models due to the
fact that the early dark energy changes the dynamics of acoustic
waves before the recombination. So, the very presence of the wig-
gles tells us that BAO peaks happen at different wavenumbers: in
the EDE models the BAOs are shifted to slightly smaller wavenum-
bers.

Nonlinear evolution modifies the power spectra. Figure 3
shows results of our simulations at redshift z = 0. Results from
different box sizes and resolutions nicely match each other in over-
lapping regions. As the result, we stack together different simula-
tions and extend the range of resolved scales.

As clearly seen in Figure 3 the nonlinear evolution dramati-
cally changes the shape of the power spectrum: at k >⇠ 0.5hMpc�1

the fluctuations are much larger as compared with the linear
regime. The bump at k ⇠ 1.5hMpc�1 corresponds to mass M =

(4⇡/3)⌦m⇢cr(�/2)3 ⇡ 1013h�1M� – scale of large galaxies like
our Milky Way. So, the bump is a manifestation of collapsing dark
matter halos.1

1 There is no real peak in the power spectrum at those wave-numbers. The
peak at k ⇡ 1.5hMpc�1 in Figure 3 is due to the fact that we scale the
power spectrum by factor k

5/4. However, there is a significant change in
the slope of the power spectrum from P(k) / k

�2.5 in the linear regime to
much flatter P(k) / k

�1.25.

MNRAS 000, 000–000 (0000)

Klypin++ arXiv:2006.14910

DES 

Hill++ arXiv:2003.07355

Ivanov++ arXiv:2006.11235
D'Amico++ arXiv:2006.12420

8

FIG. 1. BAO feature Olin in the matter power spectrum for varying cosmological parameters (with k rescaled by rd/r
fid
d ),

compared with the fiducial prediction (red dashed lines), and the corresponding ratio (i.e., modified over fiducial cosmology)
in the lower panels. The insets show rd/r

fid
d for each case, and the model under consideration is given in the upper left corner

of each panel. We keep all ⇤CDM parameters to their fiducial values except for when each of them are varied, as indicated
in the corresponding color bars. The intervals limited by white lines in the color bars correspond to the 68% confidence
level constraints of each parameter from Planck observations, and additional data sets for EDE and DNI. For the panels
corresponding to EDE, we use fEDE = 0.2, log10 z

c
EDE = 3.5, ⇥EDE = 2.8, and naxion = 3, unless otherwise indicated. For the

DNI model, we use fDNI = 0.02 and uDNI = 5, unless otherwise indicated. DNI constraints are reported in terms of fDNIuDNI,
hence they are adapted to the fixed values of uDNI and fDNI assumed in this figure. Note the change in scale of the y�axis for
the lower sections of each panel.

however, the pattern of Olin changes, then the standard
BAO analysis does not su�ciently capture di↵erences be-
tween the fiducial and the modified cosmologies.

We show this comparison in Fig. 1, where we indi-
vidually vary all the relevant parameters of the cos-
mologies discussed in Section IVA, keeping the rest
of the parameters fixed. In order to study the varia-
tions thoroughly, we show both the absolute values of
Olin(k/[rd/rfidd ]) in the upper panels, as well as the ratio

Olin(k/[rd/rfidd ])/
�
Olin(k/[rd/rfidd ])

�fid
to compare with

the fiducial in the lower panels. Note that at low redshift,
the results shown in Fig. 1 are independent of redshift,
since all redshift dependence is contained in Pm,sm, ex-

cept for the redshift evolution of the non-linear damping
of the BAO, which we do not model in this work.

The first two panels of Fig. 1 show Olin, varying ⌦bh2

and ⌦cdmh2 under ⇤CDM. We can see that rd changes
considerably for the parameters ranges explored (since
the sound speed of the plasma and the matter content
of the Universe change). However, after rescaling rd, the
only significant change in Olin is the amplitude of the
wiggles, with no appreciable phase shift or further change
of the BAO feature. Although the amplitude of the BAO
is a↵ected by non-linearities [66], the non-linearities are
modeled with an exponential decay dependent on ⌃? and
⌃k (Eq. (9)), which we marginalize over. There might

Bernal++ arXiv:2004.07263

Murgia++ arXiv:2009.10733



Smith++ arXiv:2009.10740

Early dark energy and EFT of LSS



Detecting the EDE with CMB data only 
• Future CMB experiment like CMB-S4 will be able to detect the EDE without SH0ES data. 
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f(zc) = 0.12
zc = 103.5

h = 0.72

• Possibly related to TE 
feature at ℓ ∼ 500
Lin, Hu, and Raveri 
arXiv:2009.08974

• Preliminary result: EDE is 
preferred over LCDM with 
PlanckTT+ACTPol (no SH0ES)

Planck PlanckTT+ACTPol



Conclusions

• An EDE can resolve the Hubble tension and fit other cosmological datasets


• Planned CMB missions (i.e., CMB-S4) will see the EDE if it is there!


• Unique predictions: if  around minimum, parametric resonance leads to 

late-time ( ) non-linear scalar field dynamics (including GWs)


• Makes LSS predictions


• May fit into a larger class of scalar fields/mechanisms

V(ϕ) = λϕ4

z ≃ 10 − 100

ϕEDE fortified!


