

NEW MEASUREMENTS OF THE EXPANSION RATE OF THE UNIVERSE, FASTER THAN WE THOUGHT

Ultimate "End-to-end" test for ACDM, Predict and Measure H₀

Standard Model: (Vanilla) Λ CDM, 6 parameters + ansatz (w, N_{eff}, Ω_{K} , etc)

A Direct, Local Measurement of H₀ to percent precision

The SH₀ES Project (2005)

(Supernovae, H₀ for the dark energy Equation of State)

A. Riess, L. Macri, D. Scolnic, S. Casertano, A. Filippenko, W. Yuan, S. Hoffman, +

Measure H₀ to percent precision <u>empirically</u> by:

A strong, simple ladder: Geometry→Cepheids→SNe la

Multiple ways

Pulsating Stars, $10^5 L_{\odot}$, P-L relation

Exploding Stars, $10^9 L_{\odot}, \sigma \sim 5\%$

An explosion resulting from the thermonuclear detonation of a White Dwarf Star.

--Reduce systematics w/ consistent data along ladder and NIR
--Thorough propagation of statistical and systematic
--HST Cycle 11-28, 17 competed GO proposals,~1000 orbits

A Direct, Local Measurement of H₀ to percent precision

The SH₀ES Project (2005)

(Supernovae, H₀ for the dark energy Equation of State)

A. Riess, L. Macri, W. Yuan, S. Casertano, D. Scolnic, A. Filippenko,, S. Hoffman, et al

Measure H₀ to percent precision <u>empirically</u> by:

A strong, simple ladder: Geometry—Cepheids — SNe la

- Reduce systematics w/ consistent data along ladder and NIR
- Thorough propagation of statistical and systematic errors
- HST Cycle 11-28, 17 competed GO proposals,~1000 orbits

Distance Ladders: Simple & Empirical, Must be Consistent

Parallax in the Milky Way at Kiloparsec Distances

on Hubble Space Telescope

Extending Parallax with WFC3 Spatial Scanning

Photo taken now

Photo taken 6 months later

Imaging, precision=0.01 pix Sc WFC3: ~1σ @ 3 kpc

New Tool: WFC3 Spatial scanning for long range parallaxes, photometry

WFC3 Spatial Scanning → 20-40 µas
4 Years Later: Proper Motion subtracted,
8 MW long-P Cepheid Parallaxes
1.7<D<3.6 Kpc, error in mean=3.3%

Milky Way Cepheid P-L Relation, Now w/ HST photometry, Long Periods

Three Sources of Geometric Distances to Calibrate Cepheids

Parallax in Milky Way (WFC3 SS, HST FGS, Gaia)

Masers in NGC 4258, Keplerian Motion (Reid+2019)

Step 2: Cepheids to Type Ia Supernovae

Cepheid V,I,H band Period-Luminosity Relationships: 19 hosts, 3 anchors

Lower Systematics from Differential Flux Measurements

To reduce systematic errors: measure all Cepheids with same instrument, filters, similar metallicity, period range

Lowering Systematics: Near-IR Cepheid Observations + HST, Now in LMC!

-Negligible sensitivity to metallicity in NIR (F160W)

-Dependence on reddening laws 6x smaller than optical

We use F160Wband as primary +F555W,F814W

Key Project used F555W and F814W

Step 3: Intercept of SN Ia Hubble Diagram: Distance vs Redshift

Kinematic Intercept equation

The Hubble Constant in 3 Steps: Present Data

Robust? Seven Sources of Cepheid Geometric Calibration

Independent Geometric Source	σ_{D}	H ₀
NGC 4258 H ₂ 0 Masers: Reid, Pesce, Riess 2019	1.5%	72.0
LMC 20 Detached Eclipsing Binaries: Pietzrynski+ 2019 + 70 HST LMC Cepheids: Riess+(2019) AGREES WITH GAIA EDR3	1.3%	74.2
Milky Way 10 HST FGS Short P Parallaxes: Benedict+2007also Hipparcos (Van leeuwen et al 2007)	2.2%	76.2
Milky Way 8 HST WFC3 SS Long P Parallaxes: Riess+ 2018	3.3%	75.7
Milky Way 50 Gaia+HST, Long P Parallaxes: Riess+ 2018	3.3%	73.7
Milky Way Short P Cepheid Binary Gaia Companion Parallax: Breuval+20	3.8%	72.7
Milky Way Short P Cepheid Cluster Gaia Parallax: Breuval+20	3.2%	73.6

Consistent Results ($\leq 2\sigma$), Independent Systematics

Systematics? 23 Analysis Variants—we propagate variation to error

Analysis Variants	H ₀
Best Fit (2019)	73.5
Reddening Law: LMC-like (R _v =2.5, not 3.3)	73.4
Reddening Law: Bulge-like (N15)	73.9
No Cepheid Outlier Rejection (normally 2%)	73.8
No Correction for Cepheid Extinction	75.2
No Truncation for Incomplete Period Range	74.6
Metallicity Gradient: None (normally fit)	74.0
Period-Luminosity: Single Slope	73.8
Period-Luminosity: Restrict to P>10 days	73.7
Period-Luminosity: Restrict to P<60 days	74.1
Supernovae z>0.01 (normally z>0.023)	73.7
Supernova Fitter: MLCS (normally SALT)	75.4
Supernova Hosts: Spiral (usually all types)	73.6
Supernova Hosts: Locally Star Forming	73.8
Optical Cepheid Data only (no NIR)	72.0

Frequently Asked Questions: technical, see backup slide

• Could we live in a giant void (9% in H_0)? No, LSS Theory and SN Ia mag-z limit σ ~0.6% in H_0

Odderskov et al. (2016), Wu & Huterer (2017), Kenworthy, Scolnic, Riess 2019

• Is HST WFC3-IR flux scale linear to 1%? Yes, calibrated to σ =0.3% in H₀ across 15 mag

Riess, Narayan, Calamida 2019

 Does Cepheid crowding compromise accuracy? No, amplitude data confirms locality of crowding

Riess, Yuan, Casertano, Macri, Scolnic 2020

• Is there a difference in SN Ia at ends of distance ladder? No, correlations of Hubble residuals < σ =0.3% in H₀

Jones et al 2018

Cepheids+SN Ia Ladder, Most Widely Replicated: 2001-2019

Why Cepheids? Advantages: 1) longest-range 2) most calibrations 3) consistent photometry along ladder 4) most tested...

The Hubble Constant Tension, Discrepancy, Problem, Crisis

Status late 2020

Compilation from Di Valentino(2020)

KITP 2019 (Verde, Treu, Riess 2019)

"does not appear to depend on the use of any one method, team or source"

No Cepheids: $4.5-5.3\sigma$ No TRGB: $5.7-6.3\sigma$ No lens: 5.0σ No SN Ia: 4.9σ No Cepheids or TRGB: 5.3σ No Planck: $4.4-4.9\sigma$ No CMB: $4.0-4.5\sigma$ (Riess 2019, Nature Reviews)

Cause Early vs Late Difference? Newton: "Feign No Hypothesis"

<u>"The Hubble Hunter's Guide", Knox and Millea, 2019:</u> "Most Likely": Increase Expansion Rate Pre-recombination->reduce sound horizon by 5-8% <u>Mechanisms:</u> Early DE or sterile (self-interacting) neutrinos <u>Claims:</u> better fit to CMB, new CMB features, cosmic birefringence as evidence of CMB coupling to EDE/ALPs or pNG Boson (Capparelli+20, Fujita+20)?

Another Early vs Late Tension? Matter clumpiness, σ_8

RMS matter fluctuation, σ_{8} , (r=8 h⁻¹ Mpc), 0.8 Early vs late divide

~3 σ from lensing and peculiar velocities, independently

6dFGS+SDSS

Said, K et al 2020, MNRAS,497, 1275

"...deviates by more than 3σ from the latest Planck CMB measurement. Our results favour ... a Hubble constant H₀ > 70 km s⁻¹ Mpc⁻¹ or a fluctuation amplitude $\sigma_8 < 0.8$ or some combination of these. "

Can We Believe Measurements without Explanation?

Don't sweep "problems" under the rug

"Problems" are often clues!

Precession of Mercury

Solar Neutrino Problem

Solved!

Solved!

Missing Baryon Problem Solved!

Lithium Problem

CMB Cold Spot

Flat rotation curves/ what/where is dark matter?

Accelerating Universe/ why Λ so small?

Can We Believe Explanation without hypothesis (*how*)? Present data provides formidable challenge!

"Its New Physics"—constrained precise H(z) data, CMB high-I

"Its Systematics"—many measures, many independent rungs, duplicate measurements, Copernican principle

I don't think so.

Reasons for optimism:

New data: LIGO, DESI, Roman, Rubin, Euclid, JWST, Simons, S4

New clues: Early vs late σ_8 , Cosmic Birefringence?, BBN ?

Big Playground: Lambda CDM is 95% dark, quantum gravity

Next Steps: Increasing Number of SN-Cepheid Calibrations

NEW SHOES Large HST Programs, Cycles 25,26,28 24 more Cepheid-SN Ia Calibrators underway, to reach total=43, + Cepheids to Coma!

Future Prospects...

- New low-z SN samples
- Doubling SN Calibrator sample, 19→40
- Gaia EDR3 !!!
- LIGO H₀ (Late Universe)
 - DESI,LSST,WFIRST,Euclid →better w(z)
 - Next generation CMB: signatures (e.g., EDE)
- Stay tuned...

Final Thoughts

- Discrepancy is ~5 σ (4-6) σ (depending on combination) No Late Universe measurements lower than any Early
- Appears robust, requires <u>multiple</u> catastrophic failures to avoid
- <u>Very interesting!</u> (unless your Bayesian prior on $\Lambda CDM > 5 \sigma$)
- Feign No Hypothesis, let's follow evidence, find the how
- Universe may be more clever than we are *now*